Demonstration of NH3 Precursor Contributions to PM2.5 in the San Joaquin Valley

SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT
Table of Contents

1 Executive Summary.. 1
2 Purpose of NH3 Demonstration... 2
 2.1 EPA’s Precursor Demonstration Guidance... 3
 2.2 EPA’s Precursor Modeling Demonstration Requirements ... 3
3 Historical... 4
 3.1 PM2.5 Air Quality Trends... 6
 3.1 Major PM2.5 Components.. 8
4 Modeling Performance.. 10
5 Modeling Approach.. 10
 5.1 District Modeling Protocol.. 10
 5.1.1 Future New Hypothetical Major Sources... 11
 5.1.2 Best Available Control Technology (BACT).. 12
 5.1.3 Future Modification ... 13
 5.1.4 Source Parameters and Emisions Rates .. 14
 5.1.5 Source Location.. 16
 5.1.6 Precursor Demonstration Thresholds .. 21
 5.1.7 Grid Resolution... 22
 5.1.8 Emissions Calculation Methodology .. 23
 5.1.9 Source Grouping.. 23
 5.1.10 Estimating the number of years during the evaluation period – 12 years.......................... 23
 5.1.11 Number of Events & Estimating Emissions per Event .. 24
 5.2 CMAQ Model Approach... 24
 5.2.1 Relative Determination... 25
6 CMAQ Modeling Analyses.. 26
 6.1 CMAQ Results.. 28
 6.1.1 Absolute Modeling Results .. 28
 6.1.2 Relative Modeling Results .. 30
7 Conclusions.. 32
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Trends in valley-wide annual average, 24-hour 98th percentile PM2.5, and approximate number of days above the 24-hour standard</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2</td>
<td>San Joaquin Valley trends in PM2.5, NOx, and VOC emissions</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Three-year average (2011-2013) and average peak day (top 10 percent over the same three years) PM2.5 compositions at Bakersfield, Fresno, and Modesto</td>
<td>9</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Oil & Gas Sources</td>
<td>17</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Division of Oil, Gas, and Geothermal Resources (DOGGR) Data</td>
<td>18</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Other Limiting Factors</td>
<td>19</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Source Placement for New and modified future sources</td>
<td>21</td>
</tr>
<tr>
<td>Figure 8</td>
<td>State-Wide 4 km Grid</td>
<td>22</td>
</tr>
<tr>
<td>Figure 9</td>
<td>San Joaquin Valley APCD Modeling Domain</td>
<td>23</td>
</tr>
<tr>
<td>Figure 10</td>
<td>CMAQ modeling domains used in this SIP modeling</td>
<td>27</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Maximum Daily Differences</td>
<td>28</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Annual Average Differences</td>
<td>29</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Maximum Daily Differences</td>
<td>30</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Annual Average Differences</td>
<td>31</td>
</tr>
</tbody>
</table>

Attachments

- District NH3 Precursor Modeling Demonstration Protocol
- Appendix L – Modeling Protocol
1 Executive Summary

The U.S. Environmental Protection Agency (EPA) periodically reviews and establishes health-based air quality standards (also referred to as National Ambient Air Quality Standards, or NAAQS) for ozone, particulates, and other criteria pollutants. Although the San Joaquin Valley (Valley) experiences unique and significant difficulties in achieving these increasingly stringent standards, air quality in the Valley has improved considerably. Over the past couple of decades, the San Joaquin Valley Air Pollution Control District (District) has implemented several generations of emissions control measures for stationary and area sources under its jurisdiction. Similarly, the California Air Resources Board (CARB) has adopted regulations for mobile sources. Together, these efforts represent the nation’s toughest air pollution emissions controls and have greatly contributed to reduced ozone and particulate matter (PM) concentrations in the Valley. Additionally, District has in place a highly successful and effective Nonattainment New Source Review (NNSR) program through District Rule 2201 (New Source Review).

Following the adoption of a new NAAQS, EPA will generally promulgate an Implementation Rule to guide States and areas in how to meet federal Clean Air Act (CAA) requirements as they implement the current and future NAAQS. In EPA’s most recent Implementation Rule,\(^1\) EPA provides details on meeting the statutory state implementation plan (SIP) requirements that apply to areas designated nonattainment for any PM2.5 NAAQS, including for NNSR permitting programs.

EPA recognizes that the treatment of PM2.5 precursors is an important issue in developing a PM2.5 attainment plan or implementing the NNSR program in nonattainment areas. The EPA has long recognized the scientific basis for concluding that there are multiple scientific precursors to PM10 and PM2.5. Appropriate control of precursors is especially important for attaining the PM2.5 NAAQS because secondarily formed particles (such as ammonium nitrate, ammonium sulfate, and some portion of organic carbon) comprise a large fraction of ambient PM2.5 concentrations in many nonattainment areas. However, in some PM2.5 nonattainment areas, a particular precursor or precursors may not contribute significantly to PM2.5 levels that exceed the relevant NAAQS. As such, EPA provides in the Implementation Rule, a description of optional precursor demonstrations that a state may choose to submit to EPA in order to establish that sources of particular precursors need not be regulated for purposes of attainment planning or in the NNSR permitting program for a specific nonattainment area. One of the three precursor demonstration approaches provided in the Implementation Rule is the “NNSR precursor demonstration,” which is the basis and focus of this report. A state may use this type of demonstration to justify that sources of a given precursor may be excluded from certain NNSR requirements.

The Implementation Rule outlines certain technical issues, such as the appropriate geographic scope of a precursor demonstration, recommended significance thresholds, and recommended analytical approaches for evaluating precursor contributions to ambient PM2.5 levels and the sensitivity of PM2.5 levels in an area to decreases or increases of emissions. This report and the District NH3 Precursor Modeling Demonstration Protocol (Modeling Protocol (attached)), follow EPA published guidance, as well as additional EPA verbally requested measures that go beyond published guidelines, to provide a demonstration for NH3 and its impacts on PM2.5 levels in the Valley.

This report describes the results of the District modeling analysis and demonstrates that NH3 is not a significant precursor to PM2.5 concentrations in the Valley and provides the technical basis for exempting NH3 from the Clean Air Act NNSR requirements under Clean Air Act §189(e) and 40 CFR 51.165(a)(13).

2 Purpose of NH3 Demonstration

The provisions of Clean Air Act Subpart 4 do not define the term “precursor” for purposes of PM10, nor do they explicitly require the control of any specifically identified PM precursor. EPA has determined that sulfur dioxide (SO2); oxides of nitrogen (NOx); volatile organic compounds (VOC); and ammonia (NH3) are precursors to PM, as identified in the Code of Federal Regulations. All PM2.5 precursors are presumptively required to be addressed in any Serious area attainment plan associated with any PM2.5 NAAQS. As such, the requirements of Subpart 4 apply equally to emissions of direct PM2.5 and these precursors in PM2.5 nonattainment areas, except as otherwise provided in the statute.

Pursuant to EPA guidance, in interpretation of CAA requirements, if a NNSR precursor demonstration is approved, then the state would not be obligated to address LAER and emission offset requirements for that precursor in the NNSR program for that nonattainment area. This specific type of precursor demonstration, if approved, would exempt new and modified major stationary sources of a precursor from regulation under the NNSR permitting program. According to EPA, this approach to interpreting CAA section 189(e) of the statute as it applies to control requirements for the NNSR program is appropriate because (1) an analysis that evaluates the sensitivity of the atmosphere in an area to increases in emissions would most closely replicate the scenario of concern, where precursor emissions from new major stationary sources or major modifications are added to the existing inventory for the area; and (2) this approach would take into consideration the specific atmospheric chemistry and emissions profile that varies from area to area.

For purposes of the NNSR precursor demonstration, the state is not required to first evaluate the contribution of existing major sources to PM2.5 levels that exceed the standard in the area, as would be required by the comprehensive and major stationary

\[2\] 40 CFR §51.1000
source demonstrations. Since NNSR permitting requirements do not apply to existing sources (unless such sources engage in a major modification), the EPA does not believe it is necessary or reasonable to require evaluation of current emissions from existing major stationary sources as it would not inform the question of whether increases in emissions would significantly contribute to PM2.5 levels in the area. Note, however, that the NNSR precursor demonstration is used only to justify an exclusion of sources of the precursor from the NNSR control requirements in the area.

2.1 EPA’s Precursor Demonstration Guidance

Pursuant to 40 CFR §51.1006(a)(3)(i), a state may elect to submit to the EPA a NNSR precursor demonstration. The NNSR precursor demonstration must evaluate the sensitivity of PM2.5 levels in the nonattainment area to an increase in emissions of a particular precursor in order to determine whether the resulting air quality changes are significant. If the estimated air quality changes in the sensitivity analysis are determined to be not significant, based on the facts and circumstances of the area, then the state may use that information to identify a precursor(s) that will be considered not significant to PM2.5 levels that exceed the standard in the nonattainment area.

Pursuant to 40 CFR §51.1006(a)(3)(ii), if a NNSR precursor demonstration for a particular PM2.5 nonattainment area is approved, the state may exempt such new major stationary sources or major modifications of the particular precursor from the requirements for PM2.5 in §51.165 – Permit Requirements.

2.2 EPA’s Precursor Modeling Demonstration Requirements

On November 17, 2016, EPA released the Draft “PM2.5 Precursor Demonstration Guidance.” This draft guidance provides a non-prescriptive approach for determining if a precursor pollutant is considered a significant contributor to PM2.5 concentrations. The guidance document provides criteria that all precursor demonstrations must include and/or justify. The basic criteria essential to all precursor demonstrations are as follows:

1. What amount of emissions increase should be examined as part of the NNSR sensitivity analysis?
2. What location(s) should be used to model the precursor emissions increases resulting from potential major source growth?
3. What air quality concentration threshold should be used to determine if the modeled air quality change from the precursor is insignificant?

Consistent with EPA SIP and Precursor modeling guidelines, the District modeled air quality in the San Joaquin Valley to estimate future contribution of new and/or modified sources of ammonia at each monitored and unmonitored location within the San Joaquin Valley. The attached Modeling Protocol outlines the implementation methodology used to determine the contribution of ammonia to PM2.5 formation as it relates to the District’s NNSR program utilizing the draft guidance established by EPA in November 2016.
3 Historical

The San Joaquin Valley (SJV) air basin is perhaps the second most studied air basin in the world, in terms of the number of publications in peer-reviewed international scientific/technical journals and other major reports, with the Los Angeles air basin being the first. Major Field studies that have taken place in the SJV and surrounding areas are listed in Table 1.

Table 1 - Major Field Studies in Central California and Surrounding Areas.

<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>Project Lo-Jet</td>
<td>Identified summertime low-level jet and Fresno eddy</td>
</tr>
<tr>
<td>1972</td>
<td>Aerosol Characterization Experiment (ACHEX)</td>
<td>First TSP chemical composition and size distributions</td>
</tr>
<tr>
<td>1979-1980</td>
<td>Inhalable Particulate Network</td>
<td>First long-term PM${2.5}$ and PM${10}$ mass and elemental measurements in Bay Area, Five Points</td>
</tr>
<tr>
<td>1978</td>
<td>Central California Aerosol and Meteorological Study</td>
<td>Seasonal TSP elemental composition, seasonal transport patterns</td>
</tr>
<tr>
<td>1979-1982</td>
<td>Westside Operators</td>
<td>First TSP sulfate and nitrate compositions in western Kern County</td>
</tr>
<tr>
<td>1984</td>
<td>Southern SJV Ozone Study</td>
<td>First major characterization of O$_3$ and meteorology in Kern County</td>
</tr>
<tr>
<td>1986-1988</td>
<td>California Source Characterization Study</td>
<td>Quantified chemical composition of source emissions</td>
</tr>
<tr>
<td>1988-1989</td>
<td>Valley Air Quality Study</td>
<td>First spatially diverse, chemical characterized, annual and 24-hour PM${2.5}$ and PM${10}$</td>
</tr>
<tr>
<td>Summer 1990</td>
<td>San Joaquin Valley Air Quality Study/Atmospheric Utilities Signatures Predictions and Experiments (SJVAQS/AUSPEX) – Also known as SARMAP (SJVAQS/AUSPEX Regional Modeling Adaptation Project)</td>
<td>First central California regional study of O3 and PM${2.5}$</td>
</tr>
<tr>
<td>Date范围</td>
<td>事件</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>July and August 1991</td>
<td>California Ozone Deposition Experiment</td>
<td>Measurements of dry deposition velocities of O$_3$ using the eddy correlation technique made over a cotton field and senescent grass near Fresno</td>
</tr>
<tr>
<td>Winter 1995</td>
<td>Integrated Monitoring Study (IMS-95, the CRPAQS Pilot Study)</td>
<td>First sub-regional winter study</td>
</tr>
<tr>
<td>December 1999 – February 2001</td>
<td>California Regional PM${10}$/PM${2.5}$ Air Quality Study (CRPAQS) and Central California Ozone Study (CCOS)</td>
<td>First year-long, regional-scale effort to measure both O3 and PM${2.5}$</td>
</tr>
<tr>
<td>December 1999 to present</td>
<td>Fresno Supersite</td>
<td>First multi-year experiment with advanced monitoring technology</td>
</tr>
<tr>
<td>July 2003</td>
<td>NASA high-resolution lidar flights</td>
<td>First high-resolution airborne lidar application in SJV in the summer</td>
</tr>
<tr>
<td>February 2007</td>
<td>U.S. EPA Advanced Monitoring Initiative</td>
<td>First high-resolution airborne lidar application in SJV in the winter</td>
</tr>
<tr>
<td>August-October 2007; June-July 2009</td>
<td>BEARPEX (Biosphere Effects on Aerosols and Photochemistry Experiment)</td>
<td>Research-grade measurements to study the interaction of the Sacramento urban plume with downwind biogenic emissions</td>
</tr>
<tr>
<td>June 2008</td>
<td>ARCTAS - CARB</td>
<td>First measurement of high-time resolution (1-10s) measurements of organics and free radicals in SJV</td>
</tr>
<tr>
<td>May-July 2010</td>
<td>CalNex 2010 (Research at the Nexus of Air Quality and Climate Change)</td>
<td>Expansion of ARCTAS-CARB type research-grade measurements to multi-platform and expanded geographical area including the ocean</td>
</tr>
<tr>
<td>June 2010</td>
<td>CARES (Carbonaceous Aerosols and Radiative Effects Study)</td>
<td>Research-grade measurements of trace gases and aerosols within the Sacramento urban plume to investigate SOA formation</td>
</tr>
</tbody>
</table>
3.1 PM2.5 Air Quality Trends

Figure 1, shows the trend in peak valley-wide annual average PM2.5 concentrations and 98th percentile of the 24-hour PM2.5 concentrations, as well as the approximate number of days above the 24-hour standard in the valley from 1999 to 2017. The extreme drought conditions experienced by much of California since 2012 coupled with persistent and strong high pressure systems over the SJV in recent winters, has led to elevated levels of PM2.5 in the SJV that have not been seen in over a decade. This is clearly illustrated by the "U" shaped curve of the 98th percentile 24-hour PM2.5 shown in Figure 1. Despite the recent increase in peak 24-hour PM2.5 levels, the SJV has seen significant improvement in PM2.5 concentrations over the last 20 years, with steady decreases in both annual average PM2.5 and in the number of days above the 24-hour standard, which coincide with the large emission reductions experienced in the valley (Figure 2).

Tables 2-3 thru 2-6, in the attached Appendix L, provide more details on the annual average PM2.5 concentrations and the annual PM2.5 design values (i.e., 3-year average), from 1999 to 2017, for FRM and FEM sites in the SJV, respectively, and the annual 98th percentile and annual 24-hour design values (i.e., 3-year average), from 1999 to 2017, respectively. In most recent years (i.e., 2013-2017), in general, the two sites in Bakersfield have highest 24-hour design values in the valley.
FIGURE 1 - TRENDS IN VALLEY-WIDE ANNUAL AVERAGE, 24-HOUR 98TH PERCENTILE PM2.5, AND APPROXIMATE NUMBER OF DAYS ABOVE THE 24-HOUR STANDARD

FIGURE 2 - SAN JOAQUIN VALLEY TRENDS IN PM2.5, NOX, AND VOC EMISSIONS.
3.2 Major PM2.5 Components

Four monitoring sites collect PM2.5 chemical composition data in the San Joaquin Valley: Bakersfield-California, Fresno-Garland, Modesto, and Visalia. The Bakersfield and Fresno speciation monitors are part of the national Chemical Speciation Network (CSN) while Modesto and Visalia are part of the State and Local Air Monitoring Stations (SLAMS) network. All four sites use SASS samplers (Spiral Aerosol Speciation Sampler, Met One, Grants Pass, OR.) for data collection. The CSN data are analyzed by the Research Triangle Institute and the SLAMS data are analyzed by CARB. In recent years, changes were made to the carbon sampling and analysis method. The collection method changed from the MetOne SASS to the URG3000N sampler, which is very similar to the IMPROVE module C sampler. The analytical method was changed from the NIOSH-like thermal optical transmittance method to IMPROVE_A thermal optical reflectance. At Bakersfield, Modesto, and Visalia these changes were implemented in May of 2007, and the Fresno site switched to the new carbon system in April of 2009.

Figure 3 illustrates the average of the 2011-2013 annual average PM2.5 compositions, as well as average of the top 10 percent of days at Bakersfield, Fresno, and Modesto over the same time period (Note that this composition can be somewhat different from those used in the DV calculation since DV is based on the FRM filter measurement and there is filter and measurement technique difference between FRM and CSN methods. More detail can be found in the main body of the modeling protocol or the USEPA modeling guidance). Organic matter (OM) was calculated by multiplying measured OC by 1.5 according to the OM/OC ratio measured at Fresno (Ge et al., 2012). Ammonium nitrate is the largest contributor to PM2.5 on annual basis, accounting for approximately 40% of the PM2.5 mass. Its contribution is even higher on peak PM2.5 days, accounting for 55-60% of PM2.5 mass. Formation mechanisms for ammonium nitrate are discussed in Section 2.5. OM is the second most abundant component, constituting approximately 30% of the PM2.5 mass on an annual basis. Activities such as residential wood combustion, cooking, biomass burning, and mobile sources contribute to OM levels in the atmosphere. In addition, OM can also be formed in the atmosphere from oxidation of VOCs. Ammonium sulfate contributes approximately 10% of the PM2.5 on an annual basis. Its contribution is half that on peak days, at approximately 5%. Elemental carbon and crustal materials typically contribute less than 10% to PM2.5 levels in these cities, except at Bakersfield, where crustal materials contributed more than 10% on an annual basis.
FIGURE 3 - THREE-YEAR AVERAGE (2011-2013) AND AVERAGE PEAK DAY (TOP 10 PERCENT OVER THE SAME THREE YEARS) PM2.5 COMPOSITIONS AT BAKERSFIELD, FRESNO, AND MODESTO.
4 Modeling Performance

Air quality observations are routinely made at state and local monitoring stations. Gas species and PM species are measured on various time scales (e.g., hourly, daily, weekly). The U.S. EPA guidance recommends model performance evaluations for the following gaseous pollutants: ozone (O3), nitric acid (HNO3), nitric oxide (NO), nitrogen dioxide (NO2), peroxyacetyl nitrate (PAN), volatile organic compounds (VOCs), ammonia (NH3), NOy (sum of NOx and other oxidized compounds), sulfur dioxide (SO2), carbon monoxide (CO), and hydrogen peroxide (H2O2). The U.S. EPA recognizes that not all of these species are routinely measured (U.S. EPA, 2014) and therefore may not be available for evaluating every model application. Recognizing that PM2.5 is a mixture, U.S. EPA recommends model performance evaluation for the following individual PM2.5 species: sulfate (SO$_2^{-4}$), nitrate (NO$_3^{-}$), ammonium (NH$_4^{+}$), elemental carbon (EC), organic carbon (OC) or organic mass (OM), crustal, and sea salt constituent (U.S. EPA, 2014).

When quality assured data are available and appropriate for use, model performance for each species will be evaluated. Observational data will be obtained from the Air Quality and Meteorological Information System (AQMIS), which is a web-based source for real-time and official air quality and meteorological data (www.arb.ca.gov/airqualitytoday/). This database contains surface air quality observations from 1980-2016, with the data through 2014 having been fully quality assured and deemed official.

As recommended by U.S. EPA, a number of statistical metrics will be used to evaluate model performance for ozone, speciated and total PM2.5, as well as other precursor species. These metrics may include mean bias (MB), mean error (ME), mean fractional bias (MFB), mean fractional error (MFE), normalized mean bias (NMB), normalized mean error (NME), root mean square error (RMSE), correlation coefficient (R^2), mean normalized bias (MNB), and mean normalized gross error (MNGE). For more details of the statistical measured used in evaluating the model performance, see the attached Appendix L.

5 Modeling Approach

5.1 District Modeling Protocol

The District utilized and built upon the current modeling platform developed by CARB and the District for the attainment demonstrations for the 24-hour and annual PM2.5 standards in the 2018 Plan for the 1997, 2006, and 2012 PM2.5 Standards (2018 PM2.5 Plan, see attached Appendix L). The base year modeling inputs used for the purpose of the NNSR precursor demonstration are the same as those used in the 2018 PM2.5 Plan SIP attainment demonstration submitted to EPA. Therefore, the information contained within this report and attached Modeling Protocol focus on the requirements of the precursor demonstration for the future year modeling inputs that are required.
elements per EPA guidance and are different from those utilized in the submitted attainment demonstration, including the following:

- Size of nonattainment area
- Topography
- Meteorological Conditions
- Diverse Industry
- Agriculture Sector
- Industrial and Manufacturing Sector
- Source Selection
- Fertilizers, Mixing Only
- Electric Services/ Electric and Other Services Combined

The following summaries are presented in detail in the attached Modeling Protocol.

5.1.1 Future New Hypothetical Major Sources

EPA guidance indicates that an air agency can rely on 5 years of recent permitting data to determine the types of sources to include in the analysis. The guidance document also recommends to analyze more than what is merely "likely" to occur in the region. In order to determine the type and size of major sources to be included in the precursor analysis, the District reviewed permits issued in the last 10 years and current ammonia inventories submitted by regulated facilities, see Table 2, to determine if any source had emissions greater than the major source threshold of 100 tons/yr. This review indicated that there are grandfathered stationary sources in the San Joaquin Valley that do currently exceed the 100 ton/year threshold. Grandfathered sources are sources that were permitted prior to regulation that required ammonia controls. Following EPA guidance and applying current regulations/requirements that a new permitted source would be required to comply with; the District determined that emissions, if permitted today, would not exceed the 100 ton/year threshold as noted in Table 2.

Even though it is not expected for emissions from future permitted sources to be greater than 100 ton/year threshold; the District originally proposed eight new sources of ammonia at 100 ton/year threshold as a conservative assumption as requested by EPA. In subsequent direction, EPA requested that additional sources be included. Therefore, the District include two more sources for a total of ten major sources. These sources would be two to three or more times higher than expected to be permitted in the future.

<table>
<thead>
<tr>
<th>Facility ID</th>
<th>Facility Name</th>
<th>Emissions Source</th>
<th>Industry</th>
<th>City</th>
<th>NH3 tpy (Grandfathered)</th>
<th>NH3 tpy (Controlled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>Liberty Composting Inc</td>
<td>Composting</td>
<td>Fertilizers, Mixing Only</td>
<td>Lost Hills</td>
<td>300.26</td>
<td>~30</td>
</tr>
<tr>
<td>***37</td>
<td>Kern Oil & Refining Co.</td>
<td>Turbine</td>
<td>Petroleum Refining</td>
<td>Bakersfield</td>
<td>264.92</td>
<td>---</td>
</tr>
<tr>
<td>4912</td>
<td>Recology Blossom Valley Organics</td>
<td>Composting</td>
<td>Fertilizers, Mixing Only</td>
<td>Vernalis</td>
<td>182.14</td>
<td>~18</td>
</tr>
<tr>
<td>705</td>
<td>J R Simplot Company</td>
<td>2819</td>
<td>Industrial Inorganic Chemicals, NEC</td>
<td>Helm</td>
<td>170.28</td>
<td><10</td>
</tr>
<tr>
<td>Facility ID</td>
<td>Facility Name</td>
<td>Emissions Source</td>
<td>Industry</td>
<td>City</td>
<td>NH3 tpy (Grandfathered)</td>
<td>NH3 tpy (Controlled)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>----------------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>'7410</td>
<td>Synagro West, Inc Dba Centrl Vly Compost</td>
<td>Composting</td>
<td>Fertilizers, Mixing Only</td>
<td>Dos Palos</td>
<td>137.07</td>
<td>~14</td>
</tr>
<tr>
<td>"3594</td>
<td>Harvest Power California LLC</td>
<td>Turbine</td>
<td>General Government, NEC</td>
<td>Tulare</td>
<td>112.83</td>
<td>~12</td>
</tr>
<tr>
<td>'7617</td>
<td>Harvest Power California LLC</td>
<td>Turbine</td>
<td>Fertilizers, Mixing Only</td>
<td>Lathrop</td>
<td>105.91</td>
<td>~11</td>
</tr>
<tr>
<td>'2843</td>
<td>Bakersfield City Wood Site</td>
<td>Composting</td>
<td>Fertilizers, Mixing Only</td>
<td>Bakersfield</td>
<td>82.49</td>
<td>~9</td>
</tr>
<tr>
<td>"1547</td>
<td>Aera Energy LLC</td>
<td>Turbine</td>
<td>Crude Petroleum & Natural Gas</td>
<td>Kern County</td>
<td>73.93</td>
<td>~36</td>
</tr>
<tr>
<td>"2697</td>
<td>Northern California Power</td>
<td>Turbine</td>
<td>Electric Services</td>
<td>Lodi</td>
<td>68.35</td>
<td>~34</td>
</tr>
<tr>
<td>"3412</td>
<td>La Paloma Generating Co LLC</td>
<td>Turbine</td>
<td>Electric Services</td>
<td>Mckittrick</td>
<td>59.14</td>
<td>~30</td>
</tr>
<tr>
<td>'7827</td>
<td>City Of Modesto Composting Facility</td>
<td>Composting</td>
<td>Refuse Systems</td>
<td>Modesto</td>
<td>58.39</td>
<td>~29</td>
</tr>
<tr>
<td>"3746</td>
<td>Sunrise Power Company</td>
<td>Turbine</td>
<td>Electric Services</td>
<td>Fellows</td>
<td>44.59</td>
<td>~22</td>
</tr>
<tr>
<td>'8533</td>
<td>Highway 59 Composting Facility</td>
<td>Composting</td>
<td>Fertilizers, Mixing Only</td>
<td>Merced</td>
<td>36.85</td>
<td>~4</td>
</tr>
<tr>
<td>"91</td>
<td>Mt Poso Cogeneration Company, LLC</td>
<td>Turbine</td>
<td>Electric & Other Services Combined</td>
<td>Bakersfield</td>
<td>35.27</td>
<td>~17</td>
</tr>
</tbody>
</table>

*Existing emissions factor was 4.08 and was revised to 1.5 and Best Available Control Technology (BACT) for composting requires VOC / Ammonia control of 80%
**Ammonia slip reduced from 10 ppm to 5 ppm (50% reduction)
*** No new sources have been permitted in the last 20 years and Ammonia slip reduced from 10 ppm to 5 ppm
**** Emissions from the facility’s most recent submittal has the NH3 emissions below 10 tons per year

It should be noted that facilities listed in Table 2 are typical of the types of major sources that locate or are constructed in the San Joaquin Valley. EPA guidance does not require that source types that would not located in an area be considered i.e. because resource needs and/or demand, or other regulatory restrictions or limitation.

5.1.2 Best Available Control Technology (BACT)

The California Health and Safety Code requires the California Air Districts to regulate air pollution to endeavor to achieve and maintain state ambient air quality standards. As part of these requirements California Air districts have formulated California NSR programs that include Best Available Control Technology (BACT) requirements for increases in determined levels of pollutants and their precursors.

The San Joaquin Valley Air pollution Control District implements Federal and California NSR requirements through District Rule 2201 – New and Modified Stationary Source Review Rule. Because the BACT requirements of District Rule 2201, are included in the California State Implementation Plan (SIP) (79 FR 55637), they are also federally enforceable.

Pursuant to District Rule 2201, Section 3.10, Best Available Control Technology (BACT) is the most stringent emission limitation or control technique that is:
a. Achieved in practice for such category and class of source;
b. Contained in any State Implementation Plan approved by the EPA for such
category and class of source;
c. Contained in an applicable federal New Source Performance Standard; or
d. Any other emission limitation or control technique, including process and
equipment changes of basic or control equipment, found by the District to be
cost effective and technologically feasible for such class or category of sources
or for a specific source.

Pursuant to District Rule 2201, Section 4.1, BACT requirements are triggered on a
pollutant-by-pollutant basis and on an emissions unit-by-emissions unit basis. Unless
specifically exempted by Rule 2201, BACT shall be required for the following actions*:

a. Any new emissions unit with a potential to emit exceeding two pounds per day,
b. The relocation from one Stationary Source to another of an existing emissions
unit with a potential to emit exceeding two pounds per day,
c. Modifications to an existing emissions unit with a valid Permit to Operate
resulting in an Adjusted Increase in Permitted Emissions (AIPE) exceeding two
pounds per day, and/or
d. Any new or modified emissions unit, in a stationary source project, which results
in a California Senate Bill (SB) 288 Major Modification or a Federal Major
Modification, as defined by the rule.

5.1.3 Future Modification

Unlike the Bay Area Air Quality Management District (BAAQMD) which used a historical
year (2012) and added additional growth (new and modification emission sources) to
project future difference, the District used the future year (2025) inventory to conduct
the NNSR precursor modeling which has already been adjusted to consider future
growth within the San Joaquin Valley in addition to new hypothetical sources.
Additionally, EPA has requested that additional growth be included in the modeling
scenario above those already being considered in the 2025 SIP inventory.

The District reviewed the last 10 years of permitting records to identify all new and/or
modified major sources that have acquired Permits-To-Operate (PTOs) for increases in
ammonia, and grouped the data into two categories, 1) “Likely” and 2) “Potential”
sources to be modified. Sources that have been constructed and/or modified in the last
5 years are those “Likely” to be modified in the future. Sources constructed and/or
modified in the last 6 to 10 years are those that have the “Potential” to be modified in
the future.

