REQUEST FOR QUOTATION

January 23, 2018

PROJECT: Analysis of Non-Methane Organic Compounds

QUOTES DUE BY: 5:00 PM on Friday, February 9th, 2018

OVERVIEW

The San Joaquin Valley Unified Air Pollution Control District (District) participates in the United States Environmental Protection Agency (USEPA) Enhanced Photochemical Assessment Monitoring Station (PAMS) monitoring program. It is the District's responsibility to collect the air samples, and to solicit laboratories that will analyze and upload to EPA's Air Quality System (AQS) using AIRS parameter codes. Part of this program involves sampling for non-methane organic compounds (NMOC) adhering to the 1998 USEPA PAMS Technical Assistance Document (TAD).

The District is issuing this Request for Quotation (RFQ) in order to retain a qualified contractor who will analyze canisters collected in 2018. This contract is for the 2018 PAMS season only.

To be considered for this project, contractors must meet the minimum eligibility requirements, and submit cost-effective proposals that satisfy this RFQ's quotation requirements. The District will pay on a per canister basis. Payments will be made subsequent to proper verification of completed monthly data submission to EPA's AQS database and District evaluation of EPA Quality Control Reports, confirming that the work was completely and satisfactorily carried out.

Because District funding for the project may include federal funds:

- Contractor shall comply with all federal and state conflict of interest laws, statutes, and regulations, which apply to performance of this Agreement and shall be applicable to all parties and beneficiaries and any officer, agent, or employee of District under this Agreement.
- The contractor shall comply with all federal and state conflict of interest laws, statutes, and regulations, which shall be applicable to all parties and beneficiaries under this Agreement and any officer, agent, or employee of District.
- The contractor must not be presently debarred, suspended, proposed for debarment, declared ineligible, voluntarily excluded from participation or

otherwise excluded from or ineligible for participation under federal assistance programs. Contractor must ensure that all subcontractors employed for conduct of this project also certify compliance with this provision of law to the contractor.

- A contractor or any individual identified in the proposal that appears in the Excluded Parties List System (EPLS) is <u>not</u> eligible for award of a contract. The EPLS is a central registry that contains information regarding entities debarred, suspended, proposed for debarment, excluded, or otherwise declared ineligible from receiving Federal contracts. Access to the EPLS is available at www.epls.gov.
- The contractor certifies by signing the signature page of the original copy of the submitted proposal and any amendment signature page(s) that the proposer is not presently debarred, suspended, proposed for debarment, declared ineligible, voluntarily excluded from participation, or otherwise excluded from or ineligible for participation under federal assistance programs.

The contractor will provide certification that commercial general liability insurance coverage (\$1,000,000 per occurrence) for bodily and personal injuries or for property damage as well as Workers Compensation Insurance as in accordance with the California Labor Code are obtained and are in full force.

The District reserves the right to reject any and all quotations, and to make no awards.

SUBMITTAL INSTRUCTIONS

A contractor who submits a quotation in response to this RFQ must adhere to the following instructions:

- 1. The deadline for submitting quotations is 5:00 PM on Friday, February 09, 2018. Quotations received after this time and date will not be accepted.
- 2. Quotations are to be mailed to the following address:

San Joaquin Valley Unified Air Pollution Control District Attn: Stephen Shaw Senior Air Quality Specialist 1990 East Gettysburg Avenue Fresno, CA 93726-0244

- 3. The envelope should be marked with title "Quotation for Analysis of Non-Methane Organic Carbons."
- 4. Include five (5) hard copies and one (1) electronic copy of the quotation.

RFQ - NMOC

MINIMUM ELIGIBILITY REQUIREMENTS

Contractors must meet the following minimum eligibility requirements:

- 1. Successful completion of PAMS analyses for a public agency within the last 5 years.
- 2. Possess demonstrated ability to create and upload AQS data files.
- 3. Completion of Attachment A (Itemized Cost List).

