Potential Amendments to District Rule 4354 (Glass Melting Furnaces)

September 30, 2021
San Joaquin Valley Air Pollution Control District

webcast@valleyair.org

Valley's Air Quality Challenges

- Valley's challenges in meeting federal air quality standards unmatched due to unique geography, meteorology, and topography
- Valley designated as "Extreme" non-attainment of the 8-hour Ozone NAAQS; "Serious" non-attainment of federal standards for fine particulate matter (PM2.5)
 - Substantial emission reductions needed to achieve federal standards – need to go beyond already strict control limits
- Combustion is a significant source of NOx emissions, primary precursor to ozone and PM2.5 formation
 - Comprehensive strategy in 2018 PM2.5 Plan includes commitment to reduce emissions from mobile sources and a number of stationary source categories, including glass melting furnaces

Health Benefits of Reducing Emissions in the Valley

- Exposure to PM2.5 and Ozone linked to a variety of health issues, including (but not limited to):
 - Asthma, chronic bronchitis, irregular heartbeat, and respiratory/cardiovascular hospitalizations
- District implements control measures to lower direct and precursor emissions throughout the Valley
 - NOx emissions are key precursor to formation of ammonium nitrate, which is large portion of total PM2.5 winter
 - NOx is also chemical precursor to formation of Ozone
- Proposed rule amendment will support goal of attaining health-based federal ambient air quality standards for both PM2.5 and Ozone, and help to protect public health

Glass Melting Facilities in San Joaquin Valley

- Valley home to six glass-making facilities with glass melting furnaces
 - Container glass: Any glass
 manufactured by pressing, blowing in
 molds, rolling, or casting (i.e. into
 bottles)
 - Fiberglass: Material consisting of fine filaments of glass
 - *Flat glass*: Glass produced by the float, sheet, rolled, or plate glass process used in windows, windshields, etc.

NOx Emissions from Glass Melting Furnaces in the Valley

All NOx Emissions in the Valley Mobile, Stationary, & Area Sources

NOx Emissions from Stationary
Sources

Glass Melting Furnaces

Other Stationary Sources Glass Melting Furnaces

Rule 4354 Overview

- District Rule 4354 first adopted September 14, 1994
 - -Sixth generation rule
- Rule limits emissions of NOx, CO, VOC, SOx, and PM10 from glass melting furnaces
 - -Through rule requirements, NOx emissions reduced by 75% to date
- Control technology required for glass melting furnaces to meet existing stringent limits
 - -Rule requirements approved as meeting Most Stringent Measures (MSM) by U.S. EPA in July, 2020
- Specific types of glass melting furnaces have different limits, due to variations in the glass production process, residency time in the furnace, temperature requirements, etc.

Commitments from 2018 PM2.5 Plan

- Per 2018 PM2.5 Plan commitments, District pursuing potential opportunities to reduce NOx from container glass furnaces, as technologically and economically feasible
 - Evaluating lowering NOx limit from 1.5 lb/ton to between 1.0-1.2 lb/ton glass pulled or lower, based on rolling 30-day average
- District also evaluating feasibility of lower NOx emission limits for other glass melting furnaces

Current NOx Controls In Use At Valley Glass Plants

- Selective Catalytic Reduction (SCR)
 - Advanced active emissions control system that injects an ammonia-type reagent into a catalyst in the exhaust stream
- Oxy-Fuel fired furnaces
 - Furnace technology adds oxygen to fuel and reduces NOx emissions by minimizing the availability of nitrogen in combustion process
- Selective Non Catalytic Reduction (SNCR)
 - Reduces NOx emissions through injection of ammonia type reagent into furnace/exhaust stream

Additional Controls In Use At Valley Glass Plants

Particulate Matter Control Technologies

- Electrostatic Precipitator (ESP)
 - Removes particles from a gas stream by using electrical energy to charge particles and attract them to oppositely charged collector plates
- Ceramic filter system
 - Removes particles from gas stream through direct impaction

SOx Control Technologies

- Dry Scrubber Systems
- -Semi-dry Scrubbers Systems
 - Powdered alkaline sorbent injected into exhaust stream to reduce sulfur compound emissions

Images credit: Babcock & Wilcox, 2016

Further NOx Control Technology Under Evaluation

- Ceramic Catalytic Filters
 - -Tri-Mer UltraCat Catalytic Filter System
- Oxy-Fuel Combustion
- Selective Catalytic Reduction (SCR)
- Combination of control technologies

Image credit: Praxair, 2016

Cost Assessment of Further Control Technology

- Sources for costs
 - Actual costs provided by facilities, engineering estimates, and control technology vendors & manufacturers
 - Various sources for the cost of electricity, fuel, and replacement parts
 - Cost factors from EPA's Office of Air Quality Planning and Standards
- Staff held virtual meetings with facilities, vendors,
 manufacturers, and other stakeholders to gather cost figures

Ceramic Catalytic Filter

- Ceramic Catalytic Filters
 - -Tri-Mer UltraCat Catalytic Filter System; controls PM, SOx, NOx, and more with a single integrated system
 - Total Capital Cost:
 - \$5M (housing already installed) \$17.5M (full system cost)
 - -Operation & Maintenance Cost:
 - \$600K \$2.4M

System Architecture

Ceramic fiter tube wall is 3/4" thick with catalyst embedded throughout the wall. Filters are self-supporting without filter cages, and have a service life of 5 to 10 years.

protected from PM blinding and poisoning.