Based on the review of permitting actions, an estimated 128 modifications are
hypothetically expected in the Valley between 2013 and 2025. Data collected indicates
that 90% of the permitting actions occur from modifications and 10% are from new
applications, while emissions from modifications only made up 20% of the annual
ammonia emissions and new applications contributed 80% of these emissions.
5.1.4 Source Parameters and Emisions Rates

EPA requested the District use a reasonable number of new hypothetical major sources in the District’s precursor demonstration. Since no guidance is available in determine what a reasonable number of sources is acceptable, the District in consultation with EPA reviewed previously approved evaluations (BAAQMD had seven new sources) and determine that eight new major sources would be appropriate. In further comments from EPA it was suggested that ten new hypothetical sources would be appropriate.

The District also reviewed the point source data for each of the source types to determine the stack parameters for the ten new hypothetical sources and the additional modified sources. Table 3 provides the sources parameters used in the evaluation for each source category (SIC). Tables 4 and 5 provide a summarized list of the emissions used for each source category for both estimated modification and new hypothetical sources.

TABLE 3 - SOURCE PARAMETERS

<table>
<thead>
<tr>
<th>Source SIC</th>
<th>NAICS</th>
<th>Source Description</th>
<th>Avg Stack Ht. (ft)</th>
<th>Avg Stack Dia. (ft)</th>
<th>Avg Stack Temp. (F)</th>
<th>Avg Stack Velocity (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>723</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>1311</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>95.8</td>
<td>9.2</td>
<td>644.3</td>
<td>41.4</td>
</tr>
<tr>
<td>1321</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>95.8</td>
<td>9.2</td>
<td>644.3</td>
<td>41.4</td>
</tr>
<tr>
<td>2033</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>2077</td>
<td>221210</td>
<td>Other Operation</td>
<td>105.5</td>
<td>10.5</td>
<td>657.2</td>
<td>40.1</td>
</tr>
<tr>
<td>2084</td>
<td>312130</td>
<td>Wines, Brandy, & Spirits</td>
<td>104.5</td>
<td>9.8</td>
<td>676.3</td>
<td>22.6</td>
</tr>
<tr>
<td>2653</td>
<td>322211</td>
<td>Paper Products</td>
<td>119.4</td>
<td>10.9</td>
<td>691.5</td>
<td>23.1</td>
</tr>
<tr>
<td>2679</td>
<td>322211</td>
<td>Paper Products</td>
<td>119.4</td>
<td>10.9</td>
<td>691.5</td>
<td>23.1</td>
</tr>
<tr>
<td>2971</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>95.8</td>
<td>9.2</td>
<td>644.3</td>
<td>41.4</td>
</tr>
<tr>
<td>241</td>
<td>112120</td>
<td>Agricultural Operations (Primary Process)</td>
<td>121.4</td>
<td>11.1</td>
<td>699.5</td>
<td>22.6</td>
</tr>
<tr>
<td>252</td>
<td>112120</td>
<td>Agricultural Operations (Primary Process)</td>
<td>121.4</td>
<td>11.1</td>
<td>699.5</td>
<td>22.6</td>
</tr>
<tr>
<td>2022</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>2043</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>2875</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>3221</td>
<td>327213</td>
<td>Glass Containers Mfg.</td>
<td>118.0</td>
<td>10.1</td>
<td>669.7</td>
<td>63.5</td>
</tr>
<tr>
<td>4911</td>
<td>221122</td>
<td>Electric Services</td>
<td>109.9</td>
<td>10.3</td>
<td>639.4</td>
<td>68.6</td>
</tr>
<tr>
<td>4922</td>
<td>48210</td>
<td>Natural Gas Transmission</td>
<td>91.1</td>
<td>8.1</td>
<td>745.9</td>
<td>97.0</td>
</tr>
<tr>
<td>4931</td>
<td>221210</td>
<td>Electric & Other Services Comb</td>
<td>105.5</td>
<td>10.5</td>
<td>657.2</td>
<td>40.1</td>
</tr>
<tr>
<td>4952</td>
<td>221210</td>
<td>Sewerage Systems</td>
<td>105.5</td>
<td>10.5</td>
<td>657.2</td>
<td>40.1</td>
</tr>
<tr>
<td>9223</td>
<td>221210</td>
<td>Correctional Institutions</td>
<td>105.5</td>
<td>10.5</td>
<td>657.2</td>
<td>40.1</td>
</tr>
</tbody>
</table>
Table 4 - Emissions From Modification

<table>
<thead>
<tr>
<th>Source SIC</th>
<th>NAICS</th>
<th>Source Description</th>
<th>Number of Modification</th>
<th>Tons/Yr. per Modification Est.</th>
<th>Total Est. Tons/Yr.</th>
<th>Tons/Yr. Used in Model</th>
<th>Total Tons/Yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>723</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>5</td>
<td>0.29</td>
<td>1.46</td>
<td>1.00</td>
<td>5</td>
</tr>
<tr>
<td>1311</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>24</td>
<td>0.41</td>
<td>9.74</td>
<td>1.00</td>
<td>24</td>
</tr>
<tr>
<td>1321</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>13</td>
<td>0.10</td>
<td>1.24</td>
<td>1.00</td>
<td>13</td>
</tr>
<tr>
<td>2033</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>13</td>
<td>0.72</td>
<td>9.30</td>
<td>1.00</td>
<td>13</td>
</tr>
<tr>
<td>2077</td>
<td>221210</td>
<td>Other Operation</td>
<td>5</td>
<td>0.13</td>
<td>0.66</td>
<td>1.00</td>
<td>5</td>
</tr>
<tr>
<td>2084</td>
<td>312130</td>
<td>Wines, Brandy, & Spirits</td>
<td>25</td>
<td>1.97</td>
<td>49.26</td>
<td>1.97</td>
<td>49.25</td>
</tr>
<tr>
<td>2653</td>
<td>322211</td>
<td>Paper Products</td>
<td>7</td>
<td>0.04</td>
<td>0.26</td>
<td>1.00</td>
<td>7</td>
</tr>
<tr>
<td>2679</td>
<td>322211</td>
<td>Paper Products</td>
<td>4</td>
<td>0.07</td>
<td>0.26</td>
<td>1.00</td>
<td>4</td>
</tr>
<tr>
<td>2911</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>2</td>
<td>0.12</td>
<td>0.24</td>
<td>1.00</td>
<td>2</td>
</tr>
<tr>
<td>241</td>
<td>112120</td>
<td>Agricultural Operations (Primary Process)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>252</td>
<td>112120</td>
<td>Agricultural Operations (Primary Process)</td>
<td>4</td>
<td>0.19</td>
<td>0.74</td>
<td>1.00</td>
<td>4</td>
</tr>
<tr>
<td>2022</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>5</td>
<td>0.04</td>
<td>0.22</td>
<td>1.00</td>
<td>5</td>
</tr>
<tr>
<td>2043</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>2875</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>7</td>
<td>8.57</td>
<td>60.00</td>
<td>8.57</td>
<td>59.99</td>
</tr>
<tr>
<td>3221</td>
<td>327213</td>
<td>Glass Containers Mfg.</td>
<td>2</td>
<td>3.40</td>
<td>6.80</td>
<td>3.40</td>
<td>6.8</td>
</tr>
<tr>
<td>4911</td>
<td>221122</td>
<td>Electric Services</td>
<td>2</td>
<td>18.17</td>
<td>36.34</td>
<td>18.17</td>
<td>36.34</td>
</tr>
<tr>
<td>4922</td>
<td>486210</td>
<td>Natural Gas Transmission</td>
<td>2</td>
<td>0.41</td>
<td>0.82</td>
<td>1.00</td>
<td>2</td>
</tr>
<tr>
<td>4931</td>
<td>221210</td>
<td>Electric & Other Services Comb</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>4952</td>
<td>221210</td>
<td>Sewerage Systems</td>
<td>3</td>
<td>0.20</td>
<td>0.59</td>
<td>2.37</td>
<td>7.11</td>
</tr>
<tr>
<td>9223</td>
<td>221210</td>
<td>Correctional Institutions</td>
<td>5</td>
<td>0.11</td>
<td>0.54</td>
<td>2.18</td>
<td>10.9</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>128</td>
<td>178.47</td>
<td>254.39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5 - EMISSIONS FROM NEW HYPOTHETICAL SOURCES

<table>
<thead>
<tr>
<th>Source SIC</th>
<th>NAICS</th>
<th>Source Description</th>
<th>Number of New Sources</th>
<th>Tons/Yr.</th>
<th>Total Tons/Yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1311</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1321</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2033</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2084</td>
<td>312130</td>
<td>Wines, Brandy, & Spirits</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>252</td>
<td>112120</td>
<td>Agricultural Operations (Primary Process)</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2875</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>2</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>4931</td>
<td>221210</td>
<td>Electric & Other Services Comb</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>723</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>2</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>10</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

5.1.5 Source Location

EPA’s guidance suggests that in most cases it is necessary to model a number of hypothetical new and/or modified sources, placed in various locations across the nonattainment area. The location of existing major sources and the stack parameters of those sources can be used to help design the NNSR modeling demonstration.

To help focus the evaluation of where to place new and/or modified sources, the District utilized facility SIC (source industrial code) groups and consolidated them into groups that have similar resource requirements and source parameters. The District also utilized other geographic information system (GIS) datasets to identify areas where current permitted sources are located, emissions from similar sources are located, areas of inclusion and areas for exclusion.
For Example: Oil and Gas Operations

Step 1 – Evaluating Current Location of Sources

As noted in Figure 4, the majority of Oil & Gas source in the valley are concentrated in the Kern and Fresno oil fields. This data was used to determine where existing sources were located and to determine where modification could occur.
Step 2 – Evaluating Resource Limiting

Figure 5 - Division of Oil, Gas, and Geothermal Resources (DOGGR) Data

The California’s DOGGR provides data that outlines Oil and Gas fields throughout the state, see Figure 5. This data was used as an indicator for determining where new sources could be located.
Step – 3 Evaluating Other Limiting Factors

As noted in Figure 6, data for State park boundaries, fish and wildlife reserves, Federal Land,(Green) and city boundaries (Red) are used to limit the placement of sources. Please note in rural areas were city boundaries cover area beyond the actual city this layer was not used to limit placement of sources.
Step 4 - Determine where ammonia is currently being evaluated for the valley

As suggested in EPA’s guidance, the District used the unadjusted modeling data to determine where ammonia emissions were currently being evaluated. The District used this data, where possible, to place emissions sources in locations that had less ammonia emissions.
Step 5 – Placement of Sources

Using data derived from figures 4 thru 6, the District placed Oil & gas facilities for modified (Red) and New hypothetical (Red) sources as noted in Figure 7. This process was repeated for each source category evaluated.

To determine the latitude and longitude for each source, the District used the center of the grid that a source was determined to fall-in. This was done since the model combines data for each grid cell and processes it on a grid by grid basis.

5.1.6 Precursor Demonstration Thresholds

EPA recommended, and the District used, the following thresholds for determining if a PM2.5 precursor has a significant increase (significant impact level, or SIL) under the NNSR evaluations methodology established by EPA:

- 0.2 μg/m3 for the annual PM2.5 NAAQS, and
- 1.3 μg/m3 for the 24-hour PM2.5 NAAQS.
5.1.7 Grid Resolution

EPA recommends that the major stationary source assessments for nonattainment areas be conducted using horizontal grid resolutions between ~1 kilometer (km) up to ~12 km. In instances where sources may be modeled at coarser resolutions >12 km or at resolutions finer than 1 km, consultation with the appropriate EPA Regional office is advised.

The District utilized the same modeling platform and grid resolution used for the PM2.5 attainment demonstration modeling submitted to EPA for the 2018 PM2.5 Plan. This modeling platform and grid resolution are based on a 4 km state wide grid windowed to a 4 km grid covering the District-established modeling domain (see Figures 1 and 2).

Figure 8 - State-Wide 4 km Grid
5.1.8 Emissions Calculation Methodology

EPA’s guidance document indicates that a NNSR demonstration should consider analyzing more than what is merely “Likely” to occur in an area when evaluating the number and size of sources to be included. Refer to the attached Modeling Protocol for this demonstration.

5.1.9 Source Grouping

In order to manage the list of different types of facilities anticipated to be included in the modeling process, the District grouped each facility by its primary SIC, thus enabling the District to identify the types of major sources being constructed and/or modified, and provide the number of new and/or modified facilities within a single industrial category within the San Joaquin Valley over the past 10 years.

5.1.10 Estimating the number of years during the evaluation period – 12 years

To determine the total number of years to include in the evaluation it is important to understand that all future year SIP inventories are based on a given base year inventory, or actual inventory, collected by an agency. In order to account for any
additional new and/or modifications that may occur to a future inventory, one must start from the same base year then generate the current SIP inventory and determine the number of years between the two. The District determined the appropriate year time period is 12 years (i.e., 2013 to 2025).

5.1.11 Number of Events & Estimating Emissions per Event

EPA's guidance recommends an examination of the last 5 years of major source permitting in the region being evaluated as the basis for estimating any probable emissions increases. As noted previously, two types of emissions sources are proposed to be evaluated as part of the PM 2.5 Precursor evaluation i.e., “Likely” and “Potential.”

The District evaluated all permitting actions conducted for major sources between 2008 and 2017 (10 yrs) to determine which approved actions have transpired which have increased NH3 emissions.

The District summed all the emission from each SIC group to determine the total increase in 2025 for both the “Likely” and “Potential” scenarios. Even though EPA’s guidance indicates that the summation of the “Likely” and “Potential” scenarios would be sufficient, to be conservative, the District will utilize the summation of the “Likely” and “Potential” in addition to the 10% safety factor for conducting the future year modeling runs.

5.1.11.1 Emissions From New Hypothetical Sources

As noted in the Modeling Protocol, the District currently does not expect to permit ammonia sources greater than the major source threshold of 100 tons/yr., but in order to conduct the required modeling, ten new sources of ammonia were included that are at least twice the current permitted levels or 100 tons/yr.

5.1.11.2 Emissions From Additional Modified Sources

As requested by EPA, beyond those modification / growth emissions already included in the 2025 SIP inventory, the District estimated emissions from two types of sources i.e. sources that are most “Likely” to have modification based on PTOs issued within the most recent 5 years and those major sources that have the “Potential” or could be modified based on PTOs issued between 6-10 years ago.

Based on the information gathered by the District, emissions were calculated for the estimated number of modifications. As noted earlier, project growth for future years are already included in the 2025 future year emissions inventory and these emissions were added as requested by EPA.

5.2 CMAQ Model Approach

As per EPA guidance, the simplest modeling approach to calculate impacts for a NNSR precursor demonstration (brute force change to emissions) is to simulate two sets of conditions: one with all existing emissions and one that includes an increase in emissions of the precursor that could result from major source growth (new major
stationary sources and major modifications). The difference between these simulations provides an estimate of the air quality change related to the increase in emissions from the precursor.

As outlined in the Modeling Protocol, the District modeled PM2.5 concentrations in the “base case” scenario (without any PM2.5 emission increases) and the “modified case” scenario with the hypothetical future emissions growth. The PM2.5 impacts throughout the San Joaquin Valley were assessed using the “brute force” or “absolute” approach, which calculates the difference between the two scenarios. The District compared the base case vs. modified case scenarios on an absolute basis, rather than relative as required by EPA.

Impacts on a 24-hour average PM2.5 concentrations from the increased NH3 emissions were estimated by applying the following steps to the output of the Community Multi-scale Air Quality Model CMAQ.

1) The 24-hour and Annual PM2.5 concentration was determined for each grid cell of the modeling domain for each day and annually under the base case scenario. Concentrations were determined from hourly CMAQ NetCDF output files. Specifically, PM2.5 concentrations were calculated from the sum of component species (sulfate, nitrate, organics, other) for each day in 2025 and annually.

2) The 24-hour and Annual PM2.5 concentration was determined for each grid cell for each day under the modified case scenario, in the same way as the base case for both models.

3) The difference in 24-hour and Annual concentrations between the modified case and base case scenarios was tabulated for each grid cell for all of the days evaluated. Specifically, the difference in concentration was calculated for PM2.5. These calculations yielded daily and annually, gridded impacts from the modified case scenario, as compared to the base case.

4) The modeled 24-hour and Annual PM2.5 impacts from the respective CMAQ modeled time periods were assessed for the purpose of the demonstration. Impacts were quantified both in terms of absolute concentration differences.

5) The calculated difference was then compared to EPA’s PM2.5 24-hour and Annual SIL values to determine if any receptor was above these threshold.

5.2.1 Relative Determination

The District originally proposed a relative approach to process CMAQ output using the same method utilized for the 2018 PM2.5 Plan. This method differs from the absolute method in that it evaluates the change in the PM2.5 precursor and not solely on the change in PM2.5. A full description the methodology can be found in the attached Appendix L.
CMAQ Modeling Analyses

This section discusses the details of the CMAQ modeling analyses and presents modeled results.

CMAQ version 5.0.2 was run on a single domain with 4 km horizontal grid spacing and 18 vertical layers extending to approximately 16 km above terrain elevation. This domain was established for the 2018 PM2.5 Plan. CMAQ employed the SAPRC07c gas-phase photochemical mechanism in conjunction with the Aero6 aerosol treatment, which includes the sixth-generation CMAQ aerosol mechanism with extensions for sea salt emissions and thermodynamics; includes a new formulation for secondary organic aerosol yields. The performance of CMAQ in replicating observed patterns of ozone, PM2.5 and precursors throughout the San Joaquin Valley has been rigorously evaluated as part of the District’s 2018 PM2.5 Plan.

Meteorological inputs to CMAQ were prepared using the Weather Research and Forecasting (WRF) model. WRF was run with three nested domains (see figure 3): (1) The larger domain (dashed black colored box), covering all of California, has a horizontal grid resolution of 12 km and extends from the Pacific Ocean in the west to Eastern Nevada in the east and runs from south of the U.S.-Mexico border in the south to north of the California- Oregon border in the north; (2) The smaller 4 km Northern (green box) and Southern (red box) modeling domains are nested within the outer 12 km domain and utilized to better reflect the finer scale details of meteorology, topography, and emissions; and (3) A third 4 km resolution modeling domain (blue box) is nested within the Northern California domain and covers the San Joaquin Valley air basin. This smaller SJV domain may be utilized for PM2.5 modeling in the San Joaquin Valley if computational constraints (particularly for annual modeling) require the use of a smaller modeling domain. All three domains included 18 vertical layers to approximately 16 km above terrain elevation, consistent with CMAQ. WRF data used for the precursor demonstration was developed and provided by CARB. A comprehensive model evaluation was conducted by CARB and documented as part of the District’s 2018 PM2.5 Plan.
The 2025 emissions inventory was obtained from the CARB and processed using the Sparse Matrix Operator Kernel Emissions (SMOKE) system to prepare hourly emissions inputs for CMAQ. CMAQ boundary conditions (BCs) and initial conditions (IC) were provided by CARB. Emissions data and global chemistry data were processed to the 4 km CMAQ grid and speciated to support SAPRC07c/Aero6 chemistry in CMAQ.

CMAQ was run for the future 2025 to comprehensively simulate emissions, dispersion, removal and chemistry of all PM2.5 components and associated precursors from all anthropogenic, biogenic and background sources throughout the region. These simulations specifically address conditions that result in exceedance-level PM2.5 concentrations in the San Joaquin Valley. The base case scenario modeled the existing 2025 inventory (which already included growth), while the modified case scenario included emissions modifications for 128 existing sources and the 8 hypothetical new major sources, as described above. The additional emissions and stack data for the hypothetical new sources were incorporated into the District’s 2025 modeling inventory and processed through SMOKE to generate the modified case scenario inputs for CMAQ.
6.1 CMAQ Results

The results of the CMAQ modeling using the absolute analysis are shown in Figures 11 and 12. Figure 11 shows the results for 24-hour, and Figure 12 shows the results for annual average PM2.5 concentrations differences. The results of the CMAQ modeling using the relative analysis are shown in Figures 13 and 14.

6.1.1 Absolute Modeling Results

Figure 11 - Maximum Daily Differences

Figure 11 shows the spatial distribution of 24-hour PM2.5 differences between the base case and modified case scenarios.
Figure 12 shows the spatial distribution of annual average PM2.5 differences between the base case and modified case scenarios.
6.1.2 Relative Modeling Results

Figure 13 - Maximum Daily Differences

Figure 13 shows the spatial distribution of 24-hour PM2.5 differences between the base case and modified case scenarios.
Figure 14 shows the spatial distribution of annual average PM2.5 differences between the base case and modified case scenarios.
7 Conclusions

A modeling analysis was conducted pursuant to EPA guidance and additional requirements requested by EPA for NNSR precursor demonstrations to address the sensitivity of ambient PM2.5 concentrations in the San Joaquin Valley to hypothetical, and unrealistic, increases in NH3 emissions from major point sources within the region; including modifications to existing sources. The analysis was conducted in accordance with the attached protocol and additional requirements from EPA, which was developed in conjunction with CARB and EPA staff, and consistent with EPA’s draft PM2.5 Precursor Demonstration Guidance.

The modeling analysis evaluated the potential impacts on daily (24-hour-average) and annual PM2.5 concentrations in the San Joaquin Valley from a conservative high-emissions-growth scenario. This scenario assumed that 10 new major sources would be built each emitting 100 tons per year of NH3 and 128 modifications. This level of emissions growth is not expected, but it was used to ensure that the analysis represented a reasonable “worst-case” scenario.

Even though the District conducted the proposed model in accordance to EPA’s requirements of using the absolute model method to comparison ammonia increases, the District does not believe that that method is appropriate based on the circumstance that will affect the formation of PM2.5 in the near future. Before 2025, the District is expecting to see its NOx inventory to drop by 50% due to mobile source reductions projected by CARB. These reductions will alter how precursors are formed and must be considered when choosing the proper modeling method. The absolute method required by EPA will not account for how PM2.5 precursors will be affected with this significant reduction in NOx emissions. In order to ensure that PM2.5 precursors are appropriately evaluated, the District conducted an additional analysis using a relative approach which derives overall PM2.5 design values for both monitored and unmonitored locations using speciation data. In comparison, the relative method compares the change in design value versus the change in modeled concentration at each receptor.

The modeling analysis using either the absolute or relative approach demonstrates that NH3 emissions from major sources in the Valley will not contribute significantly to PM2.5 concentrations levels exceeding the PM2.5 NAAQS, even if the region were to experience an exorbitantly high level of NH3 growth. The analysis therefore provides a basis for EPA to make a determination under 40 CFR §51.165(a)(13) that the District’s NNSR permitting program does not need to apply the federal Clean Air Act’s NNSR requirements to NH3.

<table>
<thead>
<tr>
<th>NAAQS</th>
<th>Maximum Modeled Change</th>
<th>Precursor Guidance Threshold</th>
<th>Is the Change significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolute Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-Hour</td>
<td>0.79</td>
<td>1.3</td>
<td>No</td>
</tr>
<tr>
<td>Annual</td>
<td>0.032</td>
<td>0.2</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Relative Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-Hour</td>
<td>0.22</td>
<td>1.3</td>
<td>No</td>
</tr>
<tr>
<td>Annual</td>
<td>0.018</td>
<td>0.2</td>
<td>No</td>
</tr>
</tbody>
</table>
San Joaquin Valley Air Pollution Control District NH3 Precursor Modeling Demonstration Protocol
San Joaquin Valley Unified APCD
NH₃ PRECURSOR MODELING DEMONSTRATION PROTOCOL

PREPARED BY:
Strategies & Incentives and Permit Services Departments
This page intentionally blank.
Table of Contents

I Introduction..1
II EPA’s Precursor Demonstration Guidance...1
III EPA’s Precursor Modeling Demonstration Requirements ..2
 III.1 Recommended Criteria for Emission Estimation ...2
 III.2 Recommended Criteria for Locating Sources ..2
 III.3 Recommended Criteria for Selection of Major Stationary Sources3
IV District Modeling Protocol...3
 IV.1 Size of Nonattainment Area ..3
 IV.2 Topography: ..3
 IV.3 Meteorological Conditions: ..4
 IV.4 Diverse Industry: ..5
 IV.5 Source Selection ..5
 IV.5.1 Fertilizers, Mixing Only..6
 IV.5.2 Electric Services / Electric & Other Services Combined6
 IV.6 Future Modification ...7
 IV.7 Source Parameters ...7
 IV.8 Source Location ...8
 IV.9 Precursor Demonstration Thresholds ...10
 IV.10 Grid Resolution ..10
 IV.11 Emissions Calculation Methodology ...12
 IV.11.1 Source Grouping ...12
 IV.11.2 Sample Calculations ...13
 IV.11.3 Emissions From New Hypothetical Sources ...16
 IV.11.4 Emissions From Additional Modified Sources ...16
 IV.11.5 Emissions Tiered Approach ..19
 IV.12 CMAQ Model Approach ..19
 IV.12.1 Modeling Inputs ..20
 IV.12.2 Base Year ...20
 IV.12.3 Future Year ...20
 IV.12.4 Post Processing Modeling Data ..20
 IV.12.5 Procedures For Post Processing Modeling Results20
Append A - Source Location ...A-1
Append B – Alternative Emissions Calculation ...B-1

NH3 PRECURSOR MODELING DEMONSTRATION PROTOCOL
Page ii of iii
Table of Figures
Figure 1 - San Joaquin Valley Air Basin ... 4
Figure 2 - State-Wide 4km Grid .. 11
Figure 3 - San Joaquin Valley APCD Modeling Domain ... 12

Table of Tables
Table 1 – Top 15 NH₃ Emission Sources .. 6
Table 2 - Source Parameters by SIC ... 8
Table 3 - SIC Categories .. 13
Table 4 - Emissions From Future Modifications ... 16
Table 5 - Example Emissions Estimation From “Likely” Sources (New and Modified) .. 18
Table 6 - Example of Source Category Averages From “Potential” Sources (New and Modified) ... 18
Table 7 - Example Emissions Increase From “Potential” Sources 18
I Introduction

The U.S. Environmental Protection Agency (EPA) promulgated the Fine Particulate Matter National Ambient Air Quality Standards: State Implementation Plan Requirements\(^1\) (Implementation Rule), which contains details on requirements that apply to areas designated nonattainment for any fine particulate matter (PM2.5) national ambient air quality standards (NAAQS, or standard). The Implementation Rule addresses the statutory state implementation plan (SIP) requirements for state, local, and tribal air agencies, (hereafter known as “air agencies”), such as: general requirements for attainment plan due dates and attainment dates; emissions inventories; attainment demonstrations; provisions for demonstrating reasonable further progress (RFP); quantitative milestones; contingency measures; and nonattainment New Source Review (NNSR) permitting programs.

This NH\(_3\) Precursor Modeling Demonstration Protocol (Protocol) outlines the implementation methodology used to determine the contribution of ammonia to PM2.5 formation as it relates to the San Joaquin Valley Air Pollution Control District’s (District’s) Non-Attainment New Source Review (NNSR) program utilizing the draft guidance established by EPA in November 2016.

II EPA’s Precursor Demonstration Guidance

The PM2.5 precursor pollutants that apply to all PM2.5 nonattainment area SIPs are identified in the Code of Federal Regulations.\(^2\) Precursors identified as PM2.5 precursors include sulfur dioxide (SO\(_2\)); oxides of nitrogen (NO\(_x\)); volatile organic compounds (VOC); and ammonia (NH\(_3\)). The Implementation Rule establishes that PM2.5 precursors must be evaluated for potential control measures in any PM2.5 attainment plan or any NNSR program. The Implementation Rule does not include any national presumption that excludes sources of emissions of a particular precursor from further analysis for attainment plan or NNSR control requirements in a PM2.5 nonattainment area.

The Implementation Rule directs that air agencies may choose to submit an optional precursor demonstration designed to show that for a specific PM2.5 nonattainment area, emissions of a particular precursor from sources within the nonattainment area do not or would not contribute significantly to PM2.5 levels that exceed the standard. If the EPA approves the demonstration, the attainment plan for a particular PM2.5 nonattainment area may exclude that precursor from certain control requirements, or the NNSR program for that particular PM2.5 nonattainment area may exclude that precursor from further control requirements, depending on the type of demonstration provided. This Protocol demonstrates that NH\(_3\) is not a significant precursor to PM2.5 formation in the San Joaquin Valley.

\(^2\) 40 CFR §51.1000
III EPA’s Precursor Modeling Demonstration Requirements

Consistent with EPA SIP and Precursor modeling guidelines, the District will model air quality in the San Joaquin Valley to estimate future contribution of new and/or modified sources of ammonia at each monitored and unmonitored location within the San Joaquin Valley. This protocol outlines the implementation methodology used to determine the contribution of ammonia to PM2.5 formation as it relates to the District’s NNSR program utilizing the draft guidance established by EPA in November 2016.

On November 17, 2016, EPA released the Draft “PM2.5 Precursor Demonstration Guidance.” This draft guidance provides a non-proscriptive approach for determining if a precursor pollutant is considered a significant contributor to PM2.5 concentrations. The guidance document provides criteria that all precursor demonstrations must include and/or justify. The basic criteria essential to all precursor demonstrations are as follows:

1. What amount of emissions increase should be examined as part of the NNSR sensitivity analysis?
2. What location(s) should be used to model the precursor emissions increases resulting from potential major source growth?
3. What air quality concentration threshold should be used to determine if the modeled air quality change from the precursor is insignificant?

Recommended Criteria for Emission Estimation

In determining what amount of emissions increase should be examined as part of the NNSR sensitivity analysis, the precursor guidance document specifies that it would be appropriate for the air agency to base estimates of any potential emissions increases in part on:

- The type and size of new major stationary sources that are most likely to locate within the nonattainment area and/or existing sources most likely to undergo a major modification.
- Examination of recent (e.g., the last 5 years) major source permits in the region.
- How the particular precursor is treated as a result of regulation pursuant to other NAAQS is an important consideration when determining the potential emissions increases that should be modeled for a PM2.5 NNSR precursor demonstration.
- The number of existing major stationary sources (from which major modifications could occur).
- The natural resources available to support new sources, economic focus of the area and associated potential growth (conducive to a particular industry/source category).
- NNSR demonstration should consider the modeled size of sources (in tons per year of emissions) and the number and location of sources should be adequately conservative to analyze more than what is merely “likely” to occur in the area.
- The size of the nonattainment area.