QUOTATION REQUIREMENTS

At a minimum, submitted quotations are to individually address the above 3 'Minimum Eligibility Requirements' and number 2 through 10 of the below 'Quotation Requirements':

- 1. Not exceed 24 pages in length (including cover letter and reference material); pages must be numbered.
- 2. Describe previous experience in the documentation and analysis of PAMS canisters (references are required).
- 3. Provide qualifications of contractor staff who will be assigned to this project. Describe the role of each assigned staff member to be used in the project.
- 4. Generally describe process the contractor will use in the analyses of samples.
- 5. Describe previous experience with AQS, including uploading data into AQS, and including a report from AQS of data that was uploaded by your respondent.
- 6. Describe previous experience with the 1998 USEPA PAMS TAD for Non-Methane Organic Carbons.
- 7. Describe previous experience with PAMS-type analysis of non-methane organic compounds (NMOC) listed in Attachment B excluding acetaldehyde, acetone, and formaldehyde.
- 8. Include a price quote on Attachment A (Itemized Cost List) for the analysis of an Audit Sample or Performance Evaluation that the District may request.
- 9. Include a price quote for each of the following items on a per canister basis:
 - a. The cost of analysis of the canisters.
 - b. The cost of the creation of the AQS transaction files and uploading the files.

San Joaquin Valley Unified Air Pollution Control District

- c. Documentation of invalid samples and missing sample runs.
- d. The evacuation, cleaning, and certification of sample canisters.
- e. The repair of canisters by part:
 - i. valve
 - ii. gauge
 - iii. elbow

GENERAL PROJECT GUIDELINES

The following is a description of the general project guidelines, requirements, and responsibilities that both the District and contractor will hold during the life of the project:

- 1. At any time the District may require that the contractor successfully complete an analysis of an Audit Sample or Performance Evaluation in order for the District to evaluate the performance of the lab.
- 2. In 2018, there are expected to be <u>520</u> samples sent to the contractor for analysis, but this number may increase up to a maximum of 680 or decrease depending on the number of samples collected. PAMS sampling will be conducted during the months of June, July and August of 2018.
- The contractor shall perform NMOC analyses using the 1998 USEPA PAMS TAD (the District will not allow for different collection or sampling devices other than what is currently in use).
- 4. There are 57 required compounds to be analyzed as listed in Attachment B (excluding acetaldehyde, acetone, and formaldehyde). No other compounds are requested or desired.
- 5. The District will supply the NMOC samples in 6L SUMMA stainless steel canisters owned by the District.
- 6. If warranted, the contractor shall provide the District specific instructions detailing the specific procedures for shipping the canisters. If the contractor prefers that the collected samples be returned to them using a specific kind of container, other than what the District proposes to use, then the contractor must supply these materials to the District as part of the contract. The containers/shipping materials must meet all of Department of Transportation and Federal Aviation Administration requirements for safe handling and transport provided by shipping companies like UPS or FedEx. If the contractor desires the District to use a particular written form for tracking the exposed sample (i.e. a 'Chain of Custody' (COC) form other than the form the District provides), the contractor will supply a sufficient quantity of these forms for use by District staff.

- 7. Analyzed, cleaned and certified canisters shall be in the District's possession within 11 days of the contractor receiving them. All canisters are to be shipped via UPS ground shipping. If canister shipments need to be expedited, then the contractor is responsible for any additional cost. The contractor will contact and coordinate with the District with regards to shipping locations and addresses (Fresno and Bakersfield). The contractor is responsible for all recording keeping regarding the shipping of canisters to the individual District locations, recording the number of canisters being sent to each location, and the shipment's date. The District is responsible for all shipping costs of canisters (including audit samples) sent to the District and/or returned to the contractor for this job. The contractor shall be responsible for the shipping cost of canisters that are returned to the District with unacceptable conditions, such as less than -20 PSI of vacuum, missing fitting caps, or with a broken gauge. The certification tag shall include a check list for these items.
- 8. The contractor will make any needed repairs to the canisters such as valve, gauge, or elbow replacement. Payment for any such repairs shall be in accordance with the contract.
- 9. The contractor is responsible for all record keeping and shipping costs of other materials being sent to the District and/or the audit laboratory for this project. The District is responsible for recording keeping and shipping costs to return the above mentioned materials (other than canisters) to the contractor.