Image credit:

Selective Catalytic Reduction

- Selective Catalytic Reduction (SCR)
 - Reduces NOx emissions through injection of ammonia type reagent into furnace
 - Total Capital Cost: \$2M-\$6.9M
 - Operation & Maintenance Cost: \$6K-1M

Oxy Fuel Combustion

- Oxy-Fuel Combustion
 - Adds oxygen to fuel and reduces
 NOx emissions by minimizing the availability of nitrogen
 - -Total Capital Cost: \$24M
 - Operation & Maintenance Cost:
 - ~\$3.1M

Combination of Controls

 Combination of control technologies such as Oxyfuel and Ceramic Catalyst Filtration have the potential to achieve significantly lower emission limits

Electric Furnace Technology Evaluation

- District in process of conducting analysis of potential feasibility of conversion to electric furnace technology
- Preliminary analysis shows:
 - Electric furnaces not available in size needed to support plant production throughput levels (process limits furnace capacity under 300 tons/day)
 - Commercially available technology does not support use of recycled glass
 - Current electric furnace design not suitable for flat glass production
 - More than 10 MW of electrical capacity needed to replace just one furnace at Valley plant (enough to power 2,600 homes for a year)
- Significant cost of electricity to operate electric furnaces
- Life of electric furnaces significantly shorter than traditional
- District continuing to evaluate electric furnace technology

Cost-Effectiveness (CE) Analysis

- Cost-Effectiveness is cost (capital and annual) over emission reductions for the life of the equipment (\$/ton)
- Two major cost elements
 - Capital Costs (Equipment, Infrastructure, Engineering, Installation, Tax, Freight)
 - Annual Costs (Operation & Maintenance)
- Emission reductions based on current emission levels (baseline) to proposed emission limit

Rule 4354 Amendments Under Consideration: Container Glass Melting Furnaces

- District proposing to lower existing NOx emissions limits with phased compliance schedule for container glass facilities
 - Current NOx limit 1.5 lb/ton glass pulled
 - Proposed Phase I limit between 1.0-1.2 lb-NOx/ton glass pulled based on rolling 30-day average (Jan. 1, 2024 compliance deadline)
 - Proposed Phase II limit 0.75 lb-NOx/ton glass pulled based on rolling 30-day average
 - Phase-in by furnace rebuild schedule starting in 2024, no later than 2029
- Proposing to lower existing PM10 emission limits
 - Current limit 0.5 lb/ton glass pulled
 - Considering lowered limit of 0.15 0.2 lb/ton based on 24-hr block avg. (2024)
- Proposing to lower existing SOx emission limits
 - Current rule limit for SOx 1.1 lbs/ton glass pulled
 - Considering limit between 0.6 lbs/ton 0.8 lbs/ton on 24-hr block avg. (2024)

Rule 4354 Amendments Under Consideration: Flat Glass Melting Furnaces

- District proposing to lower existing NOx emissions limits with phased compliance schedule for flat glass facilities:
 - Current NOx rule limit 3.2 lb/ton glass pulled (2.9 for Early Enhanced Schedule) on 30-day average
 - Proposed Phase I limit of 2.5 lb-NOx/ton glass pulled (30-day rolling avg.)
 - January 1, 2024 compliance deadline
 - Proposed **Phase II limit** as low as 1.5 lb-NOx/ton glass pulled (30-day rolling avg.)
 - Phase in by furnace rebuild schedule starting in 2024, no later than 2029
- Lower existing PM10 emission limits
 - Current limit 0.7 lb/ton glass pulled
 - Considering limit of 0.2 lb/ton glass pulled based on 24-hr block avg. (2024)
- No proposed changes to SOx limits for flat glass melting furnaces

Next Steps

- Requesting comment on rule concepts by October 14
 - Draft rule to be published in coming weeks, with associated comment period
- Continued analysis of costs, cost-effectiveness of various controls, and feasibility of control requirements
- Socioeconomic Impact Analysis underway by third-party consultant to evaluate the regional economic impacts of proposed amendments
 - Characterization of the Valley's economic climate
 - Evaluation of economic impacts
 - Socioeconomic Impact Analysis report
 - Results of analysis will be included with proposed rule packages
- Ongoing public engagement process

Next Steps: Public Engagement Process for Rule 4354 Amendments

Public Participation and Comment Invited throughout Process

Contact

Contact: Ariana Hooks

Mail: San Joaquin Valley APCD

1990 E. Gettysburg Ave

Fresno, CA 93726

Phone: (559) 230-5800

Fax: (559) 230-6064

Email: Ariana.hooks@valleyair.org

Listserv: http://lists.valleyair.org/mailman/listinfo/glass_melting_furnaces

Comments/Questions

webcast@valleyair.org