Recommended Criteria for Locating Sources
EPA’s guidance suggests that in most cases it will be necessary to model a number of hypothetical new and/or modified sources, placed in various locations across the nonattainment area. The location of existing major sources and the stack parameters of those sources can be used to help design the NNSR modeling demonstration.

Recommended Criteria for Selection of Major Stationary Sources

Per EPA, “The fundamental approach for analyzing changes in emissions pursuant to the NNSR precursor demonstration involves the use of a photochemical model to project the air quality changes associated with various potential emissions increases from hypothetical new major stationary sources or major modifications.” EPA guidelines also state that it would be appropriate for an air agency to base estimates of any potential emissions increases in part on the types and size of new major stationary sources that are most likely to locate within the nonattainment area and/or existing sources most likely to undergo a major modification. To do this EPA recommends an examination of the last 5 years of major source permitting in the region.

IV District Modeling Protocol

The District will be utilizing and building upon the current modeling platform developed by the California Air Resources Board (CARB) and the District for the attainment demonstrations for the 24-hour and annual PM2.5 standards in the 2018 Plan for the 1997, 2006, and 2012 PM2.5 Standards (2018 PM2.5 Plan). The base year modeling inputs used for the purpose of the NNSR precursor demonstration will be the same as those used in the 2018 PM2.5 Plan SIP attainment demonstration submitted to EPA. Therefore, the information contained within this protocol will focus on the requirements of the precursor demonstration for the future year modeling inputs that are different from those utilized in the submitted attainment demonstration.

Size of Nonattainment Area

The challenges of the PM2.5 precursor demonstration in the San Joaquin Valley stems from its unique topographical and meteorological conditions and the diverse industries found in the region.

Topography:

The San Joaquin Valley, as seen in Figure 1, encompasses over 23,000 square miles and includes all or part of eight counties: San Joaquin, Stanislaus, Merced, Madera, Fresno, Tulare, Kings, and the valley portion of Kern. Stretching over 250 miles from north to south and averaging 80 miles wide, it is partially enclosed by the Coast Mountain range to the west and the Tehachapi Mountains to the south and the Sierra Nevada range to the east.
Meteorological Conditions:

The San Joaquin Valley has a Mediterranean climate, with hot, dry summers and mild, moist winters. During the summer, the region is dominated by a strong subtropical high-pressure system over the eastern Pacific, marked with dry sinking air capping a surface marine layer of varying humidity along the coast and making rainfall impossible or unlikely except for the influx of monsoonal moisture. During the winter, the polar jet stream and associated weather systems reach the lower latitudes, bringing rain to the San Joaquin Valley and snow to higher elevations. The San Joaquin Valley receives most precipitation during the winter season, and may go between 4 to 6 months during the summer without significant precipitation.
Diverse Industry:
The San Joaquin Valley is one of the most diverse areas in the state of California. It encompasses an area as large as 11 other states. It is a conglomeration of industrial, manufacturing, and farming operations along with commercial operations and metropolitan areas.

Agricultural Sector:
When speaking of the agricultural sector, it is said that the San Joaquin Valley is the “Bread Basket of the World.” The San Joaquin Valley’s wide-ranging agricultural operations vary from crop production and processing (such as cotton, wheat, rice, fruits, vegetables, walnuts, pistachios, tomato processing and canning) to animal feeding operations, such as milk, chicken, and turkey production, and more. To put it into perspective, the contribution of the San Joaquin Valley’s agricultural communities, all eight counties are ranked in the top 10 agricultural counties in California, and accounting for over 73% of all US almond production, over 62% of all US grape production, and ~19% of all US milk production.

Industrial & Manufacturing Sector:
Similar to the San Joaquin Valley’s agricultural sector, the commercial, industrial, and manufacturing operations are diverse. Ranging from small “mom and pop” operations such as gasoline dispensing facilities, restaurants, and auto body shops to large industrial and manufacturing operations such as refineries, glass production plants, power generation, oil & gas production, and fiberglass and other manufacturing facilities. The San Joaquin Valley has the only flat glass facilities in California and two of the three west of Texas. The San Joaquin Valley has the ninth largest oil production field and four of the top 25 in the continental US. The Valley is also the home to the world’s largest wine producer.

Source Selection
EPA guidance indicates that an air agency can rely on 5 years of recent permitting data to determine the types of sources to include in the analysis. The guidance document also recommends to analyze more than what is merely “likely” to occur in the region. In order to determine the type and size of major sources to be include in the precursor analysis, the District reviewed permits issued in the last 10 years and current ammonia inventories submitted by regulated facilities, see Table 1, to determine if any source had emissions greater than the major source threshold of 100 tons/yr. This review indicated that there are grandfathered permit sources in the San Joaquin Valley that exceed the 100 ton/year threshold. Grandfathered sources are sources that were permitted prior to regulation that required ammonia controls. After following EPA guidance and applying current and future regulations that would be associated with new permitted sources, the District determine that emissions, if permitted today, would not exceed the 100 ton/year threshold as noted in Table 1. Even though it is not possible for emissions from future permitted sources to be greater than 100 ton/year threshold, the District will include eight new sources of ammonia at 100 ton/year threshold as a conservative assumption as requested by EPA. This would be two to three or more times higher than currently permitted sources.
TABLE 1 – TOP 15 NH₃ EMISSION SOURCES

<table>
<thead>
<tr>
<th>Facility ID</th>
<th>Facility Name</th>
<th>SIC</th>
<th>Industry</th>
<th>City</th>
<th>NH₃ tpy (Grandfathered)</th>
<th>NH₃ tpy (Controlled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'360</td>
<td>Liberty Composting Inc</td>
<td>2875</td>
<td>Fertilizers, Mixing Only</td>
<td>Lost Hills</td>
<td>300.26</td>
<td>~30</td>
</tr>
<tr>
<td>37</td>
<td>Kern Oil & Refining Co.</td>
<td>2911</td>
<td>Petroleum Refining</td>
<td>Bakersfield</td>
<td>264.92</td>
<td>---</td>
</tr>
<tr>
<td>'4912</td>
<td>Recology Blossom Valley Organics</td>
<td>2875</td>
<td>Fertilizers, Mixing Only</td>
<td>Vernalis</td>
<td>182.14</td>
<td>~18</td>
</tr>
<tr>
<td>'705</td>
<td>J R Simplot Company</td>
<td>2819</td>
<td>Industrial Inorganic Chemicals, NEC</td>
<td>Helm</td>
<td>170.28</td>
<td><10</td>
</tr>
<tr>
<td>'7410</td>
<td>Synagro West, Inc Dba Centrl Vly Compost</td>
<td>2875</td>
<td>Fertilizers, Mixing Only</td>
<td>Dos Palos</td>
<td>137.07</td>
<td>~14</td>
</tr>
<tr>
<td>3594</td>
<td>Harvest Power California LLC</td>
<td>9199</td>
<td>General Government, NEC</td>
<td>Tulare</td>
<td>112.83</td>
<td>~12</td>
</tr>
<tr>
<td>'7617</td>
<td>Harvest Power California LLC</td>
<td>2875</td>
<td>Fertilizers, Mixing Only</td>
<td>Lathrop</td>
<td>105.91</td>
<td>~11</td>
</tr>
<tr>
<td>'2843</td>
<td>Bakersfield City Wood Site</td>
<td>2875</td>
<td>Fertilizers, Mixing Only</td>
<td>Bakersfield</td>
<td>82.49</td>
<td>~9</td>
</tr>
<tr>
<td>1547</td>
<td>Aera Energy LLC</td>
<td>1311</td>
<td>Crude Petroleum & Natural Gas</td>
<td>Kern County</td>
<td>73.93</td>
<td>~36</td>
</tr>
<tr>
<td>2697</td>
<td>Northern California Power</td>
<td>4911</td>
<td>Electric Services</td>
<td>Lodi</td>
<td>68.35</td>
<td>~34</td>
</tr>
<tr>
<td>3412</td>
<td>La Paloma Generating Co LLC</td>
<td>4911</td>
<td>Electric Services</td>
<td>Mckittrick</td>
<td>59.14</td>
<td>~30</td>
</tr>
<tr>
<td>7827</td>
<td>City Of Modesto Composting Facility</td>
<td>4953</td>
<td>Refuse Systems</td>
<td>Modesto</td>
<td>58.39</td>
<td>~29</td>
</tr>
<tr>
<td>3746</td>
<td>Sunrise Power Company</td>
<td>4911</td>
<td>Electric Services</td>
<td>Fellows</td>
<td>44.59</td>
<td>~22</td>
</tr>
<tr>
<td>8533</td>
<td>Highway 59 Composting Facility</td>
<td>2875</td>
<td>Fertilizers, Mixing Only</td>
<td>Merced</td>
<td>36.85</td>
<td>~4</td>
</tr>
<tr>
<td>91</td>
<td>Mt Poso Cogeneration Company, LLC</td>
<td>4931</td>
<td>Electric & Other Services Combined</td>
<td>Bakersfield</td>
<td>35.27</td>
<td>~17</td>
</tr>
</tbody>
</table>

*VOC / Ammonia control of 80%
**Ammonia slip reduced from 10 ppm to 5 ppm
***No new sources have been permitted in the last 20 years

Fertilizers, Mixing Only

New composting facilities that propose to operate within the San Joaquin Valley are required to control ammonia emissions by 80% with an emission factor of 1.5 lbs. /ton compost material. Grandfathered composting facilities were not required to control ammonia emissions and use an emissions factor of 4.08 lbs. /ton compost material.

Electric Services / Electric & Other Services Combined

All other sources in the top 15 NH₃ emissions sources are natural gas (NG) turbines that use ammonia as a control for NOx in their selective catalytic reduction (SCR) systems. The ammonia emissions from these operations are produced by ammonia or urea that is injected into the SCR that does not combine with NOx and is emitted through the turbine stack and is known as ammonia slip. These sources were permitted
at 10 ppm of ammonia slip. Current permit levels have been decreased to 5 ppm, thereby reducing ammonia by 50%.

Future Modification

Unlike the Bay Area Air Quality Management District (BAAQMD), the District will be using a future year (2025) inventory for conducting NNSR precursor modeling which has already been adjusted to consider future growth in the state as well as in the San Joaquin Valley. As per EPA’s request, additional modifications will be considered in the proposed modeling scenario above those already included in the 2025 SIP inventory.

District Permit Services staff has reviewed the last 10 years of permitting records to identify all new and/or modified major sources that have acquired Permits-To-Operate (PTOs) for increases in ammonia.

PTO data was grouped into two categories, 1) “Likely” and 2) “Potential” sources to be modified. Sources that have been constructed and/or modified in the last 5 years are those “Likely” to be modified in the future. Sources constructed and/or modified in the last 6 to 10 years are those that have the “Potential” to be modified in the future.

The following was used to evaluate PTOs issued in the last 10 years:

1) If the PTO facility emits NH3:
 a) Was it a new action or was it a modification?
 b) What was the source of NH3 emissions (boiler, steam generator, composting, etc.)?
 c) What are the permitted increases of NH3?
 d) What are the source parameters (stack, area, volume parameters)?
 e) What was the location of the new or modified source?
 i) Address
 ii) Section/Township/Range
 iii) Latitude/Longitude

2) What future NH3 reductions may this source be applicable to from current and/or future rules?
 a) Any known compliance dates coming that affect emissions of PM2.5 precursor pollutant(s)?
 b) Upcoming new or amended rules may affect emissions of precursor pollutant(s)?

Based on the above review of permitted actions, it is estimated that 129 modifications are likely between 2013 and 2025. Data collected indicates that 90% of the permitting actions occur from modifications and 10% are from new applications, while emissions from modifications only made up 20% of the annual ammonia emissions and new applications contributed 80% of these emissions.

Source Parameters
The District reviewed the point source FF10 files used in the current PM2.5 SIP, for the sources listed in Table 1, to derive the appropriate stack parameters for the eight hypothetical and the 129 additional modified sources, see Table 2 below.

TABLE 2 - SOURCE PARAMETERS BY SIC

<table>
<thead>
<tr>
<th>Source SIC</th>
<th>NAICS</th>
<th>Source Description</th>
<th>Avg Stack Ht. (ft)</th>
<th>Avg Stack Dia. (ft)</th>
<th>Avg Stack Temp. (F)</th>
<th>Avg Stack Velocity (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>723</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>241</td>
<td>112120</td>
<td>Agricultural Operations (Primary Process)</td>
<td>121.4</td>
<td>11.1</td>
<td>699.5</td>
<td>22.6</td>
</tr>
<tr>
<td>252</td>
<td>112120</td>
<td>Agricultural Operations (Primary Process)</td>
<td>121.4</td>
<td>11.1</td>
<td>699.5</td>
<td>22.6</td>
</tr>
<tr>
<td>723</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>1311</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>95.8</td>
<td>9.2</td>
<td>644.3</td>
<td>41.4</td>
</tr>
<tr>
<td>1321</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>95.8</td>
<td>9.2</td>
<td>644.3</td>
<td>41.4</td>
</tr>
<tr>
<td>2022</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>2033</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>2043</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>2077</td>
<td>221210</td>
<td>Other Operation</td>
<td>105.5</td>
<td>10.5</td>
<td>657.2</td>
<td>40.1</td>
</tr>
<tr>
<td>2084</td>
<td>312130</td>
<td>Wines, Brandy, & Spirits</td>
<td>104.5</td>
<td>9.8</td>
<td>676.3</td>
<td>22.6</td>
</tr>
<tr>
<td>2653</td>
<td>322211</td>
<td>Paper Products</td>
<td>119.4</td>
<td>10.9</td>
<td>691.5</td>
<td>23.1</td>
</tr>
<tr>
<td>2679</td>
<td>322211</td>
<td>Paper Products</td>
<td>119.4</td>
<td>10.9</td>
<td>691.5</td>
<td>23.1</td>
</tr>
<tr>
<td>2875</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>108.6</td>
<td>10.1</td>
<td>651.4</td>
<td>141.3</td>
</tr>
<tr>
<td>2911</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>95.8</td>
<td>9.2</td>
<td>644.3</td>
<td>41.4</td>
</tr>
<tr>
<td>3221</td>
<td>327213</td>
<td>Glass Containers Mfg.</td>
<td>118.0</td>
<td>10.1</td>
<td>669.7</td>
<td>63.5</td>
</tr>
<tr>
<td>4911</td>
<td>221122</td>
<td>Electric Services</td>
<td>109.9</td>
<td>10.3</td>
<td>639.4</td>
<td>68.6</td>
</tr>
<tr>
<td>4922</td>
<td>486210</td>
<td>Natural Gas Transmission</td>
<td>91.1</td>
<td>8.1</td>
<td>745.9</td>
<td>97.0</td>
</tr>
<tr>
<td>4931</td>
<td>221210</td>
<td>Other Operation</td>
<td>105.5</td>
<td>10.5</td>
<td>657.2</td>
<td>40.1</td>
</tr>
<tr>
<td>4952</td>
<td>221210</td>
<td>Other Operation</td>
<td>105.5</td>
<td>10.5</td>
<td>657.2</td>
<td>40.1</td>
</tr>
</tbody>
</table>

Source Location

EPA’s guidance suggests that in most cases it will be necessary to model a number of hypothetical new and/or modified sources, placed in various locations across the nonattainment area. The location of existing major sources and the stack parameters of those sources can be used to help design the NNSR modeling demonstration.

To help focus the evaluation of where to place new and/or modified sources, the District will utilize the facility SIC (source industrial code) groups identified above and consolidate them into groups that have similar resource requirements and source parameters. For example: SICs 241 (Dairy Farms) and 251 (Broiler, Fryers, and Layers) share similar characteristics and resources parameters i.e. they are both confined animal feeding operations, they are constructed in rural areas away from metropolitan areas, and they require a large number of acres in order to operate.
Based on data collected, the following groups will be used to evaluate the locations of new and/or modified sources:

- **Agricultural Operations (Primary Process)**
 - Dairy Farms
 - Egg Production

- **Agricultural Services (Secondary Process)**
 - Crop Preparation Services
 - Cheese Processing
 - Canned Fruits and Vegetables
 - Cereal Foods
 - Fertilizer Mfg.

- **Oil and Gas Operations and Services**
 - Oil and Gas Production
 - Petroleum Refining
 - Natural Gas Liquids

- **Other Operation**
 - Correctional Institution
 - Sewerage Systems
 - Animal & Marine Fats and Oils (Tallow Plant)

- **Wines, Brandy, & Spirits**

- **Glass Container Mfg.**

- **Paper Products**
 - Corrugated & Solid Fiber Boxes
 - Converted Paper Products

- **Electric Services**
 - Power Generation
 - Other Services

The District will also utilize other geographic information system (GIS) datasets to identify:

- **Areas where current permitted sources are located**
- **Areas where emissions from similar sources in CMAQ are located**
- **Areas of inclusion**
 - Farmland (Source Group Dependent)
 - Oil Fields (Source Group Dependent)
 - Other areas not identified below

- **Areas for exclusion**
 - Class I areas
 - State and National reserves and parks
 - State Refuges
 - Indian Lands
 - National Wilderness Preservation
 - Public Conservation Trust Land
 - Urban Areas (Source Group Dependent)
 - Oil Fields (Source Group Dependent)
The GIS layers will be coupled with the identified source categories to provide an understanding of where emissions sources should be placed i.e. locations where they are currently permitted and in areas where they may “ Likely” be constructed in the future.

Appendix A provides an example on coupling the data from known facilities with GIS layers that will be used to identify locations where new and modified sources will be located for the modeling scenario.

Precursor Demonstration Thresholds

EPA recommends using the following thresholds for determining if a PM2.5 precursor has a significant increase (significant impact level, or SIL) under the NNSR evaluations methodology established by EPA:

- 0.2 μg/m³ for the annual PM2.5 NAAQS, and
- 1.3 μg/m³ for the 24-hour PM2.5 NAAQS.

Grid Resolution

EPA recommends that the major stationary source assessments for nonattainment areas be conducted using horizontal grid resolutions between ~1 kilometer (km) up to ~12 km. In instances where sources may be modeled at coarser resolutions >12 km or at resolutions finer than 1 km, consultation with the appropriate EPA Regional office is advised.

The District will be utilizing the same modeling platform and grid resolution used for the PM2.5 attainment demonstration modeling submitted to EPA for the 2018 PM2.5 Plan. This modeling platform and grid resolution are based on a 4km state wide grid windowed to a 4km grid covering the District-established modeling domain.
FIGURE 2 - STATE-WIDE 4KM GRID
Emissions Calculation Methodology

EPA’s guidance document indicates that an NNSR demonstration should consider analyzing more than what is merely “ Likely” to occur in an area when evaluating the number and size of sources to be included.

Source Grouping

In order to manage the list of different types of facilities anticipated to be included in this process, the District will group each facility by its primary SIC. Grouping facilities by their SIC allows the District to identify the types of major sources being constructed and/or modified, and provide the number of new and/or modified facilities within a single industrial category within the San Joaquin Valley over the past 10 years. Preliminary estimates indicated that 20 different source categories could be included in the PM2.5 precursor evaluation, see Table 3 below.
TABLE 3 - SIC CATEGORIES

<table>
<thead>
<tr>
<th>SIC</th>
<th>SIC Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>DAIRY FARMS</td>
</tr>
<tr>
<td>252</td>
<td>CHICKEN EGGS</td>
</tr>
<tr>
<td>723</td>
<td>CROP PREPARATION SERVICES FOR MARKET</td>
</tr>
<tr>
<td>1311</td>
<td>CRUDE PETROLEUM AND NATURAL GAS</td>
</tr>
<tr>
<td>1321</td>
<td>NATURAL GAS LIQUIDS</td>
</tr>
<tr>
<td>2022</td>
<td>CHEESE, NATURAL AND PROCESSED</td>
</tr>
<tr>
<td>2033</td>
<td>CANNED FRUITS AND VEGETABLES</td>
</tr>
<tr>
<td>2043</td>
<td>CEREAL BREAKFAST FOODS</td>
</tr>
<tr>
<td>2077</td>
<td>ANIMAL & MARINE FATS AND OILS</td>
</tr>
<tr>
<td>2084</td>
<td>WINES, BRANDY, BRANDY SPIRITS</td>
</tr>
<tr>
<td>2875</td>
<td>FERTILIZERS, MIXING ONLY</td>
</tr>
<tr>
<td>2653</td>
<td>CORRUGATED & SOLID FIBER BOXES</td>
</tr>
<tr>
<td>2679</td>
<td>CONVERTED PAPER PRODUCTS</td>
</tr>
<tr>
<td>2911</td>
<td>PETROLEUM REFINING</td>
</tr>
<tr>
<td>3221</td>
<td>GLASS CONTAINERS</td>
</tr>
<tr>
<td>4911</td>
<td>ELECTRIC SERVICES</td>
</tr>
<tr>
<td>4922</td>
<td>NATURAL GAS TRANSMISSION</td>
</tr>
<tr>
<td>4931</td>
<td>ELECTRIC & OTHER SERVICES COMBINED</td>
</tr>
<tr>
<td>4952</td>
<td>SEWERAGE SYSTEMS</td>
</tr>
<tr>
<td>9223</td>
<td>CORRECTIONAL INSTITUTIONS</td>
</tr>
</tbody>
</table>

Sample Calculations

The following describes the emissions calculation methodology to be used when estimating emissions for each source category. The basic steps are 1) Estimate the number of years within the evaluation period, 2) Estimate the average tons/year emitted for a given source category, 3) Determine the number of events (permit actions) in a given year, and 4) Estimate future year emissions increases.

Estimating the number of years during the evaluation period

To determine the total number of years to include in the evaluation it is important to understand that all future year SIP inventories are based on a given base year inventory, or actual inventory, collected by an agency. In order to account for any additional new and/or modifications that may occur to a future inventory, one must start from the same base year then generate the current SIP inventory and determine the number of years between the two. To do this the District will use the following equation:

Eq. 1 – Number of Years in the evaluation period

\[
\text{Years} = \text{Future Year} - \text{Base Year Inventory}
\]

\[
\text{Years} = 2025 - 2013
\]

\[
\text{Years} = 12
\]

Where:

- **# Years** - Number of years between the base year inventory and the future year inventory to be modeled
- **Future Year** - Represents the future year inventory modeled
Base Year - Represents the base year inventory used to generate the SIP inventory

Number of Events & Estimating Emissions per Event

When estimating emissions from sources, EPA’s guidance recommends an examination of the last 5 years of major source permitting in the region being evaluated as the basis for estimating any probable emissions increases. As noted above, two types of emissions sources are proposed to be evaluated as part of the PM 2.5 Precursor evaluation i.e., “Likely” and “Potential.” The District will evaluate all permitted action conducted for major sources between 2008 and 2017 (10 yrs) to determine which approved actions have transpired which have increased NH3 emissions. An Access DB and Excel spreadsheet have been developed to post processing the data to derive the following:

For Each Source Category
- Identify the lbs./year of emissions permitted
- Identify the number of new facilities and/or modifications
- Estimate the average emissions (lbs. and tons) for each year
- Project the emissions without adjustment (“Likely” and “Potential”)
- Project the emissions with safety factor included (“Likely” and “Potential”)

For Example (TIER I):

For “Likely” Sources
- Determine the maximum number of events per year over the recent 5 years
- Determine the 5 year average emissions over the recent 5 years

For “Potential” Sources
- Determine the average number of events per year over the recent 10 years
- Determine the 10 year average emissions

*As clarification, sources included here have not had any permit actions in the last 5 years, but have had some permitting action within the last 10 years.

Emission Increases for "Likely" Modified Major Sources

723 - CROP PREPARATION SVCS FOR MKT

Eq. 2 – Estimated NH3 Emission Increase (Tons/Year) by 2025

\[
\text{Tons/Year} = \text{Average Tons/Year} \times \text{Max # of Events} \times \text{# Years}
\]

Tons/Year = 0.55 X 1.0 X 12

Tons/Year = 6.63

Where:

- Tons/Year - Is the cumulative emissions increase over the modeling period, assuming that there are new and/or modifications to major sources every year during the evaluation period
Average Tons/Year - Average tons of all new and/or modification to a major source over the averaging period (5 years)
Max # of Events - Represents the max number of new and/or modifications to a major source that occurred in a given year during the averaging period
Years - See Eq.1

Emission Increases for "Potential" Modified Major Sources

2022 - CHEESE, NATURAL AND PROCESSED

Eq. 3 – Estimated NH3 Emission Increase (Tons/Year) by 2025

\[
\text{Tons/Year} = \text{Average Tons/Year} \times \text{Average # of Events} \times \text{# Years}
\]

\[
\text{Tons/Year} = 0.28 \times 0.3 \times 12
\]

\[
\text{Tons/Year} = 1.00
\]

Where:

Tons/Year - Is the cumulative emissions increase over the modeling period, assuming that there are new and/or modifications to major sources every year during the evaluation period

Average Tons/Year - Average tons of all new and/or modification to a major source over the averaging period (10 years)

Ave # of Events - Represents the Average number of new and/or modifications to a major source that occurred over the averaging period

Years - See Eq.1

Eq. 4 – Estimated NH3 Emission Increase (Tons/Year) by 2025 Plus Safety Factor

\[
\text{Tons/Year} = 2025 \text{ Tons/Year (Eq2, or 3)} \times (1.0 + \text{Safety Factor of 10%}) \times \text{MCF}
\]

\[
\text{Tons/Year} = 6.63 \times 1.10 \times 0.2
\]

\[
\text{Tons/Year} = 1.46
\]

Where:

2025 Tons/Year - Is the cumulative emissions increase over the modeling period, assuming there are new and/or modifications to major sources every year during the evaluation period

Safety Factor - Is used to account for any unforeseen increases in ammonia emissions from an emissions category

Tons/Year - Represents the cumulative emissions increase over the modeling period plus a safety factor

MCF - Modification Correction Factor of 0.2 or 20%, As noted in section “IV.8 Future Modification” emissions from modified sources only contributes 20% of the total emissions on an annual basis.

The District will sum all the emission from each SIC group to determine the total increase in 2025 for both the “Likely” and “Potential” scenarios. Even though EPA’s guidance indicates that the summation of the “Likely” and “Potential” scenarios would be
sufficient, to be conservative, the District will utilize the summation of the “Likely” and “Potential” in addition to the safety factor for conducting the future year modeling runs.

Emissions From New Hypothetical Sources

As noted above, the District currently would not permit ammonia sources greater than the major source threshold of 100 tons/yr., but in order to conduct the required modeling, eight new sources of ammonia will be included that are at least twice the current permitted levels or 100 tons/yr.

Emissions From Additional Modified Sources

As requested by EPA, beyond those modification / growth emissions already included in the 2025 SIP inventory, the District will estimate emissions from two types of sources i.e. sources that are most “Likely” to have modification based on PTOs issued within the most recent 5 years and those major sources that have the “Potential” or could be modified based on PTOs issued between 6-10 years ago.

Based on the information gathered by the District, emissions were estimated for the estimated number of modifications. As noted earlier, project growth for future years are already included in the 2025 future year emissions inventory and these emissions are being added as requested by EPA.

Table 4 - Emissions From Future Modifications

<table>
<thead>
<tr>
<th>Source SIC</th>
<th>NAICS</th>
<th>Source Description</th>
<th>Number of Modification</th>
<th>Tons/Yr. per Modification</th>
<th>Total Tons/Yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>112120</td>
<td>Agricultural Operations (Primary Process)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>252</td>
<td>112120</td>
<td>Agricultural Operations (Primary Process)</td>
<td>4</td>
<td>0.19</td>
<td>0.74</td>
</tr>
<tr>
<td>723</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>5</td>
<td>0.29</td>
<td>1.46</td>
</tr>
<tr>
<td>1311</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>24</td>
<td>0.41</td>
<td>9.74</td>
</tr>
<tr>
<td>1321</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>13</td>
<td>0.10</td>
<td>1.24</td>
</tr>
<tr>
<td>2022</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>5</td>
<td>0.04</td>
<td>0.22</td>
</tr>
<tr>
<td>2033</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>13</td>
<td>0.72</td>
<td>9.30</td>
</tr>
<tr>
<td>2043</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2077</td>
<td>222110</td>
<td>Other Operation</td>
<td>5</td>
<td>0.13</td>
<td>0.66</td>
</tr>
<tr>
<td>2084</td>
<td>312130</td>
<td>Wines, Brandy, & Spirits</td>
<td>25</td>
<td>1.97</td>
<td>49.26</td>
</tr>
<tr>
<td>2653</td>
<td>322211</td>
<td>Paper Products</td>
<td>7</td>
<td>0.04</td>
<td>0.26</td>
</tr>
<tr>
<td>2679</td>
<td>322211</td>
<td>Paper Products</td>
<td>4</td>
<td>0.07</td>
<td>0.26</td>
</tr>
<tr>
<td>2875</td>
<td>325314</td>
<td>Agricultural Services (Secondary Process)</td>
<td>7</td>
<td>8.57</td>
<td>60.00</td>
</tr>
<tr>
<td>2911</td>
<td>211111</td>
<td>Oil and Gas Operations and Services</td>
<td>2</td>
<td>0.12</td>
<td>0.24</td>
</tr>
<tr>
<td>3221</td>
<td>327213</td>
<td>Glass Containers Mfg.</td>
<td>2</td>
<td>3.40</td>
<td>6.80</td>
</tr>
<tr>
<td>4911</td>
<td>221122</td>
<td>Electric Services</td>
<td>2</td>
<td>18.17</td>
<td>36.34</td>
</tr>
<tr>
<td>4922</td>
<td>486210</td>
<td>Natural Gas Transmission</td>
<td>2</td>
<td>0.41</td>
<td>0.82</td>
</tr>
<tr>
<td>4931</td>
<td>222110</td>
<td>Other Operation</td>
<td>1</td>
<td>36.57</td>
<td>36.57</td>
</tr>
<tr>
<td>4952</td>
<td>222110</td>
<td>Other Operation</td>
<td>3</td>
<td>0.20</td>
<td>0.59</td>
</tr>
<tr>
<td>9223</td>
<td>221210</td>
<td>Other Operation</td>
<td>5</td>
<td>0.11</td>
<td>0.54</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totals</td>
<td>129</td>
<td></td>
<td>215.04</td>
</tr>
</tbody>
</table>
TABLE 5 - EXAMPLE EMISSIONS ESTIMATION FROM “LIKELY” SOURCES (NEW AND MODIFIED)

<table>
<thead>
<tr>
<th>SIC Project Year</th>
<th>Lbs/Yr</th>
<th>Events</th>
<th>Average Lbs/Yr</th>
<th>Average Tons/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>723 CROP PREPARATION SVCS FOR MKT</td>
<td>2013</td>
<td>5,341.00</td>
<td>1.00</td>
<td>5,341.00</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>180.00</td>
<td>1.00</td>
<td>180.00</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>5 Yr Maximum</td>
<td>1.00</td>
<td>5 Yr Average</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiply the Max # of Events by the Ave Tons/Yr. and the # of Year between the base (2013) and future year (2025) model run (12yrs.)