10. Payment schedule:

- a. Since this is a short term contract, the District prefers invoicing when all the work is completed to the satisfaction of the District. Upon receiving the invoice, the District will compare what was uploaded to AQS with the documentation provided by the contractor and insure that all of the contract requirements are met. Once everything is verified, the contractor will send a single invoice to the District and payment will be made.
- b. The District recognizes that some respondents require monthly invoices and that is also acceptable. Once the District has concluded that the monthly deliverables are acceptable (verification of completed monthly data submission to EPA AQS and District evaluation of EPA Quality Control Reports confirming that the work was completely and satisfactorily carried out) the contractor may submit a monthly billing statement based upon the site, sample collection date, and time of sample collection and the number of samples for that month (June, July, and August). The billing will not be based on the date of the 'Chain of Custody' form, the date the canisters were receive at the laboratory, or the date of the laboratory's internal tracking system. Each monthly billing will list the gross amount but will invoice at 90% as 10% will be retained until all three month's billings and all services (analyses, reports, audits, performance evaluations, etc.) are successfully completed and rendered

to the satisfaction of the District. The 10% retained is the District's guarantee for satisfactory completion. When all of the above prerequisites have been completed and deemed satisfactory, the District will accept an invoice for the retained amount and the final payment will be dispensed.

- 11. The contractor shall retain and archive a copy of all paper and electronic records of this project for a minimum of three (3) years. The archived records will include any documentation pertaining to the analysis and reduction of raw and processed data, including calibrations, samples and run sequences. In the case where there is a need of clarification or investigation of the reported data, the contractor will provide any and all necessary information as requested so that the entire analysis can be reconstructed.
- 12. The contractor will be available by phone to discuss issues related to this project on the same business day that the District places the call with the contractor. The contractor shall notify the District immediately upon the discovery of any irregularities during the course of the project.
- 13. It is understood by the Contractor that time is of the essence in the performance of this project.
- 14. Since this Agreement exceeds Ten Thousand Dollars (\$10,000), the contractor will be subject to examination and audit of the auditor general for a period of three (3) years after final payment under contract.

QUALITY CONTROL REQUIREMENTS

The following procedures will be employed to ensure the quality of the project and the resulting data:

- The contractor is to provide their own certified EPA-PAMS Reference Gas Cylinder for calibration standard purposes. The Gas Cylinder must include the PAMS VOC Target Compounds. These gases must be traceable to a National Institute of Standards and Technology (NIST) standard.
- 2. Samples shall be promptly analyzed to prevent degradation of the hydrocarbon species, and to facilitate timely return of the canisters to the District. Analyzed, cleaned and certified canisters shall be returned and be in the District's possession within 11 days of the contractor receiving them. All canisters are to be shipped via UPS ground shipping. If canister shipments need to be expedited, then the contractor is responsible for any additional cost.
- 3. The contractor will analyze contents of only the valid samples as identified in District 'Chain of Custody' (COC) forms. The contractor will not analyze contents of invalid samples. For invalid samples, the contractor will repair canisters as

necessary, and prepare, clean, and certify canisters for subsequent sampling. The contractor will appropriately document missing samples.

- 4. Upon completion of analysis, the contractor will evacuate, clean, and certify each canister for future sampling and analysis before returning it to the District. Preparation shall include cleaning the canister, vacuum verification of -30 PSI and leak testing. Canisters received with less than the -20 PSI will be deemed defective with a leak problem and returned for correction at the contractor's expense.
- 5. The contractor will analyze and include in the reports one (1) clean and certified canister per day as a part of the quality control certification process. Another report is to include the number of canisters passed and failed with regards to the total number of canisters that went through the certification process.
- 6. The contractor will provide written documentation indicating the methodology used for analytical instrument calibration, analysis and quality control/assurance. Copies of all related paperwork used to conduct data analysis such as chromatograms, instrument calibrations, etc., shall be supplied to the District in an electronic form (DVD, Flash Drive, Compact Disc, etc.)
- 7. At no additional cost, the contractor will analyze for audit purposes, any canister(s) sent to the contractor by a CARB, USEPA and/or EPA approved National Air Toxics Trend Stations (NATTS) Laboratory designated by the District. The contractor shall provide copies of these audit results to the District. The results shall include all pertinent information regarding calibration reports and standard certificates.