TABLE 6 - EXAMPLE OF SOURCE CATEGORY AVERAGES FROM “POTENTIAL” SOURCES (NEW AND MODIFIED)

<table>
<thead>
<tr>
<th>Category</th>
<th>Project Year</th>
<th>Lbs / Yr</th>
<th>Events</th>
<th>Average Lbs/Yr</th>
<th>Average Tons / Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022 - CHEESE, NATURAL AND PROCESSED</td>
<td>2008</td>
<td>5537</td>
<td>2.00</td>
<td>1,989.00</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>29</td>
<td>1.00</td>
<td>29.00</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Average # of Events</td>
<td>0.3</td>
<td>10 Yr Average</td>
<td>0.28</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7 - EXAMPLE EMISSIONS INCREASE FROM “POTENTIAL” SOURCES

<table>
<thead>
<tr>
<th>SIC Category</th>
<th>Average Events</th>
<th>Average Tons/Yr</th>
<th>Tons/Year ↑ by 2025</th>
<th>10% Safety Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022 - CHEESE, NATURAL AND PROCESSED</td>
<td>0.3</td>
<td>0.28</td>
<td>1.00</td>
<td>1.10</td>
</tr>
</tbody>
</table>
Emissions Tiered Approach

EPA guidance provides for precursor demonstrations to consider future controls incorporated into the current state implementation plans, local rules, or growth that would affect the sources under evaluation, when determining the quantity of emissions projected to occur over the evaluation period. When evaluating the impacts that ammonia has on air quality, it is important to determine the extent of the impact prior to the implementation of future controls or growth. This approach provides decision maker with a better understanding of the magnitude of the issue, if needed. Therefore, the District has constructed a TIER approach to evaluating ammonia as a precursor to PM2.5. Details for each proposed tiered approach is provided below.

TIER I - Most Conservative Assumptions

The TIER I approach is designed to implement the most conservative assumption and provide the upper end of the expected concentrations. If the modeled results fall below EPA’s SIL thresholds then no further modeling would be required to fulfill the requirements of the precursor demonstration. When estimating emissions, the Tier I approach would not apply any of the emissions reductions techniques provided for in EPA’s guidance document (i.e., future rule reductions, or consideration of decrease in growth, or any considerations of the growth already included/projected for in the initial 2025 modeling inventory used for the PM2.5 attainment demonstration). The following are additional conservative assumptions:

Assumptions

- Emissions for new sources are based on major sources threshold of 100 tons/yr.
- Emissions estimates for modifications are based on “potential to emit,” and not actual emissions
- Include years when no new or modification actually occurred (i.e., between 2013-2017)
- Use the maximum number of PTOs issued in the past 5 years for sources “Likely” to be new and/or modified in the future
- Use the average number of PTOs issued in the past 10 years for sources that “Potentially,” could be modified in the future
- Do not account for decrease in growth on projected emissions
- Do not account for implementation of future controls on projected emissions
- Do not account for growth already included in SIP model inputs
- Sources are constructed and or modified each year during the evaluation period
- Include a 10% safety factor

Please note: The District will utilize the TIER I approach for conducting the current NNSR precursor modeling. Other options or TIERs are presented in Appendix B. These options are included as options for consideration only.

CMAQ Model Approach

When constructing a sensitivity analysis to determine the impact a single variable will have on an outcome (model concentration), one must consider the resource
requirements of completing the analysis, and the benefits or outcome required. The resources required to construct, run, and post process the CMAQ model is extensive compared to the benefit of running the model multiple times. Therefore, in order to maximize efficiency, the District will implement the Tier I approach which will provide the most conservative (ton per year increase).

Based on data collected to date, the number of new and/or modified major source events that are projected to occur between 2013 and 2025 is approximately 129 events.

Modeling Inputs

To streamline the modeling inputs required for the NNSR attainment demonstration, the District will use the modeling inputs used to support the 2018 PM2.5 Plan submitted to EPA, including the initial and boundary conditions, meteorological data, inventories, speciation profiles, temporal and spatial data.

Base Year

The District will use the same base year as that used for the 2018 PM2.5 Plan submitted to EPA.

Future Year

To estimate impacts on future years, the District will update the 2025 inventory from the 2018 PM2.5 Plan model submitted to EPA with emissions identified through the NNSR evaluation process above. This updated inventory will be the basis for the estimated impact from increases in ammonia emissions from projected new and/or modified major sources in 2025.

Post Processing Modeling Data

The modeled precursor impacts on PM2.5 concentrations can be calculated either as the absolute modeled concentration changes, or as relative concentration changes, based on the percent modeled change in PM2.5 species, applied to ambient data. EPA guidance for SIP attainment demonstrations recommends performing a “relative” attainment test. However, modeling for Prevention of Significant Deterioration (PSD) analyses of single point sources typically uses absolute model results (USEPA, 2005 and USEPA, 2014a).

As per direction from EPA, the District will evaluate the modeling results using the absolute model results to determine if ammonia is considered to contribute to an exceedance of the PM2.5 ambient air quality standard by comparing the results to the PM2.5 SIL.

Procedures For Post Processing Modeling Results

The District will utilize the same procedures and tools used by CARB to generate the unmonitored area design values for the 2018 PM2.5 Plan modeling submitted to EPA. These procedures and tools are similar to those in EPA “Software for the Modeled Attainment Test” (SMAT) program. The following provides an outline of the steps that
will be conducted to process the modeling output. More detail is provided in the 2018 PM2.5 Plan Modeling Protocol submitted to EPA.

Base Year and Unadjusted Future Year Runs
These modeling runs are used as the basis of the precursor modeling demonstration and provide the foundation by which all other modeling runs will be compared. Design values will be estimated for both monitored and unmonitored areas. The results will be used to determine the impacts that increases in ammonia emissions will have on the region under evaluation.

TIER I Future Year Runs
As requested by EPA, the District will use the absolute modeling results (2013 vs 2025) at each receptor to determine the change in concentration of PM2.5 when adding eight new major sources and 129 modification to the 2025 modeling emissions inventory. If the change in PM2.5 concentration at any receptor (grid cell) does not exceed the PM2.5 SIL no further evaluation will be required, as it would indicate that the increases in ammonia does not contribute to an exceedance of the NAAQS.
A. APPENDIX A - SOURCE LOCATION

Determining Source Location Using ArcGIS
The above map presents the ammonia emissions in the 2025 SIP inventory. The lighter colors represent lower ammonia emissions while darker colors represent higher emissions. **Please Note:** Since this comes from the CMAQ FF10 files the colors are based on a county by county total i.e. Dark red in one county does not represent the same quantity of emissions in another.
The above map combines all the layers and the locations of permitted sources to determine where existing sources are and are not. **Please Note:** Orange circles represent the locations of existing permitted source under the 723 SIC.
Please Note: Red pins represent the locations of modified sources and the green pins represent the locations of new major ammonia sources included in the NNSR precursor modeling demonstration.
B. APPENDIX B – ALTERNATIVE EMISSIONS CALCULATION
B.1 TIER II - Conservative Assumptions
Tier II assumptions would be implemented if the Tier I modeling indicates that the precursor under evaluation would exceed EPA’s established SIL thresholds for PM2.5. If the Tier II modeled results fall below SIL thresholds then no further modeling would be required to fulfill the requirements of the precursor demonstration. The Tier II emissions estimates would be the same as Tier I except, each SIC group/sector would be evaluated to determine if growth is projected to happen between 2013 and 2025. If a sector, based on the current SIP modeling inventory projection, showed growth, then the projected emissions from that sector (except for the emissions associated with the 10% safety factor) would be removed from further evaluations. Keeping the emissions associated with the 10% safety factor accounts for any margin of uncertainty. The Tier II modeling would continue to implement any future control measures implemented in the current SIP modeling inputs and use the average number of PTOs issued during the past 5 years verses the maximum.

Assumptions
- Emission estimates are based on “potential to emit” and not actual emissions
- Include years when no new or modification actually occurred (i.e., between 2013-2017)
- Use the average number of PTOs issued in the past 5 years for sources “ Likely” to be new and/or modified in the future
- Use the average number of PTOs issued in the past 10 years for sources that “Potentially,” or could be modified in the future
- Do not account for decrease in growth on projected emissions
- Do not account for implementation of future controls on projected emissions
- Do not account for growth already included in SIP model inputs on projected emissions
- New sources are constructed and or modified each year during the evaluation period
- Include a 10% safety factor

B.2 TIER III - Most Reasonable Assumptions
Tier III assumptions would be implemented if the Tier II modeling indicates that the precursor under evaluation would exceed EPA’s established SIL thresholds for PM2.5. If the Tier III modeled results fall below SIL thresholds then no further modeling would be required to fulfill the requirements of the precursor demonstration. The Tier III emissions estimates would be the same as Tier II, except if a sector has a projected negative growth, the 10% growth factor would be removed from further evaluation. Additionally, sectors (Potential Major Sources) that showed no activity between 2013 and 2017 would have the total number of years used for estimating future emissions reduced by the number of years of inactivity.

Assumptions
- Emission estimates are based on “potential to emit” and not actual emissions
- Account for years when no new or modification actually occurred (i.e., between 2013-2017)
- Use the average number of PTOs issued in the past 5 years for sources “Likely” to be new and/or modified in the future
- Use the average number of PTOs issued in the past 10 years for sources that “Potentially,” or could be modified in the future
- Account for decrease in growth (except for emissions during 2013-2017) on projected emissions
- Account for implementation of future controls on projected emissions
- Account for growth already included in SIP model inputs on projected emissions
- New sources are constructed and or modified each year during the evaluation period
- Remove the 10% safety factor

B.3 Evaluation Method

TIER II Future Year Runs
Using the base year run, design values will be estimated for both monitored and unmonitored areas and compare to the results from Base Year and Unadjusted Future Year Run. If no grid cell exceeds the PM2.5 SIL no further modeling will be required.

TIER III Future Year Runs
Using the base year run, design values will be estimated for both monitored and unmonitored areas and compare to the results from Base Year and Unadjusted Future Year Run. If no grid cell exceeds the PM2.5 SIL no further modeling will be required.
San Joaquin Valley Air Pollution Control District 2018 PM2.5 Plan, Appendix L – Modeling Protocol
PHOTOCHEMICAL MODELING PROTOCOL

Photochemical Modeling for the 8-Hour Ozone and Annual/24-hour PM$_{2.5}$ State Implementation Plans

Prepared by
California Air Resources Board

Prepared for
United States Environmental Protection Agency Region IX

November 6, 2017
TABLE OF CONTENTS

1. **INTRODUCTION** .. 9
 1.1 Modeling roles for the current SIP ... 9
 1.2 Stakeholder participation ... 9
 1.3 Involvement of external scientific/technical experts and their input on the photochemical modeling .. 10
 1.4 Schedule for completion of the Plan ... 11

2. **DESCRIPTION OF THE CONCEPTUAL MODEL FOR THE NONATTAINMENT AREA** .. 11

3. **SELECTION OF MODELING PERIODS** .. 11
 3.1 Reference Year Selection and Justification ... 11
 3.2 Future Year Selection and Justification .. 12
 3.3 Justification for Seasonal/Annual Modeling Rather than Episodic Modeling .. 13

4. **DEVELOPMENT OF EMISSION INVENTORIES** .. 14

5. **MODELS AND INPUTS** ... 14
 5.1 Meteorological Model ... 14
 5.1.1 Meteorological Modeling Domain ... 15
 5.2 Photochemical Model .. 18
 5.2.1 Photochemical Modeling Domain ... 20
 5.2.2 CMAQ Model Options ... 22
 5.2.3 Photochemical Mechanism .. 22
 5.2.4 Aerosol Module ... 23
 5.2.5 CMAQ Initial and Boundary Conditions (IC/BC) and Spin-Up period 24
 5.3 Quality Assurance of Model Inputs ... 26

6. **METEOROLOGICAL MODEL PERFORMANCE** ... 27
 6.1 Ambient Data Base and Quality of Data ... 27
 6.2 Statistical Evaluation ... 27
 6.3 Phenomenological Evaluation ... 29

7. **PHOTOCHEMICAL MODEL PERFORMANCE** .. 29
 7.1 Ambient Data ... 29
 7.2 Statistical Evaluation ... 31
LIST OF FIGURES

Figure 5-1. The three nested grids for the WRF model (D01 36km; D02 12km; and D03 4km). ... 16

Figure 5-2. CMAQ modeling domains used in this SIP modeling platform. The outer domain (dashed black line) represents the extent of the California statewide domain (shown here with a 4 km horizontal resolution, but utilized in this modeling platform with a 12 km horizontal resolution). Nested higher resolution 4 km modeling domains are highlighted in green and red for the Northern/Central California and Southern California, respectively. The smaller SJV PM$_{2.5}$ 4 km domain (colored in blue) is nested within the Northern California 4 km domain.. 21

Figure 5-3. Comparison of MOZART (red) simulated CO (left), ozone (center), and PAN (right) to observations (black) along the DC-8 flight track. Shown are mean (filled symbol), median (open symbols), 10th and 90th percentiles (bars) and extremes (lines). The number of data points per 1-km wide altitude bin is shown next to the graphs. Adapted from Figure 2 in Pfister et al. (2011). .. 25

Figure 8-1. Example showing how the location of the MDA8 ozone for the top ten days in the reference and future years are chosen. .. 37
Table 3-1. Future attainment year by non-attainment region and NAAQS. 0.08 ppm and 0.075 ppm refer to the 1997 and 2008 8-hour ozone standards, respectively. 15 ug/m3 and 12 ug/m3 refer to the 1997 and 2012 annual PM$_{2.5}$ standards, respectively. 35 ug/m3 refers to the 2006 24-hour PM$_{2.5}$ standard, and 1-hr ozone refers to the revoked 1979 0.12 ppm 1-hour ozone standard. ... 13

Table 5-1. WRF vertical layer structure. ... 17

Table 5-2. WRF Physics Options. .. 18

Table 5-3. CMAQ v5.0.2 configuration and settings. ... 22

Table 7-1. Monitored species used in evaluating model performance. 30

Table 8-1. Illustrates the data from each year that are utilized in the Design Value calculation for that year (DV Year), and the yearly weighting of data for the weighted Design Value calculation (or DV$_R$). “obs” refers to the observed metric (8-hr O$_3$, 24-hour PM$_{2.5}$, or annual average PM$_{2.5}$). ... 35
ACRONYMS

ARB – Air Resources Board
ARCTAS-CARB – California portion of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites conducted in 2008
BCs – Boundary Conditions
CalNex – Research at the Nexus of Air Quality and Climate Change conducted in 2010
CCOS - Central California Ozone Study
CMAQ Model – Community Multi-scale Air Quality Model
CIT – California Institute of Technology
CRPAQS – California Regional PM$_{10}$/PM$_{2.5}$ Air Quality Study
DISCOVER-AQ - Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality
DV – Design Value
FDDA – Four-Dimensional Data Assimilation
FEM – Federal Equivalence Monitors
FRM – Federal Reference Monitors
HNO$_3$ – Nitric Acid
ICs – Initial Conditions
IMPROVE – Interagency Monitoring of Protected Visual Environments
IMS-95 – Integrated Monitoring Study of 1995
LIDAR – Light Detection And Ranging
MDA – Maximum Daily Average
MM5 – Mesoscale Meteorological Model Version 5
MOZART – Model for Ozone and Related chemical Tracers
NARR - North American Regional Reanalysis
NCAR – National Center for Atmospheric Research
NCEP – National Centers for Environmental Prediction
NH₃ – Ammonia
NOAA - National Oceanic and Atmospheric Administration
NOₓ – Oxides of nitrogen
OC – Organic Carbon
OFP - Ozone Forming Potential
PAMS – Photochemical Assessment Monitoring Stations
PAN – Peroxy Acetyl Nitrate
PM₂.₅ – Particulate Matter with aerodynamic diameter less than 2.5 micrometers
PM₁₀ – Particulate Matter with aerodynamic diameter less than 10 micrometers
RH – Relative Humidity
ROG – Reactive Organic Gases
RRF – Relative Response Factor
RSAC – Reactivity Scientific Advisory Committee
SANDWICH – Application of the Sulfate, Adjusted Nitrate, Derived Water, Inferred Carbonaceous Material Balance Approach
SAPRC – Statewide Air Pollution Research Center
SARMAP – SJVAQS/AUSPEX Regional Modeling Adaptation Project
SCAQMD – South Coast Air Quality Management District
SIP – State Implementation Plan
SJV – San Joaquin Valley
SJVAB – San Joaquin Valley Air Basin (SJVAB)
SJVUAPCD – San Joaquin Valley Unified Air Pollution Control District
SJVAQS/AUSPEX – San Joaquin Valley Air Quality Study/Atmospheric Utilities Signatures Predictions and Experiments
SLAMS – State and Local Air Monitoring Stations
SMAQMD – Sacramento Metropolitan Air Quality Management District

SMAT – Application of the Speciated Modeled Attainment Test

SOA – Secondary Organic Aerosol

SO\textsubscript{x} – Oxides of Sulfur

STN – Speciated Trend Network

UCD – University of California at Davis

U.S. EPA – United States Environmental Protection Agency

VOC – Volatile Organic Compounds

WRF Model – Weather and Research Forecast Model
1. INTRODUCTION

The purpose of this modeling protocol is to detail and formalize the procedures for conducting the photochemical modeling that forms the basis of the attainment demonstration for the 8-hour ozone and annual/24-hour PM$_{2.5}$ State Implementation Plans (SIPs) for California. The protocol is intended to communicate up front how the model attainment test will be performed. In addition, this protocol discusses analyses that are intended to help corroborate the findings of the model attainment test.

1.1 Modeling roles for the current SIP

The Clean Air Act (Act) establishes the planning requirements for all those areas that routinely exceed the health-based air quality standards. These nonattainment areas must adopt and implement a SIP that demonstrates how they will attain the standards by specified dates. Air quality modeling is an important technical component of the SIP, as it is used in combination with other technical information to project the attainment status of an area and to develop appropriate emission control strategies to achieve attainment.

ARB and local Air Districts jointly develop the emission inventories, which are an integral part of the modeling. Working closely with the Districts, the ARB performs the meteorological and air quality modeling used in the development and adoption of a local air quality plan by each District. Upon approval by the ARB, the SIP will be submitted to U.S.EPA for approval.

1.2 Stakeholder participation

Public participation constitutes an integral part of the SIP development. It is equally important in all technical aspects of SIP development, including the modeling. As the SIP is developed, the Air Districts and ARB will hold public workshops on the modeling and other SIP elements. Representatives from the private sector, environmental interest groups, academia, and the federal, state, and local public sectors are invited to attend and provide comments. In addition, Draft Plan documents will be available for public review and comment at various stages of plan development and at least 30 days before Plan consideration by the Districts' Governing Boards and subsequently by the ARB Board. These documents will include descriptions of the technical aspects of the SIP. Stakeholders have the choice to provide written and in-person comments at any of the Plan workshops and public Board hearings. The agencies take the comments into consideration when finalizing the Plan.
1.3 Involvement of external scientific/technical experts and their input on the photochemical modeling

During the development of the modeling protocol for the 2012 SJV 24-hour PM$_{2.5}$ SIP (SJUAPCD, 2012), ARB and the San Joaquin Valley Air Pollution Control District (SJVAPCD) engaged a group of experts on prognostic meteorological modeling and photochemical/aerosol modeling to help prepare the modeling protocol document.

The structure of the technical expert group was as follows:

Conveners: John DaMassa – ARB
 Samir Sheikh – SJVAPCD
Members: Scott Bohning – U.S. EPA Region 9
 Ajith Kaduwela – ARB
 James Kelly – U.S. EPA Office of Air Quality Planning and Standards
 Michael Kleeman – University of California at Davis
 Jonathan Pleim – U.S. EPA Office of Research and Development
 Anthony Wexler – University of California at Davis

The technical consultant group provided technical consultations/guidance to the staff at ARB and SJVAPCD during the development of the protocol. Specifically, the group provided technical expertise on the following components of the protocol:

- Selection of the physics and chemistry options for the prognostic meteorological and photochemical air quality models
- Selection of methods to prepare initial and boundary conditions for the air quality model
- Performance evaluations of both prognostic meteorological and photochemical air quality models. This includes statistical, diagnostic, and phenomenological evaluations of simulated results.
- Selection of emissions profiles (size and speciation) for particulate-matter emissions.
- Methods to determine the limiting precursors for PM$_{2.5}$ formation.
- Application of the Speciated Modeled Attainment Test (SMAT).
- Selection of methodologies for the determination of PM$_{2.5}$ precursor equivalency ratios.
- Preparation of Technical Support Documents.
The current approach to regional air quality modeling has not changed significantly since the 2012 SJV 24-hour PM\textsubscript{2.5} SIP (SJvuAPCD, 2012), so the expertise provided on the above components to the protocol remain highly relevant. In addition, since regional air quality modeling simulates ozone chemistry and PM chemistry/formation simultaneously, there is generally no difference in how the models are configured and simulations conducted for ozone vs. PM. Therefore, development of this modeling protocol will rely heavily on the recommendations made by this group of technical experts, as well as recently published work in peer-review journals related to regional air quality modeling.

1.4 Schedule for completion of the Plan

Final area designations kick-off the three year SIP development process. For the first two years, efforts center on updates and improvements to the Plan’s technical and scientific underpinnings. These include the development of emission inventories, selection of modeling periods, model selection, model input preparation, model performance evaluation and supplemental analyses. During the last year, modeling, further supplemental analyses and control strategy development proceed in an iterative manner and the public participation process gets under way. After thorough review the District Board and subsequently the ARB Board consider the Plan. The Plan is then submitted to U.S. EPA. Table 1-1 in the Appendix corresponding to the appropriate region/standard (e.g., SJV 0.075 ppm 8-hour ozone) summarizes the overall anticipated schedule for Plan completion.

2. DESCRIPTION OF THE CONCEPTUAL MODEL FOR THE NONATTAINMENT AREA

See Section 2 in the Appendix corresponding to the appropriate region/standard (e.g., SJV 0.075 ppm 8-hour ozone).

3. SELECTION OF MODELING PERIODS

3.1 Reference Year Selection and Justification

From an air quality and emissions perspective, ARB and the Districts have selected 2012 as the base year for design value calculation and for the modeled attainment test.
For the SJV, the PM$_{2.5}$ model attainment test will utilize 2013 instead of 2012. These baseline values will serve as the anchor point for estimating future year projected design values.

The selection of 2012/13 is based on the following four considerations:
- Most complete and up to date emissions inventory, which reduces the uncertainty associated with future emissions projections.
- Analysis of meteorological adjusted air quality trends to determine recent years with meteorology most conducive to ozone and PM$_{2.5}$ formation and buildup.
- Availability of research-grade wintertime field measurements in the Valley, which captured two significant pollution episodes during the DISCOVER-AQ field study (January-February 2013).
- The SJV PM$_{2.5}$ design values for year 2013 were some of the highest in recent years, making 2013 a conservative choice for attainment demonstration modeling.

Details and discussion on these analyses can be found in the Weight of Evidence Appendix.

3.2 Future Year Selection and Justification

The future year modeled is determined by the year for which attainment must be demonstrated. Table 3-1 lists the year in which attainment must be demonstrated for the various ozone and PM$_{2.5}$ standards and non-attainment regions in California.
Table 3-1. Future attainment year by non-attainment region and NAAQS. 0.08 ppm and 0.075 ppm refer to the 1997 and 2008 8-hour ozone standards, respectively. 15 ug/m³ and 12 ug/m³ refer to the 1997 and 2012 annual PM_{2.5} standards, respectively. 35 ug/m³ refers to the 2006 24-hour PM_{2.5} standard, and 1-hr ozone refers to the revoked 1979 0.12 ppm 1-hour ozone standard.

<table>
<thead>
<tr>
<th>Area</th>
<th>2031</th>
<th>2026</th>
<th>2025</th>
<th>2024</th>
<th>2023</th>
<th>2021</th>
<th>2020</th>
<th>2019</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern California Modeling Domain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Coast</td>
<td>0.075 ppm</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.08 ppm</td>
<td>12 (\mu g/m^3)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mojave/Coachella</td>
<td>--</td>
<td>0.075 ppm</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Imperial County</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>12 (\mu g/m^3)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ventura County</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.075 ppm</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>San Diego</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Northern California Modeling Domain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Joaquin Valley</td>
<td>0.075 ppm</td>
<td>--</td>
<td>12 (\mu g/m^3)</td>
<td>35 (\mu g/m^3)</td>
<td>--</td>
<td>2 (12 \mu g/m^3)</td>
<td>15 (\mu g/m^3)</td>
<td>35 (\mu g/m^3)</td>
<td>1-hr ozone</td>
</tr>
<tr>
<td>Sacramento Metropolitan</td>
<td>--</td>
<td>0.075 ppm</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Portola-Plumas County</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>12 (\mu g/m^3)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>East Kern</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>W. Nevada County</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

1 Serious classification attainment date
2 Moderate classification attainment date

3.3 Justification for Seasonal/Annual Modeling Rather than Episodic Modeling

In the past, computational constraints restricted the time period modeled for a SIP attainment demonstration to a few episodes (e.g., 2007 SJV 8-hr ozone SIP (SJVUAPCD, 2007), 2007 SC 8-hr ozone SIP (SCAQMD, 2012) and 2009 Sacramento 8-hr ozone SIP (SMAQMD, 2012)). However, as computers have become faster and
large amounts of data storage have become readily accessible, there is no longer a need to restrict modeling periods to only a few episodes. In more recent years, SIP modeling in California has covered the entire ozone or peak PM$_{2.5}$ seasons (2012 SC 8-hour ozone and 24-hour PM$_{2.5}$ SIP (SCAQMD, 2012), 2012 SJV 24-hour PM$_{2.5}$ SIP (SJUAPCD, 2012) and 2013 SJV 1-hr ozone SIP (SJUAPCD, 2013)), or an entire year in the case of annual PM$_{2.5}$ (2008 SJV annual PM$_{2.5}$ SIP (SJUAPCD, 2008)). The same is true for other regulatory modeling platforms outside of California (Boylan and Russell, 2006; Morris et al., 2006; Rodriguez et al., 2009; Simon et al., 2012; Tesche et al., 2006; U.S. EPA, 2011a, b).

Recent ozone based studies, which focused on model performance evaluation for regulatory assessment, have recommended the use of modeling results covering the full synoptic cycles and full ozone seasons (Hogrefe et al., 2000; Vizuete et al., 2011). This enables a more complete assessment of ozone response to emission controls under a wide range of meteorological conditions. The same is true for modeling conducted for peak 24-hour PM$_{2.5}$. Consistent with the shift to seasonal or annual modeling in most regulatory modeling applications, modeling for the 8-hour ozone standard will cover the entire ozone season (May – September), modeling for the annual 24-hour PM$_{2.5}$ standard will be conducted for the entire year, and modeling for the 24-hour PM$_{2.5}$ standard will, at a minimum, cover the months in which peak 24-hour PM$_{2.5}$ occurs (e.g., October – March in the SJV) and will be conducted annually whenever possible.

4. DEVELOPMENT OF EMISSION INVENTORIES

For a detailed description of the emissions inventory, updates to the inventory, and how it was processed from the planning totals to a gridded inventory for modeling, see the Emissions Inventory Appendix.

5. MODELS AND INPUTS

5.1 Meteorological Model

Meteorological model selection is based on a need to accurately simulate the synoptic and mesoscale meteorological features observed during the selected modeling period. The main difficulties in accomplishing this are California’s extremely complex terrain and its diverse climate. It is desirable that atmospheric modeling adequately represent essential meteorological fields such as wind flows, ambient temperature variation, evolution of the boundary layer, and atmospheric moisture content to properly characterize the meteorological component of photochemical modeling.
In the past, the ARB has applied prognostic, diagnostic, and hybrid models to prepare meteorological fields for photochemical modeling. There are various numerical models that are used by the scientific community to study the meteorological characteristics of an air pollution episode. For this SIP modeling platform, the Weather and Research Forecasting (WRF) model (Skamarock et al., 2005) will be used to develop the meteorological fields that drive the photochemical modeling. The U.S. EPA (2014) recommends the use of a well-supported grid-based mesoscale meteorological model for generating meteorological inputs. The WRF model is a community-based mesoscale prediction model, which represents the state-of-the-science and has a large community of model users and developers who frequently update the model as new science becomes available. In recent years, WRF has been applied in California to generate meteorological fields for numerous air quality studies (e.g., Angevine, et al., 2012; Baker et al., 2015; Ensberg et al., 2013; Fast et al., 2014; Hu et al., 2014a, 2014b; Huang et al., 2010; Kelly et al., 2014; Lu et al., 2012; Mahmud et al., 2010), and has been shown to reasonably reproduce the observed meteorology in California.

5.1.1 Meteorological Modeling Domain

The WRF meteorological modeling domain consists of three nested grids of 36 km, 12 km and 4 km uniform horizontal grid spacing (illustrated in Figure 5-1). The purpose of the coarse, 36 km grid (D01) is to provide synoptic-scale conditions to all three grids, while the 12 km grid (D02) is used to provide finer resolution data that feeds into the 4 km grid (D03). The D01 grid is centered at 37 °N and 120.5 °W and was chosen so that the inner two grids, D02 and D03, would nest inside of D03 and be sufficiently far away from the boundaries to minimize boundary influences. The D01 grid consists of 90 x 90 grid cells, while the D02 and D03 grids encompass 192 x 192 and 327 x 297 grid cells, respectively, with an origin at -696 km x -576 km (Lambert Conformal projection). WRF will be run for the three nested domains simultaneously with two-way feedback between the parent and the nest grids. The D01 and D02 grids are meant to resolve the larger scale synoptic weather systems, while the D03 grid is intended to resolve the finer details of the atmospheric conditions and will be used to drive the air quality model simulations. All three domains will utilize 30 vertical sigma layers (defined in Table 5-1), as well as the various physics options listed in Table 5-2 for each domain.

The initial and boundary conditions (IC/BCs) for WRF will be prepared based on 3-D North American Regional Reanalysis (NARR) data that are archived at the National Center for Atmospheric Research (NCAR). These data have a 32 km horizontal resolution. Boundary conditions to WRF are updated at 6-hour intervals for the 36 km grid (D01). In addition, surface and upper air observations obtained from NCAR will be used to further refine the analysis data that are used to generate the IC/BCs. Analysis
nudging will be employed in the outer 36km grid (D01) to ensure that the simulated meteorological fields are constrained and do not deviate from the observed meteorology.

Figure 5-1. The three nested grids for the WRF model (D01 36km; D02 12km; and D03 4km).
Table 5-1. WRF vertical layer structure.

<table>
<thead>
<tr>
<th>Layer Number</th>
<th>Height (m)</th>
<th>Layer Thickness (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>16082</td>
<td>1192</td>
</tr>
<tr>
<td>29</td>
<td>14890</td>
<td>1134</td>
</tr>
<tr>
<td>28</td>
<td>13756</td>
<td>1081</td>
</tr>
<tr>
<td>27</td>
<td>12675</td>
<td>1032</td>
</tr>
<tr>
<td>26</td>
<td>11643</td>
<td>996</td>
</tr>
<tr>
<td>25</td>
<td>10647</td>
<td>970</td>
</tr>
<tr>
<td>24</td>
<td>9677</td>
<td>959</td>
</tr>
<tr>
<td>23</td>
<td>8719</td>
<td>961</td>
</tr>
<tr>
<td>22</td>
<td>7757</td>
<td>978</td>
</tr>
<tr>
<td>21</td>
<td>6779</td>
<td>993</td>
</tr>
<tr>
<td>20</td>
<td>5786</td>
<td>967</td>
</tr>
<tr>
<td>19</td>
<td>4819</td>
<td>815</td>
</tr>
<tr>
<td>18</td>
<td>4004</td>
<td>685</td>
</tr>
<tr>
<td>17</td>
<td>3319</td>
<td>575</td>
</tr>
<tr>
<td>16</td>
<td>2744</td>
<td>482</td>
</tr>
<tr>
<td>15</td>
<td>2262</td>
<td>403</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer Number</th>
<th>Height (m)</th>
<th>Layer Thickness (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1859</td>
<td>334</td>
</tr>
<tr>
<td>13</td>
<td>1525</td>
<td>279</td>
</tr>
<tr>
<td>12</td>
<td>1246</td>
<td>233</td>
</tr>
<tr>
<td>11</td>
<td>1013</td>
<td>194</td>
</tr>
<tr>
<td>10</td>
<td>819</td>
<td>162</td>
</tr>
<tr>
<td>9</td>
<td>657</td>
<td>135</td>
</tr>
<tr>
<td>8</td>
<td>522</td>
<td>113</td>
</tr>
<tr>
<td>7</td>
<td>409</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>315</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>236</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>170</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>115</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>69</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Shaded layers denote the subset of vertical layers to be used in the CMAQ photochemical model simulations. Further details on the CMAQ model configuration and settings can be found in subsequent sections.
Table 5-2. WRF Physics Options.

<table>
<thead>
<tr>
<th>Physics Option</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D01 (36 km)</td>
</tr>
<tr>
<td></td>
<td>D02 (12 km)</td>
</tr>
<tr>
<td></td>
<td>D03 (4 km)</td>
</tr>
<tr>
<td>Microphysics</td>
<td>WSM 6-class graupel</td>
</tr>
<tr>
<td></td>
<td>scheme</td>
</tr>
<tr>
<td>Longwave radiation</td>
<td>RRTM</td>
</tr>
<tr>
<td>Shortwave radiation</td>
<td>Dudhia scheme</td>
</tr>
<tr>
<td>Surface layer</td>
<td>Revised MM5 Monin-</td>
</tr>
<tr>
<td></td>
<td>Obukhov</td>
</tr>
<tr>
<td>Land surface</td>
<td>Pleim-Xiu LSM</td>
</tr>
<tr>
<td>Planetary Boundary</td>
<td>YSU</td>
</tr>
<tr>
<td>Parameterization</td>
<td>Kain-Fritsch scheme</td>
</tr>
<tr>
<td>Cumulus Parameterization</td>
<td>None</td>
</tr>
</tbody>
</table>

5.2 Photochemical Model

The U.S. EPA modeling guidance (U.S. EPA, 2014) requires several factors to be considered as criteria for choosing a qualifying air quality model to support the attainment demonstration. These criteria include: (1) It should have received a scientific peer review; (2) It should be appropriate for the specific application on a theoretical basis; (3) It should be used with databases which are available and adequate to support its application; (4) It should be shown to have performed well in past modeling applications; and (5) It should be applied consistently with an established protocol on methods and procedures (U.S. EPA, 2014). In addition, it should be well documented with a user’s guide as well as technical descriptions. For the ozone/PM$_{2.5}$ modeled attainment test, a grid-based photochemical model is necessary to offer the best available representation of important atmospheric processes and the ability to analyze the impacts of proposed emission controls on ozone mixing ratios. In ARB’s SIP modeling platform, the Community Multiscale Air Quality (CMAQ) Modeling System has been selected as the air quality model for use in attainment demonstrations of NAAQS for ozone and PM$_{2.5}$.

The CMAQ model, a state-of-the-science “one-atmosphere” modeling system developed by U.S. EPA, was designed for applications ranging from regulatory and policy analysis to investigating the atmospheric chemistry and physics that contribute to air pollution. CMAQ is a three-dimensional Eulerian modeling system that simulates ozone, particulate matter, toxic air pollutants, visibility, and acidic pollutant species throughout the troposphere (UNC, 2010). The model has undergone peer review every
The CMAQ model was the regional air quality model used for the 2008 SJV annual PM$_{2.5}$ SIP (SVJUAPCD, 2008), the 2012 SJV 24-hour PM$_{2.5}$ SIP (SVJUAPCD, 2012) and the 2013 SJV 1-hr ozone SIP (SVJUAPCD, 2013). A number of previous studies have also used the CMAQ model to study ozone and PM$_{2.5}$ formation in the SJV (e.g., Jin et al., 2008, 2010b; Kelly et al., 2010b; Liang and Kaduwela, 2005; Livingstone, et al., 2009; Pun et al, 2009; Tonse et al., 2008; Vijayaraghavan et al., 2006; Zhang et al., 2010). The CMAQ model has also been used for regulatory analysis for many of U.S. EPA’s rules, such as the Clean Air Interstate Rule (U.S. EPA, 2005) and Light-duty and Heavy-duty Greenhouse Gas Emissions Standards (U.S. EPA, 2010, 2011a). There have been numerous applications of the CMAQ model within the U.S. and abroad (e.g., Appel, et al., 2007, 2008; Civerolo et al., 2010; Eder and Yu, 2006; Hogrefe et al., 2004; Lin et al., 2008, 2009; Marmur et al., 2006; O’Neill, et al., 2006; Philips and Finkelstein, 2006; Smyth et al., 2006; Sokhi et al., 2006; Tong et al., 2006; Wilczak et al., 2009; Zhang et al., 2004, 2006), which have shown it to be suitable as a regulatory and scientific tool for investigating air quality. Staff at the CARB has developed expertise in applying the CMAQ model, since it has been used at CARB for over a decade. In addition, technical support for the CMAQ model is readily available from the Community Modeling and Analysis System (CMAS) Center (http://www.cmascenter.org/) established by the U.S. EPA.

The version 5.0.2 of the CMAQ model released in May 2014, (http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0.2_%28April_2014_release%29_Technical_Documentation), will be used in this SIP modeling platform. Compared to the previous version, CMAQv4.7.1, which was used for the 2012 SJV 24-hour PM$_{2.5}$ SIP (SVJUAPCD, 2012) and the 2013 SJV 1-hour ozone SIP (SVJUAPCD, 2013), CMAQ version 5 and above incorporated substantial new features and enhancements to topics such as gas-phase chemistry, aerosol algorithms, and structure of the numerical code (http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.0_%28February_2012_release%29_Technical_Documentation#RELEASE_NOTES_for_CMAQ_v5.0_-C2.A0February_2012).
5.2.1 Photochemical Modeling Domain

Figure 5-2 shows the photochemical modeling domains used by ARB in this modeling platform. The larger domain (dashed black colored box), covering all of California, has a horizontal grid resolution of 12 km and extends from the Pacific Ocean in the west to Eastern Nevada in the east and runs from south of the U.S.-Mexico border in the south to north of the California-Oregon border in the north. The smaller 4 km Northern (green box) and Southern (red box) modeling domains are nested within the outer 12 km domain and utilized to better reflect the finer scale details of meteorology, topography, and emissions. Consistent with the WRF modeling, the 12 km and 4 km CMAQ domains are based on a Lambert Conformal Conic projection with reference longitude at -120.5°W, reference latitude at 37°N, and two standard parallels at 30°N and 60°N. The 30 vertical layers from WRF were mapped onto 18 vertical layers for CMAQ, extending from the surface to 100 mb such that the majority of the vertical layers fall within the planetary boundary layer. This vertical layer structure is based on the WRF sigma-pressure coordinates and the exact layer structure used can be found in Table 5-1. A third 4 km resolution modeling domain (blue box) is nested within the Northern California domain and covers the SJV air basin. This smaller SJV domain may be utilized for PM$_{2.5}$ modeling in the SJV if computational constraints (particularly for annual modeling) require the use of a smaller modeling domain. In prior work, modeling results from the smaller SJV domain were compared to results from the larger Northern California domain and no appreciable differences were noted, provided that both simulations utilized chemical boundary conditions derived from the same statewide 12 km simulation.

For the coarse portions of nested regional grids, the U.S. EPA guidance (U.S. EPA, 2014) suggests a grid cell size of 12 km if feasible but not larger than 36 km. For the fine scale portions of nested regional grids, it is desirable to use a grid cell size of ~4 km (U.S. EPA, 2014). Our selection of modeling domains and grid resolution is consistent with this recommendation. The U.S. EPA guidance (U.S. EPA, 2014) does not require a minimum number of vertical layers for an attainment demonstration, although typical applications of “one- atmosphere” models (with the model top at 50-100 mb) are anywhere from 14 to 35 vertical layers. In the ARB’s current SIP modeling platform, 18 vertical layers will be used in the CMAQ model. The vertical structure is based on the sigma-pressure coordinate, with the layers separated at 1.0, 0.9958, 0.9907, 0.9846, 0.9774, 0.9688, 0.9585, 0.9463, 0.9319, 0.9148, 0.8946, 0.8709, 0.8431, 0.8107, 0.7733, 0.6254, 0.293, 0.0788, and 0.0. As previously noted, this also ensures that the majority of the layers are in the planetary boundary layer.
Figure 5-2. CMAQ modeling domains used in this SIP modeling platform. The outer domain (dashed black line) represents the extent of the California statewide domain (shown here with a 4 km horizontal resolution, but utilized in this modeling platform with a 12 km horizontal resolution). Nested higher resolution 4 km modeling domains are highlighted in green and red for Northern/Central California and Southern California, respectively. The smaller SJV PM$_{2.5}$ 4 km domain (colored in blue) is nested within the Northern California 4 km domain.
5.2.2 CMAQ Model Options

Table 5-3 shows the CMAQv5.0.2 configuration utilized in this modeling platform. The same configuration will be used in all simulations for both ozone and PM$_{2.5}$, and for all modeled years. The Intel FORTRAN compiler version 12 will be used to compile all source codes.

Table 5-3. CMAQ v5.0.2 configuration and settings.

<table>
<thead>
<tr>
<th>Process</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal advection</td>
<td>Yamo (Yamartino scheme for mass-conserving advection)</td>
</tr>
<tr>
<td>Vertical advection</td>
<td>WRF-based scheme for mass-conserving advection</td>
</tr>
<tr>
<td>Horizontal diffusion</td>
<td>Multi-scale</td>
</tr>
<tr>
<td>Vertical diffusion</td>
<td>ACM2 (Asymmetric Convective Model version 2)</td>
</tr>
<tr>
<td>Gas-phase chemical mechanism</td>
<td>SAPRC07 gas-phase mechanism with version “C” toluene updates</td>
</tr>
<tr>
<td>Chemical solver</td>
<td>EBI (Euler Backward Iterative solver)</td>
</tr>
<tr>
<td>Aerosol module</td>
<td>Aero6 (the sixth-generation CMAQ aerosol mechanism with extensions for sea salt emissions and thermodynamics; includes a new formulation for secondary organic aerosol yields)</td>
</tr>
<tr>
<td>Cloud module</td>
<td>ACM_AE6 (ACM cloud processor that uses the ACM methodology to compute convective mixing with heterogeneous chemistry for AERO6)</td>
</tr>
<tr>
<td>Photolysis rate</td>
<td>phot_inline (calculate photolysis rates in-line using simulated aerosols and ozone)</td>
</tr>
</tbody>
</table>

5.2.3 Photochemical Mechanism

The SAPRC07 chemical mechanism will be utilized for all CMAQ simulations. SAPRC07, developed by Dr. William Carter at the University of California, Riverside, is a detailed mechanism describing the gas-phase reactions of volatile organic compounds (VOCs) and oxides of nitrogen (NO$_x$) (Carter, 2010a, 2010b). It represents a complete update to the SAPRC99 mechanism, which has been used for previous ozone SIP plans in the SJV. The well-known SAPRC family of mechanisms have been used widely in California and the U.S. (e.g., Baker, et al., 2015; Cai et al., 2011; Chen et
al., 2014; Dennis et al., 2008; Ensberg, et al., 2013; Hakami, et al., 2004a, 2004b; Hu et al., 2012, 2014a, 2014b; Jackson, et al., 2006; Jin et al., 2008, 2010b; Kelly, et al., 2010b; Lane et al., 2008; Liang and Kaduwela, 2005; Livingstone et al., 2009; Lin et al., 2005; Napelenok, 2006; Pun et al., 2009; Tonse et al., 2008; Ying et al., 2008a, 2008b; Zhang et al., 2010; Zhang and Ying, 2011).

The SAPRC07 mechanism has been fully reviewed by four experts in the field through an ARB funded contract. These reviews can be found at http://www.arb.ca.gov/research/reactivity/rsac.htm. Dr. Derwent’s (2010) review compared ozone impacts of 121 organic compounds calculated using SAPRC07 and the Master Chemical Mechanism (MCM) v 3.1 and concluded that the ozone impacts using the two mechanisms were consistent for most compounds. Dr. Azzi (2010) used SAPRC07 to simulate ozone formation from isoprene, toluene, m-xylene, and evaporated fuel in environmental chambers performed in Australia and found that SAPRC07 performed reasonably well for these data. Dr. Harley discussed implementing the SAPRC07 mechanism into 3-D air quality models and brought up the importance of the rate constant of NO$_2$ + OH. This rate constant in the SAPRC07 mechanism in CMAQv5.0.2 has been updated based on new research (Mollner et al., 2010). Dr. Stockwell (2009) compared individual reactions and rate constants in SAPRC07 to two other mechanisms (CB05 and RADM2) and concluded that SAPRC07 represented a state-of-the-science treatment of atmospheric chemistry.

5.2.4 Aerosol Module

The aerosol mechanism with extensions version 6 with aqueous-phase chemistry (AE6-AQ) will be utilized for all SIP modeling. When coupled with the SAPRC07 chemical mechanism, AE6-AQ simulates the formation and evaporation of aerosol and the evolution of the aerosol size distribution (Foley et al., 2010). AE6-AQ includes a comprehensive, yet computationally efficient, inorganic thermodynamic model ISORROPIA to simulate the physical state and chemical composition of inorganic atmospheric aerosols (Fountoukis and Nenes, 2007). AE6-AQ also features the addition of new PM$_{2.5}$ species, an improved secondary organic aerosol (SOA) formation module, as well as new treatment of atmospheric processing of primary organic aerosol (Appel et al., 2013; Carlton et al., 2010; Simon and Bhave, 2011). These updates to AE6-AQ in CMAQv5.0.2 continue to represent state-of-the-art treatment of aerosol processes in the atmosphere (Brown et al., 2011).
5.2.5 CMAQ Initial and Boundary Conditions (IC/BC) and Spin-Up period

Air quality model initial conditions define the mixing ratio (or concentration) of chemical and aerosol species within the modeling domain at the beginning of the model simulation. Boundary conditions define the chemical species mixing ratio (or concentration) within the air entering or leaving the modeling domain. This section discusses the initial and boundary conditions utilized in the ARB modeling system.

U.S. EPA guidance recommends using a model “spin-up” period by beginning a simulation 3-10 days prior to the period of interest (U.S. EPA, 2014). This “spin-up” period allows the initial conditions to be “washed out” of the system, so that the actual initial conditions have little to no impact on the modeling over the time period of interest, as well as giving sufficient time for the modeled species to come to chemical equilibrium. When conducting annual or seasonal modeling, it is computationally more efficient to simulate each month in parallel rather than the entire year or season sequentially. For each month, the CMAQ simulations will include a seven day spin-up period (i.e., the last seven days of the previous month) for the outer 12 km domain to ensure that the initial conditions are “washed out” of the system. Initial conditions at the beginning of the seven day spin-up period will be based on the default initial conditions that are included with the CMAQ release. The 4 km inner domain simulations will utilize a three day spin-up period, where the initial conditions will be based on output from the corresponding day of the 12 km domain simulation.

In recent years, the use of global chemical transport model (CTM) outputs as boundary conditions (BCs) in regional CTM applications has become increasingly common (Chen et al., 2008; Hogrefe et al., 2011; Lam and Fu, 2009; Lee et al., 2011; Lin et al., 2010), and has been shown to improve model performance in many cases (Appel et al., 2007; Borge et al., 2010; Tang et al., 2007, 2009; Tong and Mauzerall, 2006). The advantage of using global CTM model outputs as opposed to fixed climatological-average BCs is that the global CTM derived BCs capture spatial, diurnal, and seasonal variability, as well as provide a set of chemically consistent pollutant mixing ratios. In the ARB’s SIP modeling system, the Model for Ozone And Related chemical Tracers (MOZART; Emmons et al., 2010) will be used to define the boundary conditions for the outer 12 km CMAQ domain, while boundary conditions for the 4 km domain will be derived from the 12 km output. MOZART is a comprehensive global model for simulating atmospheric composition including both gases and bulk aerosols (Emmons et al., 2010). It was developed by the National Center for Atmospheric Research (NCAR), the Max-Planck-Institute for Meteorology (in Germany), and the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA), and is widely
used in the scientific community. In addition to inorganic gases and VOCs, BCs were extracted for aerosol species including elemental carbon, organic matter, sulfate, soil and nitrate. MOZART has been extensively peer-reviewed and applied in a range of studies that utilize its output in defining BCs for regional modeling studies within California and other regions of the U.S. (e.g., Avise et al., 2008; Chen et al., 2008, 2009a, 2009b; Fast et al., 2014; Jathar et al., 2015).

Figure 5-3. Comparison of MOZART (red) simulated CO (left), ozone (center), and PAN (right) to observations (black) along the DC-8 flight track. Shown are mean (filled symbol), median (open symbols), 10th and 90th percentiles (bars) and extremes (lines). The number of data points per 1-km wide altitude bin is shown next to the graphs. Adapted from Figure 2 in Pfister et al. (2011).

In particular, MOZART version 4 (MOZART-4) was recently used in a study characterizing summertime air masses entering California from the Pacific Ocean (Pfister et al., 2011). In their work, Pfister et al. (2011) compared MOZART-4 simulation results to measurements of CO, ozone, and PAN made off the California coast during the ARCTAS-CARB airborne field campaign (Jacob et al., 2010) and showed good agreement between the observations and model results (see Figure 5-3). The specific MOZART simulations to be utilized in this modeling platform are the MOZART-4-GEOS5 simulations by Louisa Emmons (NCAR) for the years 2012 and 2013, which are available for download at http://www.acom.ucar.edu/wrf-chem/mozart.shtml. These simulations are similar to those of Emmons et al. (2010), but with updated meteorological fields. Boundary condition data will be extracted from the MOZART-4 output and processed to CMAQ model ready format using the “mozart2camx” code developed by the Rambol-Environ Corporation (available at http://www.camx.com/download/support-software.aspx). The final BCs represent day-specific mixing ratios, which vary in both space (horizontal and vertical) and time (every six hours).
Per U.S. EPA guidance, the same MOZART derived BCs for the 12 km outer domain will be used for all simulations (e.g., Base Case, Reference, Future, and any sensitivity simulation).

5.3 Quality Assurance of Model Inputs

In developing the IC/BCs and Four Dimensional Data Assimilation (FDDA) datasets for WRF, quality control is performed on all associated meteorological data. Generally, all surface and upper air meteorological data are plotted in space and time to identify extreme values that are suspected to be “outliers”. Data points are also compared to other, similar surrounding data points to determine whether there are any large relative discrepancies. If a scientifically plausible reason for the occurrence of suspected outliers is not known, the outlier data points are flagged as invalid and may not be used in the modeling analyses.

In addition, the model-ready emissions files used in CMAQ will be evaluated and compared against the planning inventory totals. Although deviations between the model-ready and planning inventories are expected due to temporal adjustments (e.g., month-of-year and day-of-week) and adjustments based on meteorology (e.g., evaporative emissions from motor vehicles and biogenic sources), any excessive deviation will be investigated to ensure the accuracy of the temporal and meteorology based adjustments. If determined to be scientifically implausible, then the adjustments which led to the deviation will be investigated and updated based on the best available science.

Similar to the quality control of the modeling emissions inventory, the chemical boundary conditions derived from the global CTM model will be evaluated to ensure that no errors were introduced during the processing of the data (e.g., during vertical interpolation of the global model data to the regional model vertical structure or mapping of the chemical species). Any possible errors will be evaluated and addressed if they are determined to be actual errors and not an artifact of the spatial and temporal dynamics inherent in the boundary conditions themselves.
6. METEOROLOGICAL MODEL PERFORMANCE

The complex interactions between the ocean-land interface, orographic induced flows from the mountain-valley topography, and the extreme temperature gradients between the ocean, delta regions, valley floor, and mountain ranges, make California one of the most challenging areas in the country to simulate using prognostic meteorological models. Although there is a long history of prognostic meteorological model applications in California (e.g., Bao et al., 2008; Hu at al., 2010; Jackson et al., 2006; Jin et al., 2010a, 2010b; Livingstone et al., 2009; Michelson et al., 2010; Seaman, Stauffer, and Lario-Gibbs, 1995; Stauffer et al., 2000; Tanrikulu et al., 2000), there is no single model configuration that works equally well for all years and/or seasons, which makes evaluation of the simulated meteorological fields critical for ensuring that the fields reasonably reproduce the observed meteorology for any given time period.

6.1 Ambient Data Base and Quality of Data

Observed meteorological data used to evaluate the WRF model simulations will be obtained from the Air Quality and Meteorological Information System (AQMIS) database, which is a web-based source for real-time and official air quality and meteorological data (www.arb.ca.gov/airqualitytoday/). This database contains surface meteorological observations from 1969-2016, with the data through 2013 having been fully quality assured and deemed official. In addition ARB also has quality-assured upper-air meteorological data obtained using balloons, aircraft, and profilers.

6.2 Statistical Evaluation

Statistical analyses will be performed to evaluate how well the WRF model captured the overall structure of the observed atmosphere during the simulation period, using wind speed, wind direction, temperature, and humidity. The performance of the WRF model against observations will be evaluated using the METSTAT analysis tool (Emery et al., 2001) and supplemented using statistical software tools developed at ARB. The model output and observations will be processed, and data points at each observational site for wind speed, wind direction, temperature, and moisture data will be extracted. The following values will be calculated: Mean Obs, Mean Model, Mean Bias (MB), Mean (Gross) Error (ME/MGE), Normalized Mean Bias (NMB), Root Mean Squared error (RMSE), and the Index Of Agreement (IOA) when applicable. Additional statistical analysis may also be performed.

The mathematical expressions for these quantities are:
where, "Model" is the simulated values, "Obs" is the observed value, and \(N \) is the number of observations. These values will be tabulated and plotted for all monitoring sites within the air basin of interest, and summarized by subregion when there are distinct differences in the meteorology within the basin. Statistics may be compared to other prognostic model applications in California to place the current model performance within the context of previous studies. In addition to the statistics above, model performance may also be evaluated through metrics such as frequency distributions, time-series analysis, and wind-rose plots. Based on previous experience with meteorological simulations in California, it is expected that the analysis will show wind speed to be overestimated at some stations with a smaller difference at others. The diurnal variations of temperature and wind direction at most stations are likely to be captured reasonably well. However, the model will likely underestimate the larger magnitudes of temperature during the day and smaller magnitudes at night.
6.3 Phenomenological Evaluation

In addition to the statistical evaluation described above, a phenomenological based evaluation can provide additional insights as to the accuracy of the meteorological modeling. A phenomenological evaluation may include analysis such as determining the relationship between observed air quality and key meteorological parameters (e.g., conceptual model) and then evaluating whether the simulated meteorology and air quality is able to reproduce those relationships. Another possible approach would be to generate geopotential height charts at 500 and 850 mb using the simulated results and compare those to the standard geopotential height charts. This would reveal if the large-scale weather systems at those pressure levels were adequately simulated by the regional prognostic meteorology model. Another similar approach is to identify the larger-scale meteorological conditions associated with air quality events using the National Centers for Environmental Prediction (NCEP) Reanalysis dataset. These can then be visually compared to the simulated meteorological fields to determine whether those large-scale meteorological conditions were accurately simulated and whether the same relationships observed in the NCEP reanalysis are present in the simulated data.

7. PHOTOCHEMICAL MODEL PERFORMANCE

7.1 Ambient Data

Air quality observations are routinely made at state and local monitoring stations. Gas species and PM species are measured on various time scales (e.g., hourly, daily, weekly). The U.S. EPA guidance recommends model performance evaluations for the following gaseous pollutants: ozone (O$_3$), nitric acid (HNO$_3$), nitric oxide (NO), nitrogen dioxide (NO$_2$), peroxyacetyl nitrate (PAN), volatile organic compounds (VOCs), ammonia (NH$_3$), NO$_y$ (sum of NOx and other oxidized compounds), sulfur dioxide (SO$_2$), carbon monoxide (CO), and hydrogen peroxide (H$_2$O$_2$). The U.S. EPA recognizes that not all of these species are routinely measured (U.S. EPA, 2014) and therefore may not be available for evaluating every model application. Recognizing that PM$_{2.5}$ is a mixture, U.S. EPA recommends model performance evaluation for the following individual PM$_{2.5}$ species: sulfate (SO$_{4}^{2-}$), nitrate (NO$_3^{-}$), ammonium (NH$_4^{+}$), elemental carbon (EC), organic carbon (OC) or organic mass (OM), crustal, and sea salt constituent (U.S. EPA, 2014).

Table 7-1 lists the species for which routine measurements are generally available in 2012 and 2013. When quality assured data are available and appropriate for use, model performance for each species will be evaluated. Observational data will be
obtained from the Air Quality and Meteorological Information System (AQMIS), which is a web-based source for real-time and official air quality and meteorological data (www.arb.ca.gov/airqualitytoday/). This database contains surface air quality observations from 1980-2016, with the data through 2014 having been fully quality assured and deemed official.

Table 7-1. Monitored species used in evaluating model performance.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sampling frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>1 hour</td>
</tr>
<tr>
<td>NO</td>
<td>1 hour</td>
</tr>
<tr>
<td>NO₂</td>
<td>1 hour</td>
</tr>
<tr>
<td>NOₓ</td>
<td>1 hour</td>
</tr>
<tr>
<td>CO</td>
<td>1 hour</td>
</tr>
<tr>
<td>SO₂</td>
<td>1 hour</td>
</tr>
<tr>
<td>Selected VOCs from the PAMS measurement</td>
<td>3 hours (not every day)</td>
</tr>
<tr>
<td>PM₂.₅ measured using FRM¹</td>
<td>24 hours (daily to one in six days)</td>
</tr>
<tr>
<td>PM₂.₅ measured using FEM</td>
<td>Continuously</td>
</tr>
<tr>
<td>PM₂.₅ Speciation sites</td>
<td>24 hours (not every day)</td>
</tr>
<tr>
<td>Sulfate ion</td>
<td>24 hours (not every day)</td>
</tr>
<tr>
<td>Nitrate ion</td>
<td>24 hours (not every day)</td>
</tr>
<tr>
<td>Ammonium ion</td>
<td>24 hours (not every day)</td>
</tr>
<tr>
<td>Organic carbon</td>
<td>24 hours (not every day)</td>
</tr>
<tr>
<td>Elemental carbon</td>
<td>24 hours (not every day)</td>
</tr>
<tr>
<td>Sea salt constituents</td>
<td>24 hours (not every day)</td>
</tr>
</tbody>
</table>

¹ Direct comparison between modeled and FRM PM₂.₅ may not be appropriate because of various positive and negative biases associated with FRM measurement procedures.
These species cover the majority of pollutants of interest for evaluating model performance as recommended by the U.S. EPA. Other species such as H₂O₂, HNO₃, NH₃, and PAN are not routinely measured. During the DISCOVER-AQ field campaign, which took place in January and February 2013 in the SJV, aircraft sampling provided daytime measurements for a number of species (including HNO₃, NH₃, PAN, alkyl nitrates, and selected VOC species) that are not routinely measured. Modeled concentrations will be compared to aircraft measurements for these species, except for the gaseous HNO₃ measurements, which were contaminated by particulate nitrate (Dr. Chris Cappa, personal communication).