DATA REQUIREMENTS

The following is a list of requirements for the collection and reporting of the data involved in this project:

- The contractor will only report data for the 57 compounds that are required to be analyzed as listed in the North American Research Strategy for Tropospheric Ozone (NARSTO) Measurement Methods Compendium; excluding acetaldehyde, acetone, and formaldehyde (Attachment B). No other compounds are requested or desired.
- 2. The laboratory will upload the results of the analysis to AQS as 'Reported Data.'
- 3. Laboratory equipment must be capable of detecting and measuring levels of VOCs as low as one (1) Parts Per Billion carbon (PPBc) but reporting all detection levels.

- Reported data is to meet Level IV criteria according to EPA guidelines for PAMS documentation (Laboratory Documentation Requirements For Data Validation, Document Control Number 9QA-07-89, January 1990).
- 5. Data is to be reported to the District in both Parts Per Billion carbon (PPBc) and Parts Per Billion volume (PPBv).
- 6. The data formatted and uploaded to the AQS database is to utilize PPBc.
- 7. All measured values are to be reported. Any data below the Practical Quantification Limit (PQL) will be reported and flagged with "LJ". All non-detectable data will be reported as zero and flagged with "ND". Other Qualifier Codes can be used if necessary.
- 8. The contractor will submit monthly e-mails summarizing the analyzed data during the course of the project.
- 9. The contractor's monthly data files and reports will provide the resulting data on a single CD, DVD, or flash drive :
 - a. The CD, DVD, or flash drive shall have a subdirectory dedicated to each site's files labeled with the site's name and AIRSCODE. Each site will have monthly subdirectories containing all of the relevant files for that month as described elsewhere in this RFQ.
 - b. EPA Quality Control Reports: 'Load Report', 'Statistical Evaluation and Critical Review Report' and the 'Raw Data Inventory Report' shall be also recorded on the same CD, DVD, or flash drive used above.
 - c. This CD, DVD, or flash drive will be sent to the District after all the data is uploaded into AQS.
- All laboratory activities and completed data file uploaded reports (to include passage of EPA Quality Control Reports) are to be submitted to the District and AQS by no later than November 30, 2018.

EVALUATION OF RESPONSES TO THIS RFQ

Each response to this RFQ will be evaluated with particular emphasis on how well the respondent complies with the information requested in this RFQ, experience in PAMS-type analysis, experience in uploading to EPA's AIRS system, cost of postage as calculated by the District, and cost for services as shown on Attachment A. Not providing all of the information requested in this RFQ will lower the overall score and may be grounds to disqualify the response from further review.

INQUIRIES

Technical and administrative questions concerning this RFQ should be directed to Stephen Shaw, Senior Air Quality Specialist, San Joaquin Valley Unified Air Pollution Control District at steve.shaw@valleyair.org or (559) 230-6000. An editable copy of Attachment A (Itemized Cost List) is available on request.

San Joaquin Valley Unified Air Pollution Control District

Attachment A

Itemized Cost List

Itemized Cost List for 2018 PAMS NMOC

Show all costs on the following table.

Cost per Canister	Costs
Cost per analysis of each valid sample	
Cost per canister for evacuation, cleaning, & certification	
Cost of audit sample or performance evaluation	
AIRS Upload Costs	
Cost per canister for file creation and uploading data into AQS	
Cost of reporting one (1) missing or invalid sample	
Costs of Repairs	
Cost per canister for the repair of the valve	
Cost per canister for the repair of the gauge	
Cost per canister for the repair of the elbow	
Other costs not included in the above	
1.	
2.	
3.	
Sub-Totals	
Cost of 520 canisters analysis, cleaning, & certification	
Cost of preparing and uploading 520 samples into AQS	
Cost of repairing the value, gauge, and elbow of 12 canisters	
Cost of one (1) audit sample or performance evaluation	
Total cost for 'Other Costs'	
1000 000 000	
Grand Total for Project (Sum of the Sub-Totals)	