7.2 Statistical Evaluation

As recommended by U.S. EPA, a number of statistical metrics will be used to evaluate model performance for ozone, speciated and total PM₂.₅, as well as other precursor species. These metrics may include mean bias (MB), mean error (ME), mean fractional bias (MFB), mean fractional error (MFE), normalized mean bias (NMB), normalized mean error (NME), root mean square error (RMSE), correlation coefficient (R²), mean normalized bias (MNB), and mean normalized gross error (MNGE). The formulae for estimating these metrics are given below.

\[
MB = \frac{1}{N} \sum_{i=1}^{N} (Model - Obs) \quad (7-1)
\]

\[
ME = \frac{1}{N} \sum_{i=1}^{N} |Model - Obs| \quad (7-2)
\]

\[
MFB = \frac{2}{N} \sum_{i=1}^{N} \left(\frac{Model - Obs}{Model + Obs} \right) \times 100\%, \quad (7-3)
\]

\[
MFE = \frac{2}{N} \sum_{i=1}^{N} \left(\frac{|Model - Obs|}{Model + Obs} \right) \times 100\%, \quad (7-4)
\]
\[\text{NMB} = \frac{\sum_{i=1}^{N} (\text{Model} - \text{Obs})}{\sum_{i=1}^{N} \text{Obs}} \times 100\%, \quad (7-5) \]

\[\text{NME} = \frac{\sum_{i=1}^{N} |\text{Model} - \text{Obs}|}{\sum_{i=1}^{N} \text{Obs}} \times 100\%, \quad (7-6) \]

\[\text{RSME} = \sqrt{\frac{\sum_{i=1}^{N} (\text{Model} - \text{Obs})^2}{N}} \quad (7-7) \]

\[R^2 = \frac{\sum_{i=1}^{N} ((\text{Model} - \overline{\text{Model}}) \times (\text{Obs} - \overline{\text{Obs}}))}{\sqrt{\sum_{i=1}^{N} (\text{Model} - \overline{\text{Model}})^2 \sum_{i=1}^{N} (\text{Obs} - \overline{\text{Obs}})^2}} \quad (7-8) \]

\[\text{MNB} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\text{Model} - \text{Obs}}{\text{Obs}} \right) \times 100\%, \quad (7-9) \]

\[\text{MNGE} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{|\text{Model} - \text{Obs}|}{\text{Obs}} \right) \times 100\%. \quad (7-10) \]

where, “Model” is the simulated mixing ratio, “\overline{\text{Model}}” is the simulated mean mixing ratio, “Obs” is the observed value, “\overline{\text{Obs}}” is the mean observed value, and “N” is the number of observations.

In addition to the above statistics, various forms of graphics will also be created to visually examine and compare the model predictions to observations. These will include time-series plots comparing the predictions and observations, scatter plots for
comparing the magnitude of the simulated and observed mixing ratios, box plots to summarize the time series data across different regions and averaging times, as well as frequency distributions. For PM$_{2.5}$ the so called “bugle plots” of MFE and MFB from Boylan and Russell (2006) will also be generated. The plots described above will be created for paired observations and predictions over time scales dictated by the averaging frequencies of observations (i.e., hourly, daily, monthly, seasonally) for the species of interest. Together, they will provide a detailed view of model performance during different time periods, in different sub-regions, and over different concentrations and mixing ratio levels.

7.3 Comparison to Previous Modeling Studies

Previous U.S. EPA modeling guidance (U.S. EPA, 1991) utilized “bright line” criteria for the performance statistics that distinguished between adequate and inadequate model performance. In the latest modeling guidance from U.S. EPA (U.S EPA, 2014) it is now recommended that model performance be evaluated in the context of similar modeling studies to ensure that the model performance approximates the quality of those studies. The work of Simon et al. (2012) summarized photochemical model performance for studies published in the peer-reviewed literature between 2006 and 2012 and this work will form the basis for evaluating the modeling utilized in the attainment demonstration.

7.4 Diagnostic Evaluation

Diagnostic evaluations are useful for investigating whether the physical and chemical processes that control ozone and PM$_{2.5}$ formation are correctly represented in the modeling. These evaluations can take many forms, such as utilizing model probing tools like process analysis, which tracks and apportions ozone mixing ratios in the model to various chemical and physical processes, or source apportionment tools that utilize model tracers to attribute ozone formation to various emissions source sectors and/or geographic regions. Sensitivity studies (either “brute-force” or the numerical Direct Decoupled Method) can also provide useful information as to the response exhibited in the modeling to changes in various input parameters, such as changes to the emissions inventory or boundary conditions. Due to the nature of this type of analysis, diagnostic evaluations can be very resource intensive and the U.S. EPA modeling guidance acknowledges that air agencies may have limited resources and time to perform such analysis under the constraints of a typical SIP modeling application. To the extent possible, some level of diagnostic evaluation will be included in the model attainment demonstration for this SIP.
In addition to the above analysis, the 2013 DISCOVER-AQ field campaign in the SJV offers a unique dataset for additional diagnostic analysis that is not available in other areas, in particular, the use of indicator ratios in determining the sensitivity of secondary PM$_{2.5}$ to its limiting precursors. As an example, the ratio between free ammonia (total ammonia – 2 x sulfate) and total nitrate (gaseous + particulate) was proposed by Ansari and Pandis (1998) as an indicator of whether ammonium nitrate formation is limited by NO$_x$ or ammonia emissions. The DISCOVER-AQ dataset will be utilized to the extent possible to investigate PM$_{2.5}$ precursor sensitivity in the SJV as well as analysis of upper measurements and detailed ground level AMS measurements (Young et al., 2016).

8. ATTAINMENT DEMONSTRATION

The U.S. EPA modeling guidance (U.S. EPA, 2014) outlines the approach for utilizing models to predict future attainment of the 0.075 ppm 8-hour ozone standard. Consistent with the previous modeling guidance (U.S. EPA, 2007) utilized in the most recent 8-hour ozone (2007), annual PM$_{2.5}$ (2008), and 24-hour PM$_{2.5}$ (2012) SIPs, the current guidance recommends utilizing modeling in a relative sense. A detailed description of how models are applied in the attainment demonstration for both ozone and PM$_{2.5}$, as prescribed by U.S. EPA modeling guidance, is provided below.

8.1 Base Year Design Values

The starting point for the attainment demonstration is with the observational based design value (DV), which is used to determine compliance with the standard at any given monitor. The DV for a specific monitor and year represents the three-year average of the annual 4th highest 8-hour ozone mixing ratio, 98th percentile of the 24-hour PM$_{2.5}$ concentration, or annual average PM$_{2.5}$ concentration, depending on the standard, observed at the monitor. For example, the 8-hr O$_3$ DV for 2012 is the average of the observed 4th highest 8-hour ozone mixing ratio from 2010, 2011, and 2012.

The U.S. EPA recommends using an average of three DVs to better account for the year-to-year variability inherent in meteorology. Since 2012 has been chosen as the base year for projecting DVs to the future, site-specific DVs will be calculated for the three three-year periods ending in 2012, 2013, and 2014 and then these three DVs will be averaged. This average DV is called a weighted DV (in the context of this SIP, the weighted DV will also be referred to as the reference year DV or DV$_R$). Table 8-1 illustrates how the weighted DV is calculated.
Table 8-1. Illustrates the data from each year that are utilized in the Design Value calculation for that year (DV Year), and the yearly weighting of data for the weighted Design Value calculation (or DV\textsubscript{R}). “obs” refers to the observed metric (8-hr O\textsubscript{3}, 24-hour PM\textsubscript{2.5}, or annual average PM\textsubscript{2.5}).

<table>
<thead>
<tr>
<th>DV Year</th>
<th>Years Averaged for the Design Value (4th highest observed 8-hr O\textsubscript{3}, 98th percentile 24-hour PM\textsubscript{2.5}, or annual average PM\textsubscript{2.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>2010 2011 2012</td>
</tr>
<tr>
<td>2013</td>
<td>2011 2012 2013</td>
</tr>
<tr>
<td>2014</td>
<td>2012 2013 2014</td>
</tr>
</tbody>
</table>

Yearly Weightings for the Weighted Design Value Calculation

\[DV\textsubscript{R} = \frac{\text{obs}_{2010} + (2)\text{obs}_{2011} + (3)\text{obs}_{2012} + (2)\text{obs}_{2013} + \text{obs}_{2014}}{9} \]

8.2 Base, Reference, and Future Year Simulations

Projecting the weighted DVs to the future requires three photochemical model simulations as described below:

1. **Base Year Simulation**
 The base year simulation for 2012 or 2013 is used to assess model performance (i.e., to ensure that the model is reasonably able to reproduce the observed ozone mixing ratios). Since this simulation will be used to assess model performance, it is essential to include as much day-specific detail as possible in the emissions inventory, including, but not limited to hourly adjustments to the motor vehicle and biogenic inventories based on observed local meteorological conditions, known wildfire and agricultural burning events, and exceptional events such as the Chevron refinery fire in 2012.

2. **Reference Year Simulation**
 The reference year simulation is identical to the base year simulation, except that certain emissions events which are either random and/or cannot be projected to the future are removed from the emissions inventory. These include wildfires and events such as the 2012 Chevron refinery fire.

3. **Future Year Simulation**
 The future year simulation is identical to the reference year simulation, except that the projected future year anthropogenic emission levels are used rather than the reference year emission levels. All other model inputs (e.g., meteorology, chemical boundary conditions, biogenic emissions, and calendar
for day-of-week specifications in the inventory) are the same as those used in the reference year simulation.

The base year simulation is solely used for evaluating model performance, while the reference and future year simulations are used to project the weighted DV to the future as described in subsequent sections of this document.

8.3 Relative Response Factors

As part of the model attainment demonstration, the fractional change in ozone or PM$_{2.5}$ between the model future year and model reference year are calculated for each monitor location. These ratios, called “relative response factors” or RRFs, are calculated based on the ratio of modeled future year ozone or PM$_{2.5}$ to the corresponding modeled reference year ozone or PM$_{2.5}$ (Equation 8-1).

$$
RRF = \frac{\text{average (O}_3\text{ or PM}_2.5\text{)}_{\text{future}}}{\text{average (O}_3\text{ or PM}_2.5\text{)}_{\text{reference}}} \quad (8-1)
$$

8.3.1 8-hour Ozone RRF

For 8-hour ozone, the modeled maximum daily average 8-hour (MDA8) ozone is used in calculating the RRF. These MDA8 ozone values are based on the maximum simulated ozone within a 3x3 array of cells surrounding the monitor (Figure 8-1). The future and base year ozone values used in RRF calculations are paired in space (i.e., using the future year MDA8 ozone value at the same grid cell where the MDA8 value for the reference year is located within the 3x3 array of cells). The days used to calculate the average MDA8 for the reference and future years are inherently consistent, since the same meteorology is used to drive both simulations.

Not all modeled days are used to calculate the average MDA8 ozone from the reference and future year simulations. The form of the 8-hour ozone NAAQS is such that it is geared toward the days with the highest mixing ratios in any ozone season (i.e., the 4th highest MDA8 ozone). Therefore, the modeled days used in the RRF calculation should also reflect days with the highest ozone levels. As a result, the current U.S. EPA guidance (U.S. EPA, 2014) suggests using the top 10 modeled days when calculating the RRF. Since the relative sensitivity to emissions changes (in both the model and real world) can vary from day-to-day due to meteorology and emissions (e.g., temperature dependent emissions or day-of-week variability) using the top 10 days ensures that the
calculated RRF is robust and stable (i.e., not overly sensitive to any single day used in the calculation).

When choosing the top 10 days, the U.S. EPA recommends beginning with all days in which the simulated reference MDA8 is \(\geq 60 \) ppb and then calculating RRFs based on the top 10 high ozone days. If there are fewer than 10 days with MDA8 ozone \(\geq 60 \) ppb then all days \(\geq 60 \) ppb are used in the RRF calculation, as long as there are at least 5 days used in the calculation. If there are fewer than 5 days \(\geq 60 \) ppb, an RRF cannot be calculated for that monitor. To ensure that only modeled days which are consistent with the observed ozone levels are used in the RRF calculation, the modeled days are further restricted to days in which the reference MDA8 ozone is within \(\pm 20\% \) of the observed value at the monitor location.

![Figure 8-1](image)

Figure 8-1. Example showing how the location of the MDA8 ozone for the top ten days in the reference and future years are chosen.

8.3.2 Annual and 24-hour PM\(_{2.5}\) RRF

The U.S. EPA (2014) guidance requires RRFs for both the annual and 24-hour PM\(_{2.5}\) attainment tests be calculated on a quarterly basis (January-March, April-June, July-September, and October-December) and for each PM\(_{2.5}\) component (sulfate, nitrate, ammonium, organic carbon, elemental carbon, particle bound water, salt, and other primary inorganic components).

For annual PM\(_{2.5}\), the quarterly RRFs are based on modeled quarterly mean concentrations for each component, where the concentrations are averaged over the 9 model grid cells within the 3x3 array of grid cells surrounding each monitor. For the 24-hour PM\(_{2.5}\) attainment test, the quarterly RRFs are calculated based on the average for
each component over the top 10% of modeled days (or the top nine days per quarter) with the highest total 24-hour average PM$_{2.5}$ concentration. Peak PM$_{2.5}$ values are selected and averaged using the PM$_{2.5}$ concentration simulated at the single grid cell containing the monitoring site for calculating the 24-hour PM$_{2.5}$ RRF (as opposed to the 3x3 array average used in the annual PM$_{2.5}$ RRF calculation).

8.4 Future Year Design Value Calculation

8.4.1 8-hour Ozone

For 8-hour ozone, a future year DV at each monitor is calculated by multiplying the corresponding reference year DV by the site-specific RRF from Equation 8-1 (Equation 8-2).

\[DV_F = DV_R \times RRF \]

(Equation 8-2)

where,

- $DV_F =$ future year design value,
- $DV_R =$ reference year design value, and
- $RRF =$ the site specific RRF from Equation 8-1

The resulting future year DVs are then compared to the 8-hour ozone NAAQS to demonstrate whether attainment will be reached under the future emissions scenario utilized in the future year modeling. A monitor is considered to be in attainment of the 8-hour ozone standard if the estimated future design value does not exceed the level of the standard.

8.4.2 Annual and 24-hour PM$_{2.5}$

8.4.2.1 Sulfate, Adjusted Nitrate, Derived, Water, Inferred Carbonaceous Material Balance Approach (SANDWICH) and Potential Modifications

Federal Reference Method (FRM) PM$_{2.5}$ mass measurements provide the basis for the attainment/nonattainment designations. For this reason it is recommended that the FRM data be used to project future air quality and progress towards attainment. However, given the complex physicochemical nature of PM$_{2.5}$, it is necessary to consider individual PM$_{2.5}$ species as well. While the FRM measurements give the mass
of the bulk sample, a method for apportioning this bulk mass to individual PM$_{2.5}$ components is the first step towards determining the best emissions controls strategies to reach NAAQS levels in a timely manner.

The FRM measurement protocol finds its roots in the past epidemiological studies of health effects associated with PM$_{2.5}$ exposure. It is upon these studies that the NAAQS are based. The FRM protocol is sufficiently detailed so that results might be easily reproducible and involves the measurement of filter mass before and after sampling together with equilibrating at narrowly defined conditions. Filters are equilibrated for more than 24 hours at a standard relative humidity between 30 and 40% and temperature between 20 and 23 °C. Due to the sampler construction and a lengthy filter equilibration period, FRM measurements are subjected to a number of known positive and negative artifacts. FRM measurements do not necessarily capture the PM$_{2.5}$ concentrations in the atmosphere and can differ substantially from what is measured by speciation monitors including the Speciation Trends Network (STN) monitors (see http://www.epa.gov/ttnamti1/specgen.html for more details). Nitrate and semi-volatile organic mass can be lost from the filter during the equilibration process, and particle bound water associated with hygroscopic species like sulfate provides a positive artifact. These differences present an area for careful consideration when one attempts to utilize speciated measurements to apportion the bulk FRM mass to individual species. Given that (1) attainment status is currently dependent upon FRM measurements and (2) concentrations of individual PM$_{2.5}$ species need to be considered in order to understand the nature of and efficient ways to ameliorate the PM$_{2.5}$ problem in a given region, a method has been developed to speciate bulk FRM PM$_{2.5}$ mass with known FRM limitations in mind. This method is referred to as the measured Sulfate, Adjusted Nitrate, Derived Water, Inferred Carbonaceous material balance approach or “SANDWICH” (Frank, 2006). SANDWICH is based on speciated measurements from other (often co-located) samplers, such as those from STN, and the known sampling artifacts of the FRM. The approach strives to provide mass closure, reconciliation between speciated and bulk mass concentration measurements, and the basis for a connection between observations, modeled PM$_{2.5}$ concentrations, and the air quality standard (U.S. EPA, 2014).

The main steps in estimating the PM$_{2.5}$ composition are as follows:

(1) **Calculate the nitrate retained on the FRM filter using hourly relative humidity and temperature together with the STN nitrate measurements,**

The FRM does not retain all of the semi-volatile PM$_{2.5}$ mass, and at warmer temperatures, loss of particulate nitrate from filters has been commonly observed (Chow et al., 2005). In order to estimate how much nitrate is retained on the FRM filter,
simple thermodynamic equilibrium relations may be used. Necessary inputs include 24-hour average nitrate measurements and hourly temperature and relative humidity data. Frank (2006) suggests the following methodology for estimating retained nitrate. For each hour \(i \) of the day, calculate the dissociation constant, \(K_i \), from ambient temperature and relative humidity (RH).

For RH < 61%:

\[
\ln(K_i) = 118.87 - \left(\frac{24084}{T_i}\right) - 6.025 \times \ln(T_i),
\]

where, \(T_i \) is the hourly temperature in Kelvins and \(K_i \) is in nanobars.

For RH \(\geq 61\% \), \(K_i \) is replaced by:

\[
K_i' = [P_i - P_2(1 - a_i) + P_3(1 - a_i)^2] \times (1 - a_i)^{1.75} \times K_i,
\]

where, \(a_i \) is “fractional” relative humidity and

\[
\ln(P_1) = -135.94 + 8763/T_i + 19.12 \times \ln(T_i),
\]
\[
\ln(P_2) = -122.65 + 9969/T_i + 16.22 \times \ln(T_i),
\]
\[
\ln(P_3) = -182.61 + 13875/T_i + 24.46 \times \ln(T_i).
\]

Using this information, calculate the nitrate retained on the filter as:

\[
\text{Retained Nitrate} = STN \text{ nitrate} - 745.7/T_R \times (\kappa - \gamma) \times \frac{1}{24} \sum_{i=1}^{24} \sqrt{K_i},
\]

where, \(T_R \) is the daily average temperature for the sampled air volume in Kelvin, \(K_i \) is the dissociation constant for NH\(_4\)NO\(_3\) at ambient temperature for hour \(i \), and \((\kappa - \gamma) \) relates to the temperature rise of the filter and vapor depletion from the inlet surface and is assumed to have a value equal to one (Hering and Cass, 1999).

(2) Calculate quarterly averages for retained nitrate, sulfate, elemental carbon, sea salt, and ammonium,
(3) Calculate particle bound water using the concentrations of ammonium, sulfate, and nitrate, using an equilibrium model like the Aerosol Inorganic Model (AIM) or a polynomial equation derived from model output.

Under the FRM filter equilibration conditions, hygroscopic aerosol will retain its particle bound water (PBW) and be included in the observed FRM PM$_{2.5}$ mass. PBW can be calculated using an equilibrium model like the Aerosol Inorganic Model (AIM). AIM requires the concentrations of ammonium, nitrate, sulfate, and estimated H$^+$ as inputs. In addition to inorganic concentrations, the equilibration conditions are also necessary model inputs. In this case, a temperature of 294.15 K and 35% RH is recommended. Alternatively, for simplification, a polynomial regression equation may be constructed by fitting the calculated water concentration from an equilibrium model and the concentrations of nitrate, ammonium, and sulfate. The AIM model will be used for more accurate calculation of PBW.

(4) Add 0.5 µg/m3 as blank mass, and

(5) Calculate organic carbon mass (OCMmb) by difference, subtracting all inorganic species (including blank mass) from the PM$_{2.5}$ mass.

Other components that may be represented on the FRM filter include elemental carbon, crustal material, sea salt, and passively collected mass. Depending on location certain species may be neglected (e.g., sea salt for inland areas).

While carbonaceous aerosol may make up a large portion of airborne aerosol, speciated measurements of carbonaceous PM are considered highly uncertain. This is due to the large number of carbon compounds in the atmosphere and the measurement uncertainties associated with samplers of different configurations. In the SANDWICH approach, organic carbonaceous mass is calculated by difference. The sum of all nonorganic carbon components will be subtracted from the FRM PM$_{2.5}$ mass to estimate the mass of organic carbon.

After having calculated the species concentrations as outlined above, we will calculate the percentage contribution of each species to the measured FRM mass (minus the blank concentration of 0.5 µg/m3) for each quarter of the years represented by the speciated data. Note that blank mass is kept constant at 0.5 µg/m3 between the base and future years, and future year particle bound water needs to be calculated for the future year values of nitrate, ammonium, and sulfate.
8.4.2.2 Estimation of Species Concentrations at Federal
Reference Method (FRM) Monitors that Lack Speciation
Data
Speciation data from available STN (speciation) sites will be used to speciate the FRM mass for all FRM sites. For those sites not collocated with STN monitors, surrogate speciation sites will be determined based on proximity and evaluation of local emissions or based on similarity in speciation profiles if such data exists (e.g., such as the speciated data collected in the SJV during CRPAQS (Solomon and Magliano, 1998)).

8.4.2.3 Speciated Modeled Attainment Test (SMAT)
Following U.S. EPA modeling guidance (U.S. EPA, 2014), the model attainment test for the annual PM_{2.5} standard will be performed with the following steps.

Step 1: For each year used in the design value calculation, determine the observed quarterly mean PM_{2.5} and quarterly mean composition for each monitor by multiplying the monitored quarterly mean concentration of FRM derived PM_{2.5} by the fractional composition of PM_{2.5} species for each quarter.

Step 2: Calculate the component specific RRFs at each monitor for each quarter as described in section 8.3.2.

Step 3: Apply the component specific RRFs to the quarterly mean concentrations from Step 1 to obtain projected quarterly species estimates.

Step 4: Calculate future year annual average PM_{2.5} estimates by summing the quarterly species estimates at each monitor and then compare to the annual PM_{2.5} NAAQS. If the projected average annual arithmetic mean PM_{2.5} concentration is ≤ the NAAQS, then the attainment test is passed.

For the 24-hour PM_{2.5} standard, the attainment test is performed with the following steps (U.S. EPA, 2014):

Step 1: Determine the top eight days with the highest observed 24-hour PM_{2.5} concentration (FRM sites) in each quarter and year used in the design value calculation (a total of 32 days per year), and calculate the 98th percentile value for each year.
Step 2: Calculate quarterly ambient species fractions on “high” PM$_{2.5}$ days for each of the major PM$_{2.5}$ component species (i.e., sulfate, nitrate, ammonium, elemental carbon, organic carbon, particle bound water, salt, and blank mass). The “high” days are represented by the top 10% of days in each quarter. Depending on the sampling frequency, the number of days captured in the top 10% would range from three to nine. The species fractions of PM$_{2.5}$ are calculated using the “SANDWICH” approach which was described previously. These quarter-specific fractions along with the FRM PM$_{2.5}$ concentrations are then used to calculate species concentrations for each of the 32 days per year determined in Step 1.

Step 3: Apply the component and quarter specific RRF, described in Section 8.3.2, to observed daily species concentrations from Step 2 to obtain future year concentrations of sulfate, nitrate, elemental carbon, organic carbon, salt, and other primary PM$_{2.5}$.

Step 4: Calculate the future year concentrations for the remaining PM$_{2.5}$ components (i.e., ammonium, particle bound water, and blank mass). The future year ammonium is calculated based on the calculated future year sulfate and nitrate, using a constant value for the degree of neutralization of sulfate from the ambient data. The future year particle bound water is calculated from the AIM model.

Step 5: Sum the concentration of each of the species components to calculate the total PM$_{2.5}$ concentration for each of the 32 days per year and at each site. Sort the 32 days for each site and year, and calculate the 98th percentile value corresponding to each year.

Step 6: Calculate the future design value at each site based on the 98th percentile concentrations calculated in Step 5 and following the standard protocol for calculating design values (see Table 8-1). Compare the future-year 24-hour design values to the NAAQS. If the projected design value is ≤ the NAAQS, then the attainment test is passed.
8.4.2.4 Sensitivity Analyses

Model sensitivity analysis may be conducted if the model attainment demonstration does not show attainment of the applicable standard with the baseline future inventory, or for determining precursor sensitivities and inter-pollutant equivalency ratios. For both ozone and PM$_{2.5}$, the sensitivity analysis will involve domain wide fractional reductions of the appropriate anthropogenic precursor emissions using the future year baseline emissions scenario as a starting point. In the event that the model attainment demonstration does not show attainment for the applicable standard, it is important to know the precursor limitation to assess the level of emissions controls needed to attain the standard.

In order to identify what combinations of precursor emissions reductions is predicted to lead to attainment, a series of modeling sensitivity simulations with varying degrees of precursor reductions from anthropogenic sources are typically performed. These sensitivity simulations are identical to the baseline future year simulation discussed earlier except that domain-wide fractional reductions are applied to future year anthropogenic precursor emission levels and a new future year design value is calculated. The results of these sensitivity simulations are plotted on isopleth diagrams, which are also referred to as carrying capacity diagrams. The isopleths provide an estimate of the level of emissions needed to demonstrate attainment and thereby inform the development of a corresponding control strategy.

For ozone, this would likely entail reducing anthropogenic NO$_x$ and VOC emissions in 25% increments including cross sensitivities (e.g., 0.75 x NO$_x$ + 1.00 x VOC; 1.00 x NO$_x$ + 0.75 x VOC; 0.75 x NO$_x$ + 0.75 x VOC; 0.5 x NO$_x$ + 1.00 x VOC; ….). Typically, a full set of sensitivities would include simulations for 25%, 50%, and 75% reduction in NO$_x$ and VOC, along with the cross sensitivities (for a total of 16 simulations including the future base simulation). After design values are calculated for each new sensitivity simulation, an ozone isopleth (or carrying capacity diagram) as a function of NO$_x$ and VOC emissions is generated and used to estimate the additional NO$_x$ and VOC emission reductions needed to attain the standard. The approach for PM$_{2.5}$ is similar, except that additional precursor emissions must be considered. Typically, the precursors considered for PM$_{2.5}$ would include anthropogenic NO$_x$, SO$_x$, VOCs, NH$_3$, as well as direct PM$_{2.5}$ emissions (Chen et al., 2014). Cross sensitivities for generating PM$_{2.5}$ carrying capacity diagrams would be conducted with respect to NO$_x$, which would include the following precursor pairs: NO$_x$ vs. primary PM$_{2.5}$, NO$_x$ vs. VOC, NO$_x$ vs. NH$_3$, and NO$_x$ vs. SO$_x$.

In addition to the PM$_{2.5}$ carrying capacity simulations, precursor sensitivity modeling may be conducted for determining the significant precursors to PM$_{2.5}$ formation and for
developing inter-pollutant equivalency ratios. These simulations would follow a similar approach to the carrying capacity simulations described above, but would involve only a single sensitivity simulation for each precursor, where emissions of that precursor are reduced between 30% and 70% from the future base year. The “effectiveness” of reducing a given species can be quantified at each FRM monitor as the change in \(\mu g \) PM\(_{2.5} \) (i.e., change in design value) per ton of precursor emissions (corresponding to the 15% change in emissions). Equivalency ratios between PM\(_{2.5} \) precursors (i.e., NO\(_x\), SO\(_x\), VOCs, and NH\(_3\)) and primary PM\(_{2.5} \) will be determined by dividing primary PM\(_{2.5} \) effectiveness by the precursors’ effectiveness.

8.5 Unmonitored Area Analysis

The unmonitored area analysis is used to ensure that there are no regions outside of the existing monitoring network that could exceed the NAAQS if a monitor was present at that location (U.S. EPA, 2014). The U.S. EPA recommends combining spatially interpolated design value fields with modeled gradients for the pollutant of interest (e.g. Ozone and PM\(_{2.5} \)) and grid-specific RRFs in order to generate gridded future year gradient adjusted design values. The spatial Interpolation of the observed design values is done only within the geographic region constrained by the monitoring network, since extrapolating to outside of the monitoring network is inherently uncertain. This analysis can be done using the Model Attainment Test Software (MATS) (Abt, 2014); however this software is not open source and comes as a precompiled software package. To maintain transparency and flexibility in the analysis, in-house R codes (https://www.r-project.org/) developed at ARB will be utilized in this analysis. The basic steps followed in the unmonitored area analysis for 8-hour ozone and annual/24-hour PM\(_{2.5} \) are described below.

8.5.1 8-hour Ozone

In this section, the specific steps followed in 8-hr ozone unmonitored area analysis are described briefly:

Step 1: At each grid cell, the top-10 modeled maximum daily average 8-hour ozone mixing ratios from the reference year simulation will be averaged, and a gradient in this top-10 day average between each grid cell and grid cells which contain a monitor will be calculated.

Step 2: A single set of spatially interpolated 8-hr ozone DV fields will be generated based on the observed 5-year weighted base year 8-hr ozone DVs from the available monitors. The interpolation is done using normalized inverse
distance squared weightings for all monitors within a grid cell’s Voronoi Region (calculated with the R tripack library; https://cran.r-project.org/web/packages/tripack/README), and adjusted based on the gradients between the grid cell and the corresponding monitor from Step 1.

Step 3: At each grid cell, the RRFs are calculated based on the reference- and future-year modeling following the same approach outlined in Section 8.3, except that the +/- 20% limitation on the simulated and observed maximum daily average 8-hour ozone is not applicable because observed data do not exist for grid cells in unmonitored areas.

Step 4: The future year gridded 8-hr ozone DVs are calculated by multiplying the gradient-adjusted interpolated 8-hr ozone DVs from Step 2 with the gridded RRFs from Step 3.

Step 5: The future-year gridded 8-hr ozone DVs (from Step 4) are examined to determine if there are any peak values higher than those at the monitors, which could potentially cause violations of the applicable 8-hr ozone NAAQS.