San Joaquin Valley Unified Air Pollution Control District

Attachment B

PAMS Compounds

Sampling and Analysis Summary Information for PAMS VOC Target Species

Number of VOC Compounds = 60

	Compound Name	IUPAC Name (if different)	Group Designation (note 1)	AIRS Parameter Number	Boiling Point (degrees C)	Volatility	CAS Number (note 2)	Sampling Method Alternatives	Separator (note 4)	Detector (note 5)	EPA Ref. Desig. For Current Method (note 6)	Detection Limit (ppbv)	Alternative Methods (possibly lower
				(note 1)	(note 2)			(note 3)				(note 6)	cost) (note 6)
1	Ethane		paraffin	43202	-88.5	Very vol.	74-84-0	Multi-adsorbent	GC	MS	TO-17	0.2-25	No alternative
2	Propane		paraffin	43204	-42	Very vol.	74-98-6	Multi-adsorbent	GC	MS	TO-17	0.2-25	No alternative
3	Isobutane	2-Methylpropane	paraffin	43214	-12	Very vol.	75-28-5	Can+ads or Can	GC	MS/FID	TO-15	0.2-25	TO-14A
4	n-Butane		paraffin	43212	0	Very vol.	106-97-8	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
5	Isopentane	2-Methylbutane	paraffin	43221	28	Very vol.	78-78-4	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
6 7	n-Pentane		paraffin paraffin	43220 43242	36 49	Very vol.	109-66-0 287-92-3	Can+ads/can/CMS Can+ads/can/CMS	GC GC	MS/FID MS/FID	TO-15 TO-15	0.2-25 0.2-25	TO-14A/TO-2 TO-14A/TO-2
8	Cyclopentane 2,2-Dimethylbutane		paramin	43242 43244	49 50	Very vol. Med. vol.	75-83-2	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
9	2,3-Dimethylbutane		paraffin	43284	58	Med. vol.	79-29-8	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
10			paraffin	43285	60	Med. vol.	107-83-5	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
11			paraffin	43230	63	Med. vol.	96-14-0	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
12			paraffin	43231	69	Med. vol.	110-54-3	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
13	Methylcyclopentane		paraffin	43262	72	Med. vol.	96-37-7	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
14	Cyclohexane		paraffin	43248	81	Med. vol.	110-82-7	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
15	2,4-Dimethylpentane		paraffin	43247	81	Med. vol.	108-08-7	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
16	2-Methyl hexane		paraffin	43263	90	Med. vol.	591-76-4	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
17	2,3-Dimethylpentane		paraffin	43291	90	Med. vol.	565-59-3	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
18	3-Methylhexane		paraffin	43249	92	Med. vol.	6131-24-4	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
19	2,2,4-Trimethylpentane		paraffin	43250	99	Med. vol.	540-84-1	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
20 21	n-Heptane Methylcyclohexane		paraffin paraffin	43232 43261	99 101	Med. vol. Med. vol.	142-82-5 108-87-2	Can+ads/can/CMS Can+ads/can/CMS	GC GC	MS/FID MS/FID	TO-15 TO-15	0.2-25 0.2-25	TO-14A/TO-2 TO-14A/TO-2
22	2,3,4-Trimethylpentane		paraffin	43252	114	Med. vol.	565-75-3	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
23	2-Methylheptane		paraffin	43960	118	Med. vol.	592-27-8	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
24	3-Methylheptane		paraffin	43253	119	Med. vol.	6131-25-5	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
25	n-Octane		paraffin	43233	126	Less vol.	111-65-9	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
26	n-Nonane		paraffin	43235	151	Less vol.	111-84-2	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
27	n-Decane		paraffin	43238	174	Less vol.	124-18-5	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
28	n-Undecane		paraffin	43954	196	Less vol.	1120-21-4	Can+ads/can	GC	MS/FID	TO-15	0.2-25	TO-14A
29	n-Dodecane		paraffin	43141	217	Less vol.	112-40-3	Can+ads	GC	MS	TO-15	0.2-25	No alternative