8.5.2 Annual PM$_{2.5}$

The unmonitored area analysis for the annual PM$_{2.5}$ standard will include the following steps:

Step 1: At each grid cell, the annual average PM$_{2.5}$ (total and by species) will be calculated from the future year simulation, and a gradient in the annual averages between each grid cell and grid cells which contain a monitor will be calculated.

Step 2: The annual future year speciated PM$_{2.5}$ design values will be obtained for each design site as described in section 8.4. For each grid cell, the monitors within its Voronoi Region will be identified, and the speciated PM$_{2.5}$ values are then interpolated using normalized inverse distance squared weightings for all monitors within a grid cell’s Voronoi Region. The interpolated speciated PM$_{2.5}$ fields are then adjusted based on the appropriate gradients from Step 1.

Step 3: The concentration of each of the component PM$_{2.5}$ species are summed to calculate the total PM$_{2.5}$ concentration (or DV) for each grid cell.

Step 4: The future year gridded annual average PM$_{2.5}$ estimates are then compared to the annual PM$_{2.5}$ NAAQS to determine compliance.
8.5.3 24-hour PM$_{2.5}$

The unmonitored area analysis for the 24-hour PM$_{2.5}$ standard will include the following steps:

Step 1: At each grid cell, the quarterly average of the top 10% of the modeled days for 24-hour PM$_{2.5}$ (total and by species for the same top 10% of days) will be calculated from the future year simulation, and a gradient in these quarterly speciated averages between each grid cell and grid cells which contain a monitor will be calculated.

Step 2: The 24-hour future year speciated PM$_{2.5}$ design values will be obtained for each design site as described in section 8.4. For each grid cell, the monitors within its Voronoi Region will be identified, and the speciated PM$_{2.5}$ values are then interpolated using normalized inverse distance squared weightings for all monitors within a grid cell’s Voronoi Region. The interpolated speciated PM$_{2.5}$ fields are then adjusted based on the appropriate gradients from Step 1.

Step 3: The concentration of each of the component PM$_{2.5}$ species are summed to calculate the total PM$_{2.5}$ concentration (or DV) for each grid cell.

Step 4: The future year gridded 24-hour average PM$_{2.5}$ estimates are then compared to the 24-hour PM$_{2.5}$ NAAQS to determine compliance.

The R codes used in this analysis will be made available upon request.

8.6 Banded Relative Response Factors for Ozone

The “Band-RRF” approach expands upon the standard “Single-RRF” approach for 8-hour ozone to account for differences in model response to emissions controls at varying ozone levels. The most recent U.S. EPA modeling guidance (U. S. EPA, 2014) accounts for some of these differences by focusing on the top ten modeled days, but even the top ten days may contain a significant range of ozone mixing ratios. The Band-RRF approach accounts for these differences more explicitly by grouping the simulated ozone into bands of lower, medium, and higher ozone mixing ratios. Specifically, daily peak 8-hour ozone mixing ratios for all days meeting model performance criteria (+/- 20% with the observations) can be stratified into 5 ppb increments from 60 ppb upwards (bin size and mixing ratio range may vary under different applications). A separate RRF is calculated for each ozone band following a
similar approach as the standard Single-RRF. A linear regression is then fit to the data resulting in an equation relating RRF to ozone band. Similar to the Single-RRF, this equation is unique to each monitor/location.

The top ten days for each monitor, based on observed 8-hour ozone, for each year that is utilized in the design value calculation (see Table 8-1) is then projected to the future using the appropriate RRF for the corresponding ozone band. The top ten future days for each year are then re-sorted, the fourth highest 8-hour ozone is selected, and the future year design value is calculated in a manner consistent with the base/reference year design value calculation. More detailed information on the Band-RRF approach can be found in Kulkarni et al. (2014) and the 2013 SJV 1-hour ozone SIP (SJUAPCD, 2013).

9. PROCEDURAL REQUIREMENTS

9.1 How Modeling and other Analyses will be Archived, Documented, and Disseminated

The computational burden of modeling the entire state of California and its sub-regions requires a significant amount of computing power and large data storage requirements. For example, there are over half a million grid cells in total for each simulation based on the Northern CA domain (192 x 192 cells in the lateral direction and 18 vertical layers). The meteorological modeling system has roughly double the number of grid cells since it has 30 vertical layers. Archiving of all the inputs and outputs takes several terabytes (TB) of computer disk space (for comparison, one single-layer DVD can hold roughly 5 gigabytes (GB) of data, and it would require ~200 DVDs to hold one TB). Please note that this estimate is for simulated surface-level pollutant output only. If three-dimensional pollutant data are needed, it would add a few more TB to this total. Therefore, transferring the modeling inputs/outputs over the internet using file transfer protocol (FTP) is not practical.

Interested parties may send a request for model inputs/outputs to Mr. John DaMassa, Chief of the Modeling and Meteorology Branch at the following address.

John DaMassa, Chief
Modeling and Meteorology Branch
Air Quality Planning and Science Division
Air Resources Board
California Environmental Protection Agency
The requesting party will need to send an external disk drive(s) to facilitate the data transfer. The requesting party should also specify what input/output files are requested so that ARB can determine the capacity of the external disk drive(s) that the requester should send.

9.2 Specific Deliverables to U.S. EPA

The following is a list of modeling-related documents that will be provided to the U.S. EPA.

- The modeling protocol
- Emissions preparation and results
- Meteorology
 - Preparation of model inputs
 - Model performance evaluation
- Air Quality
 - Preparation of model inputs
 - Model performance evaluation
- Documentation of corroborative and weight-of-evidence analyses
- Predicted future year Design Values
- Access to input data and simulation results

REFERENCES

Carter, W.P.L., 2010a, Development of the SAPRC-07 chemical mechanism, Atmospheric Environment, 44(40), 5324-5335.

Fast, J.D., et al., 2014, Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns, Atmospheric Chemistry Physics, 14, 10013-10060.

Lam, Y.F. and Fu, J.S., 2009, A novel downscaling technique for the linkage of global and regional air quality modeling, Atmospheric Chemistry and Physics, 9, 9169-9185.

Lin, M., Holloway, T., Carmichael, G.R., and Fiore, A.M., 2010, Quantifying pollution inflow and outflow over East Asia in spring with regional and global models, Atmospheric Chemistry and Physics, 10, 4221-4239, doi:10.5194/acp-10-4221-2010.

Ying, Q., Lu, J., Kaduwela, A., and Kleeman, M., 2008b, Modeling air quality during the California Regional PM$_{10}$/PM$_{2.5}$ Air Quality Study (CPRAQS) using the UCD/CIT Source Oriented Air Quality Model - Part II. Regional source apportionment of primary airborne particulate matter, Atmospheric Environment, 42(39), 8967-8978.

APPENDIX: San Joaquin Valley PM$_{2.5}$ SIP (2018)
Table of Contents

1. TIMELINE OF THE PLAN .. 7

2. DESCRIPTION OF THE CONCEPTUAL MODEL FOR THE NONATTAINMENT AREA .. 8
 2.1 History of Field Studies in the Region .. 8
 2.2 Description of the Ambient Monitoring Network .. 13
 2.3 PM$_{2.5}$ Air Quality Trends .. 20
 2.4 Major PM$_{2.5}$ Components .. 26
 2.5 Seasonality of PM$_{2.5}$ and Meteorological Conditions Leading to Elevated PM$_{2.5}$... 28

REFERENCES .. 31
LIST OF TABLES

Table 1-1. Timeline for Completion of the Plan ... 7
Table 2-1. Major Field Studies in Central California and surrounding areas. 11
Table 2-2. 2012-2015 San Joaquin Valley PM\(_{2.5}\), ozone, NO\(_x\), and PAMS Sites 16
Table 2-3: Annual Average PM\(_{2.5}\) (µg/m\(^3\)) ... 21
Table 2-4: Annual PM\(_{2.5}\) Design Value (three year average, µg/m\(^3\)) 22
Table 2-5: Annual 98\(^{th}\) percentile PM\(_{2.5}\) (µg/m\(^3\)) .. 23
Table 2-6: Annual 24-hour PM\(_{2.5}\) Design Values (three-year average, µg/m\(^3\)) 24
LIST OF FIGURES

Figure 2-1. Map of the ambient monitoring network in the San Joaquin Valley. 15

Figure 2-2. Trends in valley-wide annual average, 24-hour 98th percentile PM\textsubscript{2.5}, and approximate number of days above the 24-hour standard (http://www.arb.ca.gov/adam/index.html). .. 25

Figure 2-3. San Joaquin Valley trends in PM\textsubscript{2.5}, NO\textsubscript{x}, and VOC emissions. 25

Figure 2-4. Three-year average (2011-2013) and average peak day (top 10 percent over the same three years) PM\textsubscript{2.5} composition at Bakersfield, Fresno, and Modesto. .. 27

Figure 2-5. 24-hour PM\textsubscript{2.5} concentrations at Bakersfield- California Avenue in 2013.... 28
<table>
<thead>
<tr>
<th>ACRONYMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHEX - Aerosol Characterization Experiment</td>
<td>ARCTAS - Arctic Research of the Composition of the Troposphere from Aircraft and Satellites</td>
</tr>
<tr>
<td>BEARPEX - Biosphere Effects on Aerosols and Photochemistry Experiment</td>
<td>CABERNET - California Airborne BVOC Emission Research in Natural Ecosystem Transects</td>
</tr>
<tr>
<td>CalNex - Research at the Nexus of Air Quality and Climate Change</td>
<td>CARB – California Air Resources Board</td>
</tr>
<tr>
<td>CARES - Carbonaceous Aerosols and Radiative Effects Study</td>
<td>CCOS - Central California Ozone Study</td>
</tr>
<tr>
<td>CIRPAS - Center for Interdisciplinary Remotely-Piloted Aircraft Studies</td>
<td>CRPAQS - California Regional PM${10}$/PM${2.5}$ Air Quality Study</td>
</tr>
<tr>
<td>CSN – Chemical Speciation Network</td>
<td>DISCOVER-AQ - Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality</td>
</tr>
<tr>
<td>FEM – Federal Equivalent Method</td>
<td>FRM – Federal Reference Method</td>
</tr>
<tr>
<td>FRM – Federal Reference Method</td>
<td>IMPROVE - Interagency Monitoring of Protected Visual Environments</td>
</tr>
<tr>
<td>IMS - Integrated Monitoring Study</td>
<td>NASA – National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NOAA – National Oceanic and Atmospheric Administration</td>
<td>OC – Organic Carbon</td>
</tr>
<tr>
<td>OM – Organic Matter</td>
<td>PAMS - Photochemical Assessment Monitoring Stations</td>
</tr>
</tbody>
</table>
PM$_{2.5}$ – Particulate matter with aerodynamic diameter less than 2.5 µm

SJV - San Joaquin Valley

SJVAB - San Joaquin Valley Air Basin

SJVAPCD - San Joaquin Valley Air Pollution Control District

SJVAQS/AUSPEX - San Joaquin Valley Air Quality Study/Atmospheric Utilities Signatures Predictions and Experiments

SLAMS - State and Local Air Monitoring Stations

SOA – Secondary Organic Aerosol

SoCAB - Southern California Air Basin

U.S. EPA – United States Environmental Protection Agency

VOC – Volatile Organic Compounds
1. TIMELINE OF THE PLAN

Table 1-1. Timeline for Completion of the Plan

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer 2018</td>
<td>Emission Inventory Completed</td>
</tr>
<tr>
<td>Summer 2018</td>
<td>Modeling Completed</td>
</tr>
<tr>
<td>Winter 2018</td>
<td>San Joaquin Valley Governing Board Hearing to consider the Draft Plan</td>
</tr>
<tr>
<td>Winter 2018</td>
<td>CARB Board Hearing to consider the SJV Adopted Plan</td>
</tr>
<tr>
<td>Winter 2018</td>
<td>Plan submitted to U.S. EPA</td>
</tr>
</tbody>
</table>
2. DESCRIPTION OF THE CONCEPTUAL MODEL FOR THE NONATTAINMENT AREA

2.1 History of Field Studies in the Region

The San Joaquin Valley (SJV) air basin is perhaps the second most studied air basin in the world, in terms of the number of publications in peer-reviewed international scientific/technical journals and other major reports, with the Los Angeles air basin being the first. Major field studies that have taken place in the SJV and surrounding areas are listed in Table 2-1.

The first major air quality study in the SJV, dubbed Project Lo-Jet, took place in 1970 and resulted in the identification of the Fresno Eddy (Lin and Jao, 1995 and references therein). The first valley-wide study that formed the foundation for a SIP was the San Joaquin Valley Air Quality Study/Atmospheric Utilities Signatures Predictions and Experiments (SJVAQS/AUSPEX) study, also known as SARMAP (SJVAQS/AUSPEX Regional Modeling Adaptation Project). A 1-hour Extreme Ozone Attainment Demonstration Plan based on the SARMAP Study was submitted to the U.S. EPA in 2004 and was approved in 2010 (74 FR 33933; 75 FR 10420). The next major study was the Integrated Monitoring Study in 1995 (IMS-95), which was the pilot study for the subsequent California Regional PM$_{10}$/PM$_{2.5}$ Air Quality Study (CRPAQS) in 2000 (Solomon and Magliano, 1998). IMS-95 formed the technical basis for the 2003 PM10 SIP which was approved by the U.S. EPA in 2006 (71 FR 63642). The area was re-designated as attainment in 2008 (73 FR 66759). The first annual field campaign in the SJV was CRPAQS, and embedded in it was the Central California Ozone Study (CCOS) that took place during the summer of 2000 (Fujita et al., 2001). CRPAQS was a component of the technical foundation for the 2008 annual PM$_{2.5}$ SIP which was approved by the U.S. EPA in 2011 (76 FR 41338; 76 FR 69896), and CCOS was part of the technical basis for the 2007 8-hour O$_3$ SIP (76 FR 57846). While CRPAQS is still highly relevant to the current annual 24-hour PM$_{2.5}$ SIP, there are additional, more recent studies with relevance to PM$_{2.5}$ formation in the Valley and surrounding regions: 1) ARCTAS-CARB 2008, 2) CalNex 2010, 3) CARES 2010, 4) BEARPEX 2007 & 2009, 5) CABERNET 2011, and 6) DISCOVER-AQ 2013. Each of these studies has contributed significantly to our understanding of various atmospheric processes in the Valley.

The ARCTAS-CARB aircraft field campaign was a joint research effort by NASA and CARB and took place from June 18 to 24, 2008. During the study, DC-8 aircraft performed two flights over southern California on June 18 and 24 with a focus on the Southern California Air Basin (SoCAB), one flight over northern California with a focus
on the San Joaquin Valley Air Basin (SJVAB) on June 20, and one flight off shore on June 22 to quantify the pollutant levels in air masses entering California from the Pacific Ocean. During the campaign, large wildfires occurred in California, particularly in the north. The DC-8 aircraft encountered many of the fire plumes, which allowed for the study of fire emissions and their chemical composition, as well as evaluation of the simulated fire impacts. The ARCTAS-CARB campaign provided a unique dataset for evaluating the impacts of wildfires on ozone levels through photochemical modeling studies and for evaluating the distribution of reactive nitrogen species in California (Huang et al., 2011; Cai et al., 2016).

The CalNex May-July 2010 field campaign was organized by NOAA (NOAA, 2014) and CARB. The focus of this field study included airborne measurements using the NOAA WP-3D aircraft and the Twin Otter Remote Sensing aircraft, and surface measurements using the R/V Atlantis mobile platform as well as two stationary ground supersites, one of which was located in Bakersfield. Analysis of the data collected during CalNex has shown that photochemical ozone production in the southern and central portions of the Valley is transitioning to a NO\textsubscript{x}-limited chemistry regime, where further NO\textsubscript{x} reductions are expected to lead to a more rapid reduction in ozone than what was observed over the past decade or more (Pusede and Cohen, 2012). Studies have also shown that there is evidence for an unidentified temperature-dependent VOC emissions source on the hottest days (Pusede and Cohen, 2012; Pusede et al., 2014) and large sources of hydrocarbon compounds from petroleum extraction/processing, dairy (and other cattle) operations, and agricultural crops in SJV (Gentner et al., 2014a,b). In addition, findings also suggest that NO\textsubscript{x} emissions control nighttime secondary organic aerosol formation in Bakersfield, thus reductions in NO\textsubscript{x} emissions should reduce organic aerosol concentrations in Bakersfield and the surrounding region (Rollins et al., 2012).

The CARES field campaign took place in the central California region, to the northeast of Sacramento in June 2010. Comprehensive data sets of trace gases and aerosols were taken from the daily evolving Sacramento urban plume under relatively well-defined and regular meteorological conditions using multiple suites of ground-based and airborne instruments onboard the Gulfstream (G-1) research aircraft. The ground-based measurements were conducted at two sites: one within the Sacramento urban source area and the other in a downwind area about 70 km to the northeast in Cool, CA. A combination of measurement and model data during CARES (Fast et al., 2012) shows that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento. The study also showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere which are then entrained into the growing boundary layer the following day. Although the CARES study did not take place within the SJV itself, it
remains relevant to the SJV for two reasons: 1) CARES took place within the delta region north of the SJV, which can influence air quality in the northern SJV (see Section 2.4), and 2) the improved scientific understanding of the interaction between urban emissions and downwind biogenic emissions gained during CARES is applicable to the SJV, which experiences a similar confluence of anthropogenic and biogenic emissions.

BEARPEX was conducted at the University of California’s Blodgett Forest Research Station during June-July 2007 and September-October 2009. Blodgett Forest is located 65 miles northeast of Sacramento. The project was designed to study chemistry downwind of urban areas where there is high VOC reactivity (due to biogenic emissions sources) and low NOx, to understand the full oxidation sequence and subsequent fate of biogenic VOC and the processes leading to formation and removal of biogenic secondary organic aerosol (SOA) and the associated chemical and optical properties of SOA. A study by Bouvier-Brown et al., (2009) suggests that reactive and semi-volatile compounds, especially sesquiterpenes, significantly impact the gas- and particle-phase chemistry of the atmosphere at Blodgett Forest. An analysis of absolute PANs mixing ratios by Lafranchi et al. (2009) reveals a missing PANs sink that can be resolved by increasing the peroxy acetyl radicals + RO2 rate constant by a factor of three. At the BEARPEX field site, the sum of the individual biogenically derived nitrates account for two-thirds of the organic nitrate, confirming the importance of biogenic nitrates to the NOy budget (Beaver et al., 2012).

The CABERNET field campaign was conducted in June 2011 in California. The objectives were to develop and evaluate new approaches for regional scale measurements of biogenic VOC emissions, quantify the response of biogenic VOC emissions to land cover change, investigate the vertical transport of isoprene and oxidation products, and evaluate biogenic emission models. Isoprene fluxes were measured on board the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter (http://www.cirpas.org/twinOtter.html) using the virtual disjunct eddy covariance method (Karl et al. 2013). Isoprene flux measurements from CABERNET have formed the basis for evaluating the biogenic emissions inventory used in California’s SIP modeling (Misztal et al., 2016).

The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign took place in the SJV from January 16th through mid-February 2013. The campaign was organized by NASA, with the primary goal of relating column observations (e.g., from satellites) to surface measurements of PM2.5 and key trace gases such as O3, NO2, and formaldehyde. The campaign captured two elevated PM2.5 episodes in the SJV when 24-hour PM2.5 concentrations in Bakersfield exceeded 60 μg/m³. During the campaign,
sampling by two aircrafts focused on agricultural and vehicle traffic emission sources from Bakersfield to Fresno. In addition to the aircraft measurements there were also intensive ground-based data collection in Fresno and Porterville. The field campaign provided unprecedented observations of PM$_{2.5}$ and its precursors with broad horizontal spatial coverage, at the surface as well as aloft, and also at a finer temporal resolution (i.e., minutes compared to daily or multiple hours in the past) than was previously available. The combination of highly resolved spatial and temporal measurements presented a unique opportunity to update the conceptual model for wintertime PM$_{2.5}$ formation in the SJV that was initially developed from CRPAQS field study. Pusede et al. (2016) analyzed the DISCOVER-AQ dataset and historical ammonium nitrate records in the SJV and concluded that NO$_x$ emissions control in the valley in the past decade has substantially decreased nighttime ammonium nitrate formation in the nocturnal residual layer and continued reduction in NO$_x$ emissions in the SJV will lead to fewer wintertime exceedances of the 24-hour PM$_{2.5}$ standard. This study lends support to the emissions control policies in the SJV that have historically focused on NO$_x$ emissions.

Table 2-1. Major Field Studies in Central California and surrounding areas.

<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>Project Lo-Jet</td>
<td>Identified summertime low-level jet and Fresno eddy</td>
</tr>
<tr>
<td>1972</td>
<td>Aerosol Characterization Experiment (ACHEX)</td>
<td>First TSP chemical composition and size distributions</td>
</tr>
<tr>
<td>1979-1980</td>
<td>Inhalable Particulate Network</td>
<td>First long-term PM${2.5}$ and PM${10}$ mass and elemental measurements in Bay Area, Five Points</td>
</tr>
<tr>
<td>1978</td>
<td>Central California Aerosol and Meteorological Study</td>
<td>Seasonal TSP elemental composition, seasonal transport patterns</td>
</tr>
<tr>
<td>1979-1982</td>
<td>Westside Operators</td>
<td>First TSP sulfate and nitrate compositions in western Kern County</td>
</tr>
<tr>
<td>1984</td>
<td>Southern SJV Ozone Study</td>
<td>First major characterization of O$_3$ and meteorology in Kern County</td>
</tr>
<tr>
<td>1986-1988</td>
<td>California Source Characterization Study</td>
<td>Quantified chemical composition of source emissions</td>
</tr>
<tr>
<td>Year(s)</td>
<td>Study/Experiment</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1988-1989</td>
<td>Valley Air Quality Study</td>
<td>First spatially diverse, chemical characterized, annual and 24-hour PM${2.5}$ and PM${10}$</td>
</tr>
<tr>
<td>Summer 1990</td>
<td>San Joaquin Valley Air Quality Study/Atmospheric Utilities Signatures Predictions and Experiments (SJVAQS/AUSPEX) – Also known as SARMAP (SJVAQS/AUSPEX Regional Modeling Adaptation Project)</td>
<td>First central California regional study of O3 and PM${2.5}$</td>
</tr>
<tr>
<td>July and August 1991</td>
<td>California Ozone Deposition Experiment</td>
<td>Measurements of dry deposition velocities of O$_3$ using the eddy correlation technique made over a cotton field and senescent grass near Fresno</td>
</tr>
<tr>
<td>Winter 1995</td>
<td>Integrated Monitoring Study (IMS-95, the CRPAQS Pilot Study)</td>
<td>First sub-regional winter study</td>
</tr>
<tr>
<td>December 1999 – February 2001</td>
<td>California Regional PM${10}$/PM${2.5}$ Air Quality Study (CRPAQS) and Central California Ozone Study (CCOS)</td>
<td>First year-long, regional-scale effort to measure both O3 and PM${2.5}$</td>
</tr>
<tr>
<td>December 1999 to present</td>
<td>Fresno Supersite</td>
<td>First multi-year experiment with advanced monitoring technology</td>
</tr>
<tr>
<td>July 2003</td>
<td>NASA high-resolution lidar flights</td>
<td>First high-resolution airborne lidar application in SJV in the summer</td>
</tr>
<tr>
<td>February 2007</td>
<td>U.S. EPA Advanced Monitoring Initiative</td>
<td>First high-resolution airborne lidar application in SJV in the winter</td>
</tr>
<tr>
<td>August-October 2007; June-July 2009</td>
<td>BEARPEX (Biosphere Effects on Aerosols and Photochemistry Experiment)</td>
<td>Research-grade measurements to study the interaction of the Sacramento urban plume with downwind biogenic emissions</td>
</tr>
<tr>
<td>June 2008</td>
<td>ARCTAS - CARB</td>
<td>First measurement of high-time resolution (1-10s)</td>
</tr>
</tbody>
</table>
Description of the Ambient Monitoring Network

The San Joaquin Valley covers an area of 23,490 square miles and is home to approximately 4 million residents. The Valley is bordered on the west by the coastal mountain ranges and on the east by the Sierra Nevada range. These ranges converge at the southern end of the basin at the Tehachapi Mountains. The majority of the population is centered in the large urban areas of Bakersfield, Fresno, Modesto, and Stockton. The nonattainment area includes seven full counties (San Joaquin, Stanislaus, Merced, Madera, Fresno, Kings, and Tulare) and one partial county Kern (only the western portion of Kern County, which lies in the jurisdiction of the SJVAPCD, is included).

The Valley can be divided into three regions that are characterized by distinct geography, meteorology, and air quality: 1) northern SJV (San Joaquin, Stanislaus, and Merced counties), 2) central SJV (Madera, Fresno, and King counties), and 3) southern
SJV (Tulare and Western Kern counties). A third of the Valley population lives in the northern SJV. This lowland area is bordered by the Sacramento Valley and Delta lowland to the north, the central portion of the SJV to the south, and mountain ranges to the east and west. Because of the marine influence, which extends into this area through gaps in the coastal mountains to the west, the northern SJV experiences a more temperate climate than the rest of the Basin. These more moderate temperatures (cooler in the summer and warmer in the winter) and the predominant air flow patterns generally favor better air quality. Similar to the northern SJV, the central and southern SJV are also low lying areas, flanked by mountains on their west and east sides. The worst air quality within the Valley occurs in these two regions, where the population is primarily clustered around the Fresno and Bakersfield urban areas. In these regions the interaction between geography, climate, and a mix of natural (biogenic) and anthropogenic emissions pose significant challenges to air quality progress. The southern SJV represents the terminus of the Valley and is flanked by mountains on the south, as well. The surrounding mountains in both areas act as barriers to air flow, and combined with recirculation patterns and stable air to trap emissions and pollutants near the valley floor. The more extreme temperatures and stagnant conditions in these two regions lead to a build-up of PM$_{2.5}$ and ozone, and overall poorer air quality. In addition to the urban air quality problems, emissions and pollutants from these areas are transported downwind, resulting in poor air quality in downwind areas.

As discussed above, the Valley’s diverse area includes several major metropolitan areas, vast expanses of agricultural land, industrial sources, and highways, all of which pose many issues to air quality. The San Joaquin Valley Air Pollution Control District (SJVAPCD or District), the California Air Resources Board (CARB), and the National Park Service work together and operate an extensive network of air quality monitors throughout the Valley to help improve and protect public health. The data collected from the Valley air monitoring network is used to generate daily air quality forecasts, issue health advisories as needed, support compliance with various ambient air quality standards and serves as the basis for developing long-term attainment strategies and tracking progress towards health-based air quality standards.

Figure 2-1 shows the spatial distribution of the PM$_{2.5}$, ozone, NO$_x$, and PAMS (Photochemical Assessment Monitoring Stations) monitors in the Valley (see Table 2-2 for longitude/latitude information for each monitor). The monitors are located throughout the Valley floor, at higher elevation locations, and within higher population density urban areas, and have been shown to sufficiently capture the highest ozone mixing ratios and the corresponding precursors under various weather conditions and in all major population centers. A detailed discussion about the monitoring network and its adequacy can be found in the Valley’s 2017 Air Monitoring Network Plan.