1	Acetylene	Ethyne	alkyne	43206	-85	Very vol.	74-86-2	Multi-adsorbent	GC	MS	TO-17	0.2-25	No alternative
1	Ethylene	Ethene	olefin	43203	-104	Very vol.	74-85-1	Multi-adsorbent	GC	MS	TO-17	0.2-25	No alternative
2	Propylene	1-Propene	olefin	43205	-48	Very vol.	115-07-1	Multi-adsorbent	GC	MS	TO-17	0.2-25	No alternative
3	1-Butene	.,	olefin	43280	-6	Very vol.	106-98-9	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
4	trans-2-Butene		olefin	43216	1	Very vol.	624-64-6	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
5	cis-2-Butene		olefin	43217	4	Very vol.	590-18-1	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
6	1-Pentene		olefin	43224	30	Very vol.	109-67-1	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
7	Isoprene	2-Methyl-1,3-butadiene	olefin	43243	34	Very vol.	78-79-5	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
8	trans-2-Pentene		olefin	43226	36	Very vol.	646-04-8	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
9	cis-2-Pentene		olefin	43227	37	Very vol.	627-20-3	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
10	1-Hexene		olefin	43245	63	Med vol.	592-41-6	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
1	Benzene		aromatic	45201	80	Med. vol.	71-43-2	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
2	Toluene	Methyl-benzene	aromatic	45202	111	Med. vol.	108-88-3	Can+ads/can/CMS	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-2
3	Ethylbenzene		aromatic	45203	136	Less vol.	100-41-4	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
4	meta-Xylene	1,3-Methyl-benzene	aromatic	45109	139	Less vol.	108-38-3	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
5	para-Xylene	1,4-Methyl-benzene	aromatic	45109	138	Less vol.	106-42-3	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
6	Styrene	Ethenyl-benzene	aromatic	45220	145	Less vol.	100-42-5	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
7	ortho-Xylene	1,2-Methyl-benzene	aromatic	45204	145	Less vol.	95-47-6	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
8	Isopropylbenzene (cumene)	1-Methyl-ethyl-benzene	aromatic	45210	152	Less vol.	98-82-8	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
9	n-propylbenzene	Propyl-benzene	aromatic	45209	159	Less vol.	103-65-1	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
10	m-Ethyltoluene	1-Ethyl-3-methyl-benzene	aromatic	45212	161	Less vol.	620-14-4	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
11	p-Ethyltoluene	1-Ethyl-4-methyl-benzene	aromatic	45213	162 165	Less vol.	622-96-8	Can+ads/can/cryog.	GC GC	MS/FID MS/FID	TO-15 TO-15	0.2-25	TO-14A/TO-3 TO-14A/TO-3
12 13	1,3,5-Trimethylbenzene o-Ethyltoluene	1-Ethyl-2-methyl-benzene	aromatic aromatic	45207 45211	165 165	Less vol. Less vol.	108-67-8 611-14-3	Can+ads/can/cryog. Can+ads/can/cryog.	GC	MS/FID MS/FID	TO-15 TO-15	0.2-25 0.2-25	TO-14A/TO-3 TO-14A/TO-3
14	1,2,4-Trimethylbenzene	i-Luiyi-z-memyi-benzene	aromatic	45211 45208	169	Less vol.	95-63-6	Can+ads/can/cryog. Can+ads/can/cryog.	GC	MS/FID MS/FID	TO-15	0.2-25	TO-14A/TO-3
15	1,2,3-Trimethylbenzene		aromatic	45225	176	Less vol.	526-73-8	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
16	m-Diethylbenzene	1,3-Diethyl-benzene	aromatic	45218	181	Less vol.	141-93-5	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
17	p-Diethylbenzene	1,2-Diethyl-benzene	aromatic	45219	184	Less vol.	105-05-5	Can+ads/can/cryog.	GC	MS/FID	TO-15	0.2-25	TO-14A/TO-3
			oxidized					Cartridge/Liquid					
1	Acetaldehyde	Ethanal	alcohols oxidized	43503	20	Very vol.	75-07-0	Impinger Cartridge/Liquid	HPLC	UV	TO-11A	0.5-100	TO-5
2	Acetone	2-Propanone	alcohols oxidized	43551	56	Med. vol.	67-64-1	Impinger Cartridge/Liquid	HPLC	UV	TO-11A	0.5-100	TO-5
3	Formaldehyde	Methanal	alcohols	43502	-20	Very vol.	50-00-0	Impinger	HPLC	UV	TO-11A	0.5-100	TO-5

note 1: See lists and discussion in * Technical Assistance Document for Sampling and Analysis of Ozone Precursors* EPA/600-R-98/161 (USEPA, Human Exposure and Atmospheric Sciences Division, Research Triangle Park, North Carolina. September, 1998, Section 2, pp. 5-7.

note 2: Boiling Points and CAS numbers are found in "CRC Handbook of Chemistry and Physics," 79th Edition, D. R. Lide, ed., Boca Raton, January, 1998, Section 3, pp. 3-1 ff.

note 3: At a simple level, sampling procedures fall into either cannister techniques or adsorbent techniques. But the five methods, TO2,3,14A,15 and 17, provide for alternatives within these two categories. In addition, adsorbents vary with respect to breakthrough limits and VOC volatilities. The abbreviations shown include: Can = cannister of any type, CMS = carbon molecular sieve adsorbent, Cy = cryogenic concentration technique (types vary), Ads = adsorbent of type other than CMS, including multisorbent tubes. Generally, it is assumed that most cannister sampling methods are more costly than most adsorbent methods. However, complex multi-adsorbent cartridges can be costly.

note 4: Gas chromatograph is the designated separation method for both mass spectrometer and flame ionization methods.

note 5: Although mass spectrometer is the method of detection given for the most recent EPA methods, flame ionization is shown as an alternative detector for Methods TO-14A and TO-2.

See Methods for VOCs on Next Page

note 6: Detailed descriptions of methods TO-1 through TO-17 are shown at http://www.epa.gov/ttn/amtic/airtox.html.

Method Designation	Collector	Analyzer	Detector	Volatility category that method best	Boiling pt. range (C)		Detection limit	Cost comments and ratings: 1 =	Procedural Steps in Methods					
Designation				matches (note 2)	(note 1)	Compounds	(ppbv)	least costly (note 3)	1. Sample Collection	. Sample Collection 2. Sample Treatment		4. Separation	5. Detection, Identification, and Measurement	
TO-1	Tenax cartridge	GC	MS	Less volatile	80 to 200	aromatic hydrocarbons, benzene, toluene, and xylene	0.01 to 100	MS is costly, but no cannister required	Collect sample by drawing ambient air through Tenax cartridge.	Return to lab. Heat cartridge and purge with inert gas.	 Transfer VOCs to cryog. trap, then heat trap for insertion of VOCs into GC. 	Hold GC column at low temperature, then heat as VOCs are introduced.	 Separate by GC and identify and measure by MS. ECD and FID are mentioned, but not identified as part of this method. 	
TO-2	Carbon molecular siev cartridge	GC e	MS FID	Medium volatile	-15 to 120	benzene, toluene	0.1 to 200	FID not as costly as MS, and no cannister req.	Collect sample by drawing ambient air through CMS cartridge.	Return to lab and purge water vapor from cartridge with dry air and heated helium.	Transfer VOCs to cryog. loop (trap), then heat trap for insertion of VOCs into GC.	Hold GC column at low temperature, then heat as VOCs are introduced.	 Separate by GC and identify and measure by MS. FID is identified as a possibly preferable for this method. 	
TO-3	Cryogenic cannister	GC	FID	Medium volatile	-10 to 200	many VOCS	0.1 to 200	Cryog. cannister system raises cost, but FID cheaper than MS	Collect sample by drawing ambient air directly into cryog. trap (container), e.g., immersed in liquid argon.	May use Nafion or other dryer before air goes into cryog. container.	3. No intermediate transfer.	Cryog. cont. intake valve is switched to GC column injection, possibly on site. Cont. is heated to 150 deg C.	Identify and measure compounds by FID (provides det. limits of 1 to 5 ng for many compounds).	
TO-5	DNPH liquid impinger	HPLC	UV	Very volatile	-20 to 56	aldehydes and ketones	1 to 50	2: Uses HPLC	Draw ambient air into midget impinger containing mI DNPH reagent	Place solution in vial and return to lab. Remove isooctane layer, extract aq.	 Evaporate organic layers and dissolve residue in methanol. 	Inject into HPLC.	5. Determine derivatives using UV detector at 370 nm.	
TO-11A	DNPH Cartridge	HPLC	UV	Very volatile	-20 to 56	aldehydes and ketones	0.5 to 100	Similar to TO-5, but use of cartridge might be more costly	Draw ambient air into DNPH coated cartridge. Place cartridge in glass vial and seal.	Return to lab. Remove cartridge and wash with acetonitrile.	No further processing needed.	Acetonitrile solution is diluted and injected into HPLC.	5. Determine derivative by UV detection at 350 nm.	
TO-14A	Cannister / cryog. trap	GC	FID/ECD or MS	Medium volatile (covers almost all VOCs)	-29 to 213	non-polar VOCs	0.2 to 25	2: Cannister system req., FID optional	Draw ambient air into cannister (e.g. 6L) equipped with flow control device.	Return to lab. Dry with Nafion dryer or alternative.	3.Transfer VOCs to cryog loop (trap), then heat trap for insertion of VOCs into GC.	Separation in GC for transfer either to MS or to combination-detector system.	 TO-14A describes either a two-way MS system (SCAN versus SIM) or a three-way FID-PID). 	
TO-15	Cannister / sorbent trap	GC	MS	Medium volatile (covers almost all VOCs)	-50 to 240	polar/non-polar VOCs	0.2 to 25	3: Cannister plus solid adsorbent with MS	Draw ambient air into cannister (e.g. 6L) equipped with flow control device.	Return to lab. Pass sample through multisorbent packed tube. Purge water vapor with helium.	Cryog. trap concentrator optional.	4. Separation in GC.	5. identify and measure compounds by MS	
TO-16	none	FTIR, open path	Infra-red spectrom.	Less volatile (covers med. also)	25 to 500	polar/non-polar VOCs		No sampling system req., but complex field equip.	 No specific sampling system. All of the air in the line of the FTIR is "sampled". 	2. none	3. none	4. none	Identify and measure compounds in open air by FTIR.	
TO-17	Adsorbent tube	GC	MS	Very volatile (covers med. also)	-60 to 200	polar/non-polar VOCs	0.2 to 25	Uses multisorbent cartridge and MS	Draw ambient air through a multisorbent packed tube.	Seal and pack tube. Return to lab. Tube may be stored before analysis.	Transfer VOCs to intermediate adsorbent trap or directly to GC, by heating sampling tube.	Separation in GC.	5. Identify and measure compounds by MS.	

Note 1 Most of the information in this table is from the EPA. *Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd Edition, EPA/625/R-96/1010b, January 1999, available at the AMTIC webpage, AMTIC webpage, http://www.epa.gov/urt/amtic/airox.html, or from descriptions of the individual Methods, available at the same webpage.

Note 2 Temperature ranges for the methods are found in the Compendium referenced above, Table 2, pages 5-10, or in the descriptions of the Methods, where the temperature range for the Method is inferred from tests for detection of VOCs Boiling Points and CAS numbers are found in "CRC Handbook of Chemistry and Physics," 76th Edition, D. R. Lide, ed., Boca Raton, January 1995, Section 3, pp.3-1ff.

 $Effective \ temperature \ ranges \ for \ adsorbents \ are \ found \ in \ the \ description \ for \ TO-17, \ Table \ 1, \ pp. \ 17-33 \ to \ 17-44$

FOR VERY VOLATILE VOCs:
(BP < 50)

Choose an adsorbent (multisorbent) with capability of adsorbing in the required BP range. Then choose a TO Method with an adsorbent sampling procedure.

FOR MEDIUM VOLATILE VOCs:
(50 < BP < 120)

Choose either a cannister or an adsorbent system which covers the BP range as precisely as possible, so as to avoid the cost of excess capability.

FOR LESS VOLATILE VOCs:
(120 < BP)

However, there are always tradeoffs, for example, between equipment cost and personnel training costs. And some sorbent

cartridges may well be as costly as the comparable cannister equipment.

		HIGHLY VOLATILE	MEDIUM VOLTILE	LESS VOLATILE
SAMPLING:	cannister adsorbent cann/ads	TO-14A(?) TO-17 TO-15 (?)	TO-14A TO-2 TO-15	none TO-3 TO-1
DETECTION:	mass spec flame ion.	TO-15, TO-17 TO-14A (?) (?) = not optimal match of rar	TO-2, TO-14A TO-2, TO-14A Iges.	TO-1 TO-3

Note 3 The assumptions underlying the cost comments are, that in general, cannister sampling is more costly than adsorbent because of the equipment required for field air intake, and that MS is a more costly method than FID because of the higher equipment cost.