Figure 2-1. Map of the ambient monitoring network in the San Joaquin Valley.
Table 2-2. 2012-2015 San Joaquin Valley PM$_{2.5}$, ozone, NO$_x$, and PAMS Sites

<table>
<thead>
<tr>
<th>Site ID (AQS/CARB)</th>
<th>Sub Region</th>
<th>Site</th>
<th>PM2.5</th>
<th>Gaseous</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FRM</td>
<td>FEM</td>
<td>non-FEM</td>
</tr>
<tr>
<td>Fresno County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060195001 3026</td>
<td>Central SJV</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>060190008 3009</td>
<td>Central SJV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060190007 2013</td>
<td>Central SJV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060190011 3781</td>
<td>Central SJV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060195025 3485</td>
<td>Central SJV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060190242 2844</td>
<td>Central SJV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060192008 3768</td>
<td>Central SJV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060194001 2114</td>
<td>Central SJV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060192009 3759</td>
<td>Central SJV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>County</td>
<td>City/Location</td>
<td>X</td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---</td>
<td>----</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>060295002</td>
<td>Kern</td>
<td>Arvin-Di Giorgio</td>
<td>X</td>
<td>35.2392</td>
<td>-118.7886</td>
</tr>
<tr>
<td>060290016</td>
<td>Kern</td>
<td>Bakersfield-410 E Planz Road</td>
<td>X</td>
<td>35.3246</td>
<td>-118.9976</td>
</tr>
<tr>
<td>060290014</td>
<td>Kern</td>
<td>Bakersfield-5558 California Avenue</td>
<td>X</td>
<td>35.3567</td>
<td>-119.0626</td>
</tr>
<tr>
<td>060292012</td>
<td>Kern</td>
<td>Bakersfield-Municipal Airport</td>
<td>X</td>
<td>35.3316</td>
<td>-119.000</td>
</tr>
<tr>
<td>060290007</td>
<td>Kern</td>
<td>Edison</td>
<td>X</td>
<td>35.3456</td>
<td>-118.8518</td>
</tr>
<tr>
<td>060292009</td>
<td>Kern</td>
<td>Lebec-Beartrap Road</td>
<td>X</td>
<td>34.8416</td>
<td>-118.8606</td>
</tr>
<tr>
<td>060290008</td>
<td>Kern</td>
<td>Maricopa-Stanislaus Street</td>
<td>X</td>
<td>35.0516</td>
<td>-119.4026</td>
</tr>
<tr>
<td>060290232</td>
<td>Kern</td>
<td>Oildale-3311 Manor Street</td>
<td>X</td>
<td>35.4380</td>
<td>-119.0168</td>
</tr>
<tr>
<td>060296001</td>
<td>Kern</td>
<td>Shafter-Walker Street</td>
<td>X</td>
<td>35.5035</td>
<td>-119.2726</td>
</tr>
<tr>
<td>060310004</td>
<td>Kings</td>
<td>Corcoran-Patterson Avenue</td>
<td>X</td>
<td>36.1022</td>
<td>-119.5656</td>
</tr>
<tr>
<td>Code</td>
<td>County</td>
<td>Region</td>
<td>Location Details</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>060311004</td>
<td>Madera County</td>
<td>Central SJV</td>
<td>Hanford-S Irwin Street</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>060390004</td>
<td>Madera County</td>
<td>Central SJV</td>
<td>Madera-Pump Yard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>060470003</td>
<td>Merced County</td>
<td>Northern SJV</td>
<td>Merced-S Coffee Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>060472510</td>
<td>Merced County</td>
<td>Northern SJV</td>
<td>Merced-2334 M Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>060772010</td>
<td>San Joaquin County</td>
<td>Northern SJV</td>
<td>Manteca-530 Fishback Rd</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>060771002</td>
<td>San Joaquin County</td>
<td>Northern SJV</td>
<td>Stockton-Hazelton Street</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>060773005</td>
<td>San Joaquin County</td>
<td>Northern SJV</td>
<td>Tracy-Airport</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>060990005</td>
<td>Stanislaus County</td>
<td>Northern SJV</td>
<td>Modesto-14th Street</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>060990006</td>
<td>Stanislaus County</td>
<td>Northern SJV</td>
<td>Turlock-S Minaret Street</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>Description</td>
<td>X</td>
<td>X</td>
<td>Lat</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>0610720103763</td>
<td>Southern SJV</td>
<td>Porterville - 1839 Newcomb Street</td>
<td>X</td>
<td>X</td>
<td>36.0318</td>
</tr>
<tr>
<td>0610700093484</td>
<td>Southern SJV</td>
<td>Sequoia and Kings Canyon Natl Park</td>
<td>X</td>
<td>X</td>
<td>36.4894</td>
</tr>
<tr>
<td>0610700063036</td>
<td>Southern SJV</td>
<td>Sequoia Natl Park - Lower Kaweah</td>
<td>X</td>
<td></td>
<td>36.5661</td>
</tr>
<tr>
<td>0610720022032</td>
<td>Southern SJV</td>
<td>Visalia-N Church Street</td>
<td>X</td>
<td>X</td>
<td>36.3325</td>
</tr>
</tbody>
</table>
2.3 PM$_{2.5}$ Air Quality Trends

Tables 2-3 and 2-4 show the annual average PM$_{2.5}$ concentrations and the annual PM$_{2.5}$ design values (i.e., 3-year average), from 1999 to 2017, for FRM and FEM sites in the SJV, respectively. Correspondingly, Tables 2-5 and 2-6 show the annual 98th percentile and annual 24-hour design values (i.e., 3-year average), from 1999 to 2017, respectively. In most recent years (i.e., 2013-2017), in general, the two sites in Bakersfield have highest 24-hour design values in the valley. Figure 2-2 shows the trend in peak valley-wide annual average PM$_{2.5}$ concentrations and 98th percentile of the 24-hour PM$_{2.5}$ concentrations, as well as the approximate number of days above the 24-hour standard in the valley from 1999 to 2017. The extreme drought conditions experienced by much of California since 2012 coupled with persistent and strong high pressure systems over the SJV in recent winters, has led to elevated levels of PM$_{2.5}$ in the SJV that have not been seen in over a decade. This is clearly illustrated by the “U” shaped curve of the 98th percentile 24-hour PM$_{2.5}$ shown in Figure 2-2. Despite the recent increase in peak 24-hour PM$_{2.5}$ levels, the SJV has seen significant improvement in PM$_{2.5}$ concentrations over the last 20 years, with steady decreases in both annual average PM$_{2.5}$ and in the number of days above the 24-hour standard, which coincide with the large emission reductions experienced in the valley (Figure 2-3).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockton</td>
<td>19.7</td>
<td>15.5</td>
<td>13.9</td>
<td>16.7</td>
<td>13.6</td>
<td>13.2</td>
<td>12.5</td>
<td>13.1</td>
<td>12.9</td>
<td>14.4</td>
<td>11.3</td>
<td>11.0</td>
<td>11.3</td>
<td>12.4</td>
<td>17.7</td>
<td>12.1</td>
<td>12.8</td>
<td>11.8</td>
<td>12.1</td>
</tr>
<tr>
<td>Manteca</td>
<td></td>
</tr>
<tr>
<td>Modesto</td>
<td>24.9</td>
<td>18.7</td>
<td>15.6</td>
<td>18.7</td>
<td>14.5</td>
<td>13.6</td>
<td>13.9</td>
<td>14.8</td>
<td>15.0</td>
<td>16.0</td>
<td>13.0</td>
<td>12.3</td>
<td>14.7</td>
<td>11.9</td>
<td>14.3</td>
<td>11.4</td>
<td>11.2</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>Turlock</td>
<td></td>
</tr>
<tr>
<td>Merced-Coffee</td>
<td></td>
</tr>
<tr>
<td>Merced-M</td>
<td>16.7</td>
<td>14.5</td>
<td>18.7</td>
<td>15.7</td>
<td>15.2</td>
<td>14.1</td>
<td>14.8</td>
<td>15.2</td>
<td>13.6</td>
<td>11.2</td>
<td>10.4</td>
<td>9.5</td>
<td>13.5</td>
<td>11.2</td>
<td>12.6</td>
<td>11.2</td>
<td>12.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madera-City</td>
<td></td>
</tr>
<tr>
<td>Fresno-First</td>
<td>27.6</td>
<td>19.8</td>
<td>21.5</td>
<td>17.8</td>
<td>16.3</td>
<td>16.7</td>
<td>16.8</td>
<td>18.8</td>
<td>17.4</td>
<td>15.1</td>
<td>13.0</td>
<td>15.5</td>
<td>14.1</td>
<td>16.8</td>
<td>15.1</td>
<td>14.4</td>
<td>12.7</td>
<td>14.9</td>
<td></td>
</tr>
<tr>
<td>Fresno-Garland</td>
<td></td>
</tr>
<tr>
<td>Fresno-Winery</td>
<td>18.4</td>
<td>18.6</td>
<td>21.3</td>
<td>17.8</td>
<td>17.0</td>
<td>16.9</td>
<td>17.6</td>
<td>16.8</td>
<td>16.5</td>
<td>14.6</td>
<td>13.4</td>
<td>15.4</td>
<td>12.7</td>
<td>15.9</td>
<td>13.8</td>
<td>14.1</td>
<td>13.0</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Clovis</td>
<td>19.8</td>
<td>16.3</td>
<td>18.0</td>
<td>16.2</td>
<td>18.5</td>
<td>16.4</td>
<td>16.3</td>
<td>16.4</td>
<td>16.4</td>
<td>18.3</td>
<td>14.7</td>
<td>17.9</td>
<td>15.4</td>
<td>15.9</td>
<td>16.8</td>
<td>15.0</td>
<td>12.6</td>
<td>13.7</td>
<td></td>
</tr>
<tr>
<td>Tranquility</td>
<td></td>
</tr>
<tr>
<td>Corcoran</td>
<td>16.4</td>
<td>19.2</td>
<td>21.5</td>
<td>16.2</td>
<td>17.4</td>
<td>17.5</td>
<td>16.9</td>
<td>18.4</td>
<td>15.8</td>
<td>17.7</td>
<td>17.9</td>
<td>15.6</td>
<td>15.4</td>
<td>14.8</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanford</td>
<td></td>
</tr>
<tr>
<td>Visalia</td>
<td>27.6</td>
<td>23.9</td>
<td>22.5</td>
<td>23.2</td>
<td>18.2</td>
<td>17.0</td>
<td>18.8</td>
<td>18.8</td>
<td>20.4</td>
<td>19.8</td>
<td>16.0</td>
<td>13.6</td>
<td>16.1</td>
<td>14.8</td>
<td>18.9</td>
<td>17.9</td>
<td>16.1</td>
<td>14.7</td>
<td>16.3</td>
</tr>
<tr>
<td>Bakersfield-California</td>
<td>27.4</td>
<td>22.5</td>
<td>21.2</td>
<td>22.7</td>
<td>17.1</td>
<td>18.9</td>
<td>18.0</td>
<td>18.7</td>
<td>22.0</td>
<td>21.9</td>
<td>19.0</td>
<td>14.2</td>
<td>16.2</td>
<td>13.0</td>
<td>20.0</td>
<td>18.6</td>
<td>16.3</td>
<td>14.8</td>
<td>15.9</td>
</tr>
<tr>
<td>Bakersfield-Planz</td>
<td>20.3</td>
<td>20.8</td>
<td>23.5</td>
<td>17.8</td>
<td>17.4</td>
<td>19.8</td>
<td>19.3</td>
<td>21.8</td>
<td>23.5</td>
<td>22.5</td>
<td>16.8</td>
<td>14.4</td>
<td>14.7</td>
<td>21.7</td>
<td>21.6</td>
<td>17.9</td>
<td>15.9</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockton</td>
<td>16.4</td>
<td>15.3</td>
<td>14.7</td>
<td>14.5</td>
<td>13.1</td>
<td>12.9</td>
<td>12.8</td>
<td>13.5</td>
<td>12.9</td>
<td>12.2</td>
<td>11.2</td>
<td>11.6</td>
<td>13.8</td>
<td>14.1</td>
<td>14.2</td>
<td>12.2</td>
<td>12.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manteca</td>
<td></td>
<td>10.2</td>
<td>9.9</td>
<td>11.4</td>
<td>10.8</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>Modesto</td>
<td>19.7</td>
<td>17.7</td>
<td>16.2</td>
<td>15.6</td>
<td>14.0</td>
<td>14.1</td>
<td>14.6</td>
<td>15.3</td>
<td>14.7</td>
<td>13.8</td>
<td>13.3</td>
<td>12.9</td>
<td>13.6</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turlock</td>
<td></td>
</tr>
<tr>
<td>Merced-Coffee</td>
<td></td>
</tr>
<tr>
<td>Merced-M</td>
<td>16.6</td>
<td>16.3</td>
<td>16.5</td>
<td>15.0</td>
<td>14.7</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>Madera-City</td>
<td></td>
</tr>
<tr>
<td>Fresno-First</td>
<td>19.7</td>
<td>18.6</td>
<td>16.9</td>
<td>16.6</td>
<td>17.4</td>
<td>17.7</td>
<td>17.1</td>
<td>15.2</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>Fresno-Garland</td>
<td></td>
</tr>
<tr>
<td>Fresno-Winery</td>
<td>19.4</td>
<td>19.2</td>
<td>18.7</td>
<td>17.2</td>
<td>17.2</td>
<td>17.1</td>
<td>17.0</td>
<td>16.0</td>
<td>14.9</td>
<td>14.5</td>
<td>13.9</td>
<td>14.7</td>
<td>14.1</td>
<td>14.6</td>
<td>13.6</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clovis</td>
<td>18.0</td>
<td>16.8</td>
<td>17.6</td>
<td>17.0</td>
<td>17.1</td>
<td>16.4</td>
<td>16.4</td>
<td>16.4</td>
<td>17.0</td>
<td>16.0</td>
<td>16.4</td>
<td>16.0</td>
<td>15.8</td>
<td>14.7</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tranquility</td>
<td></td>
<td>7.5</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Corcoran</td>
<td>19.0</td>
<td>19.0</td>
<td>18.4</td>
<td>17.0</td>
<td>17.2</td>
<td>17.6</td>
<td>17.0</td>
<td>17.3</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>Hanford</td>
<td></td>
<td>15.8</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Visalia</td>
<td>24.7</td>
<td>23.2</td>
<td>21.3</td>
<td>19.5</td>
<td>18.0</td>
<td>18.2</td>
<td>19.3</td>
<td>19.7</td>
<td>18.8</td>
<td>16.5</td>
<td>15.2</td>
<td>14.8</td>
<td>16.6</td>
<td>17.2</td>
<td>17.6</td>
<td>16.2</td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakersfield-Planz</td>
<td>23.7</td>
<td>22.1</td>
<td>20.3</td>
<td>19.6</td>
<td>18.0</td>
<td>18.5</td>
<td>19.6</td>
<td>20.9</td>
<td>21.0</td>
<td>18.4</td>
<td>16.5</td>
<td>14.5</td>
<td>16.4</td>
<td>17.2</td>
<td>18.3</td>
<td>16.6</td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakersfield-California</td>
<td>21.5</td>
<td>20.7</td>
<td>19.6</td>
<td>18.4</td>
<td>18.9</td>
<td>20.3</td>
<td>21.5</td>
<td>22.6</td>
<td>20.9</td>
<td>17.9</td>
<td>15.3</td>
<td>16.9</td>
<td>19.3</td>
<td>20.4</td>
<td>18.5</td>
<td>17.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-5: Annual 98th percentile PM$_{2.5}$ (µg/m3)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockton</td>
<td>79.0</td>
<td>55.0</td>
<td>58.0</td>
<td>50.0</td>
<td>41.0</td>
<td>36.0</td>
<td>44.0</td>
<td>42.0</td>
<td>48.0</td>
<td>61.6</td>
<td>40.4</td>
<td>29.7</td>
<td>44.8</td>
<td>33.9</td>
<td>56.3</td>
<td>44.5</td>
<td>39.1</td>
<td>32.4</td>
<td>44.2</td>
</tr>
<tr>
<td>Manteca</td>
<td></td>
</tr>
<tr>
<td>Modesto</td>
<td>100.0</td>
<td>71.0</td>
<td>69.0</td>
<td>69.0</td>
<td>47.0</td>
<td>45.0</td>
<td>55.0</td>
<td>52.0</td>
<td>57.4</td>
<td>53.9</td>
<td>54.5</td>
<td>37.3</td>
<td>54.7</td>
<td>40.8</td>
<td>56.4</td>
<td>49.5</td>
<td>30.8</td>
<td>36.2</td>
<td>51.1</td>
</tr>
<tr>
<td>Turlock</td>
<td>67.4</td>
<td>53.1</td>
<td>43.5</td>
<td>57.4</td>
<td>45.4</td>
<td>55.4</td>
<td>51.2</td>
<td>47.3</td>
<td>38.5</td>
<td>38.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merced-Coffee</td>
<td>41.4</td>
<td>39.9</td>
<td>47.4</td>
<td>35.6</td>
<td>42.3</td>
<td>43.8</td>
<td>40.3</td>
<td>32.8</td>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>Merced-M</td>
<td>91.9</td>
<td>60.0</td>
<td>49.3</td>
<td>55.1</td>
<td>44.2</td>
<td>43.0</td>
<td>48.3</td>
<td>43.8</td>
<td>52.7</td>
<td>54.0</td>
<td>45.2</td>
<td>39.1</td>
<td>38.5</td>
<td>41.8</td>
<td>67.3</td>
<td>45.9</td>
<td>39.0</td>
<td>34.6</td>
<td>40.3</td>
</tr>
<tr>
<td>Madera-City</td>
<td></td>
</tr>
<tr>
<td>Fresno-First</td>
<td>120.0</td>
<td>90.0</td>
<td>75.0</td>
<td>75.0</td>
<td>56.0</td>
<td>52.0</td>
<td>71.0</td>
<td>51.0</td>
<td>67.0</td>
<td>57.4</td>
<td>55.8</td>
<td>48.8</td>
<td>69.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresno-Garland</td>
<td></td>
</tr>
<tr>
<td>Fresno-Winery</td>
<td>64.8</td>
<td>61.5</td>
<td>71.9</td>
<td>49.7</td>
<td>49.4</td>
<td>71.2</td>
<td>55.0</td>
<td>57.4</td>
<td>44.5</td>
<td>48.2</td>
<td>40.2</td>
<td>67.5</td>
<td>51.3</td>
<td>71.6</td>
<td>61.8</td>
<td>42.0</td>
<td>40.0</td>
<td>73.2</td>
<td></td>
</tr>
<tr>
<td>Clovis</td>
<td>59.2</td>
<td>72.5</td>
<td>71.5</td>
<td>53.2</td>
<td>48.1</td>
<td>52.4</td>
<td>63.0</td>
<td>51.3</td>
<td>60.9</td>
<td>49.0</td>
<td>49.0</td>
<td>44.3</td>
<td>68.5</td>
<td>48.0</td>
<td>56.2</td>
<td>64.6</td>
<td>45.7</td>
<td>36.1</td>
<td>50.6</td>
</tr>
<tr>
<td>Tranquility</td>
<td>35.8</td>
<td>27.0</td>
<td>27.5</td>
<td>26.9</td>
<td>35.7</td>
<td>31.2</td>
<td></td>
</tr>
<tr>
<td>Corcoran</td>
<td>53.0</td>
<td>55.1</td>
<td>89.5</td>
<td>65.1</td>
<td>42.2</td>
<td>49.4</td>
<td>74.5</td>
<td>50.1</td>
<td>57.9</td>
<td>47.9</td>
<td>53.4</td>
<td>47.2</td>
<td></td>
<td>66.0</td>
<td>71.0</td>
<td>45.9</td>
<td>59.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanford</td>
<td></td>
<td>48.5</td>
<td>64.6</td>
<td>48.3</td>
<td>67.6</td>
<td>81.9</td>
</tr>
<tr>
<td>Visalia</td>
<td>114.0</td>
<td>103.0</td>
<td>96.0</td>
<td>70.0</td>
<td>47.0</td>
<td>54.0</td>
<td>65.0</td>
<td>50.0</td>
<td>59.7</td>
<td>62.1</td>
<td>53.9</td>
<td>36.3</td>
<td>50.7</td>
<td>53.8</td>
<td>62.5</td>
<td>75.4</td>
<td>45.8</td>
<td>40.7</td>
<td>74.6</td>
</tr>
<tr>
<td>Bakersfield-California</td>
<td>98.0</td>
<td>92.7</td>
<td>94.9</td>
<td>73.0</td>
<td>48.3</td>
<td>61.5</td>
<td>63.2</td>
<td>60.5</td>
<td>73.0</td>
<td>64.5</td>
<td>66.7</td>
<td>53.3</td>
<td>65.5</td>
<td>56.4</td>
<td>71.8</td>
<td>79.9</td>
<td>57.2</td>
<td>47.0</td>
<td>71.8</td>
</tr>
<tr>
<td>Bakersfield-Planz</td>
<td>76.5</td>
<td>90.6</td>
<td>66.8</td>
<td>47.5</td>
<td>47.6</td>
<td>66.4</td>
<td>64.7</td>
<td>72.2</td>
<td>72.3</td>
<td>65.5</td>
<td>47.2</td>
<td>43.2</td>
<td>40.6</td>
<td>83.6</td>
<td>76.7</td>
<td>56.5</td>
<td>50.7</td>
<td>69.7</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-6: 24-hour PM$_{2.5}$ Design Values (three-year average, µg/m3)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockton</td>
<td>64</td>
<td>54</td>
<td>50</td>
<td>42</td>
<td>40</td>
<td>41</td>
<td>45</td>
<td>51</td>
<td>50</td>
<td>44</td>
<td>38</td>
<td>36</td>
<td>45</td>
<td>45</td>
<td>47</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Manteca</td>
<td></td>
</tr>
<tr>
<td>Modesto</td>
<td>80</td>
<td>70</td>
<td>62</td>
<td>54</td>
<td>49</td>
<td>51</td>
<td>55</td>
<td>54</td>
<td>55</td>
<td>49</td>
<td>49</td>
<td>44</td>
<td>51</td>
<td>49</td>
<td>46</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Turlock</td>
<td></td>
</tr>
<tr>
<td>Merced-Coffee</td>
<td></td>
</tr>
<tr>
<td>Merced-M</td>
<td>67</td>
<td>55</td>
<td>50</td>
<td>47</td>
<td>45</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>51</td>
<td>46</td>
<td>41</td>
<td>40</td>
<td>49</td>
<td>52</td>
<td>47</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>Madera-City</td>
<td></td>
</tr>
<tr>
<td>Fresno-First</td>
<td>95</td>
<td>80</td>
<td>69</td>
<td>61</td>
<td>60</td>
<td>58</td>
<td>63</td>
<td>58</td>
<td>60</td>
<td>54</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresno-Garland</td>
<td></td>
</tr>
<tr>
<td>Fresno-Winery</td>
<td>66</td>
<td>61</td>
<td>57</td>
<td>57</td>
<td>59</td>
<td>61</td>
<td>52</td>
<td>50</td>
<td>44</td>
<td>52</td>
<td>53</td>
<td>64</td>
<td>62</td>
<td>54</td>
<td>48</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Clovis</td>
<td>68</td>
<td>66</td>
<td>58</td>
<td>51</td>
<td>55</td>
<td>56</td>
<td>58</td>
<td>54</td>
<td>53</td>
<td>47</td>
<td>54</td>
<td>54</td>
<td>58</td>
<td>56</td>
<td>49</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Tranquility</td>
<td></td>
</tr>
<tr>
<td>Corcoran</td>
<td>66</td>
<td>70</td>
<td>66</td>
<td>52</td>
<td>55</td>
<td>58</td>
<td>61</td>
<td>52</td>
<td>53</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanford</td>
<td></td>
</tr>
<tr>
<td>Visalia</td>
<td>104</td>
<td>90</td>
<td>71</td>
<td>57</td>
<td>55</td>
<td>56</td>
<td>58</td>
<td>57</td>
<td>59</td>
<td>51</td>
<td>47</td>
<td>47</td>
<td>56</td>
<td>64</td>
<td>61</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Bakersfield-California</td>
<td>95</td>
<td>87</td>
<td>72</td>
<td>61</td>
<td>58</td>
<td>62</td>
<td>66</td>
<td>66</td>
<td>68</td>
<td>62</td>
<td>62</td>
<td>58</td>
<td>65</td>
<td>69</td>
<td>70</td>
<td>61</td>
<td>59</td>
</tr>
<tr>
<td>Bakersfield-Planz</td>
<td>78</td>
<td>68</td>
<td>54</td>
<td>54</td>
<td>60</td>
<td>68</td>
<td>70</td>
<td>70</td>
<td>62</td>
<td>52</td>
<td>44</td>
<td>56</td>
<td>67</td>
<td>72</td>
<td>61</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2-2. Trends in valley-wide annual average, 24-hour 98th percentile PM$_{2.5}$, and approximate number of days above the 24-hour standard

Figure 2-3. San Joaquin Valley trends in PM$_{2.5}$, NO$_x$, and VOC emissions.
2.4 Major PM$_{2.5}$ Components

Four monitoring sites collect PM$_{2.5}$ chemical composition data in the San Joaquin Valley: Bakersfield-California, Fresno-Garland, Modesto, and Visalia. The Bakersfield and Fresno speciation monitors are part of the national Chemical Speciation Network (CSN) while Modesto and Visalia are part of the State and Local Air Monitoring Stations (SLAMS) network. All four sites use SASS samplers (Spiral Aerosol Speciation Sampler, Met One, Grants Pass, OR) for data collection. The CSN data are analyzed by the Research Triangle Institute and the SLAMS data are analyzed by CARB. In recent years, changes were made to the carbon sampling and analysis method. The collection method changed from the MetOne SASS to the URG3000N sampler, which is very similar to the IMPROVE module C sampler. The analytical method was changed from the NIOSH-like thermal optical transmittance method to IMPROVE_A thermal optical reflectance. At Bakersfield, Modesto, and Visalia these changes were implemented in May of 2007, and the Fresno site switched to the new carbon system in April of 2009.

Figure 2-4 illustrates the average of the 2011-2013 annual average PM$_{2.5}$ compositions, as well as average of the top 10 percent of days at Bakersfield, Fresno, and Modesto over the same time period (Note that this composition can be somewhat different from those used in the DV calculation since DV is based on the FRM filter measurement and there is filter and measurement technique difference between FRM and CSN methods. More detail can be found in the main body of the modeling protocol or the USEPA modeling guidance). Organic matter (OM) was calculated by multiplying measured OC by 1.5 according to the OM/OC ratio measured at Fresno (Ge et al., 2012). Ammonium nitrate is the largest contributor to PM$_{2.5}$ on annual basis, accounting for approximately 40% of the PM$_{2.5}$ mass. Its contribution is even higher on peak PM$_{2.5}$ days, accounting for 55-60% of PM$_{2.5}$ mass. Formation mechanisms for ammonium nitrate are discussed in Section 2.5. OM is the second most abundant component, constituting approximately 30% of the PM$_{2.5}$ mass on an annual basis. Activities such as residential wood combustion, cooking, biomass burning, and mobile sources contribute to OM levels in the atmosphere. In addition, OM can also be formed in the atmosphere from oxidation of VOCs. Ammonium sulfate contributes approximately 10% of the PM$_{2.5}$ on an annual basis. Its contribution is half that on peak days, at approximately 5%. Elemental carbon and crustal materials typically contribute less than 10% to PM$_{2.5}$ levels in these cities, except at Bakersfield, where crustal materials contributed more than 10% on an annual basis.
Figure 2-4. Three-year average (2011-2013) and average peak day (top 10 percent over the same three years) PM$_{2.5}$ compositions at Bakersfield, Fresno, and Modesto.
2.5 Seasonality of PM$_{2.5}$ and Meteorological Conditions Leading to Elevated PM$_{2.5}$

PM$_{2.5}$ concentrations in the San Joaquin Valley exhibit a strong seasonal variability, with the highest concentrations occurring during the months of November through February. For example, Figure 2-5 represents the time series of 24-hour PM$_{2.5}$ concentrations at Bakersfield - California Avenue in 2013, which shows a vast majority of the elevated PM$_{2.5}$ episodes occurred in the first two and last two months of the year. The predominance of elevated PM$_{2.5}$ episodes during winter months results from a confluence of meteorological conditions conducive to the formation and buildup of PM$_{2.5}$, as well as wintertime sources of directly emitted PM$_{2.5}$.

![Figure 2-5. 24-hour PM$_{2.5}$ concentrations at Bakersfield- California Avenue in 2013.](image)

High PM$_{2.5}$ concentrations typically build up during multiday episodes under stagnant winter weather when a high pressure system (the Great Basin High) reduces the ventilation in the Valley (Ferreria et al., 2005). These stagnation events, sandwiched between two weather systems, are characterized by low wind speeds, moderate temperatures, vertical atmospheric stability, and high relative humidity. This stable atmosphere prevents precursor gases and primary (or directly emitted) PM$_{2.5}$ released at the surface in the Valley from rapidly dispersing. The moderate temperatures and
high relative humidity also enhance the formation of secondary particulate matter, especially ammonium nitrate and sulfate. In contrast, hotter and drier weather conditions in summer favor the evaporation of semi-volatile species from particles. Greater mixing height in summer can also help the ventilation of air pollutants. As a result, summertime PM$_{2.5}$ concentrations in the SJV are typically much lower compared to wintertime.

Wintertime PM$_{2.5}$ episodes can last for many days. At the beginning of an episode, concentrations are low but increase daily because of both the accumulation of primary pollutants and formation of secondary pollutants (Watson et al, 2002). Concentrations continue to build until there is a change in the weather significant enough to wash out particles through rainfall or increased ventilation of the Valley. For example, the two main episodes captured during the CRPAQS field study (starting in late 1999) had up to 18 days with PM$_{2.5}$ concentrations exceeding 65 µg/m3 (Turkiewicz et al., 2006). At the end of 2013 and the beginning of 2014, Bakersfield experienced 18 days with PM$_{2.5}$ concentrations greater than 35 µg/m3. During such episodes, urban sites typically record elevated concentrations earlier than rural sites, and as a consequence, have a greater number of days with high concentrations. However, due to the buildup of PM$_{2.5}$ concentrations, rural sites can achieve concentrations with similar magnitude as urban sites by the end of an episode.

The elevated wintertime PM$_{2.5}$ concentrations observed during pollution episodes are the result of both directly emitted particulates (known as primary particulate matter) and particulate matter formed via chemical and physical processes in the atmosphere (known as secondary particulate matter). Ammonium nitrate, the dominant PM$_{2.5}$ component throughout the Valley, is formed in the atmosphere as a result of chemical reactions between precursor pollutants such as NO$_x$, VOC, and ammonia. Carbonaceous aerosol, the second most abundant component, is mostly directly emitted, and is the result of contributions from wood combustion (e.g., wood burning for heating), mobile sources, and cooking.

As shown in Figure 2-4, carbonaceous aerosols and ammonium nitrate together comprise approximately 80 percent of the PM$_{2.5}$ mass. In winter, most of the carbonaceous aerosol is emitted into the atmosphere as directly emitted particles from sources such as wood burning, cooking, and vehicles (Ge et al., 2012; Young et al., 2016), and its transport is much more limited compared to gaseous precursors of ammonium nitrate. Ammonium nitrate can be formed both at the surface and aloft and can be fairly uniform across urban and rural sites. The spatial homogeneity of ammonium nitrate is influenced by higher wind speeds aloft (which allow more efficient transport), and the diurnal variation in mixing heights (which allow entrainment of ammonium nitrate down to the surface).
Ammonium nitrate is also formed via both daytime and nighttime chemistry. The amount of ammonium nitrate produced will be limited by the relative abundance of its precursors in the atmosphere. In the San Joaquin Valley, the nighttime formation is considered to be the most important pathway (Lurmann et al., 2006; Prabhakar et al., 2017). The nighttime pathway involves oxidation of NO$_2$, followed by reaction with ammonia to form ammonium nitrate. Since ammonia is abundant in the Valley in the winter, NO$_x$ is considered to be the limiting precursor (Chen, et al., 2014; Kleeman, et al., 2005; Parworth, et al., 2017; Prabhakar et al., 2017). In contrast, the daytime pathway also involves VOCs. Modeling studies that investigated winter episodes in the Valley estimated that reductions in VOC emissions have a small impact on nitrate concentrations only at very high PM$_{2.5}$ concentrations (Pun, et al., 2009). However, at current PM$_{2.5}$ levels the impact was very limited, and in some cases VOC reductions lead to an increase in PM$_{2.5}$ concentrations (Chen et al., 2014; Kleeman, et al., 2005).
REFERENCES

Cai C. et al., 2016, Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity, Atmos. Environ. 128, 28-44.

Fast JD, WI Gustafson, Jr, LK Berg, WJ Shaw, MS Pekour, MKB Shrivastava, JC Barnard, R Ferrare, CA Hostetler, J Hair, MH Erickson, T Jobson, B Flowers, MK Dubey, PhD, SR Springston, BR Pirce, L Dolislager, JR Pederson, and RA Zaveri. 2012, Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES), Atmospheric Chemistry and Physics 12, 1759-1783. doi:10.5194/acp-12-1759-2012.

Federal Register, 2006, Approval and Promulgation of Implementation Plans; Designation of Areas for Air Quality Planning Purposes; State of California; PM-10; Determination of Attainment for the San Joaquin Valley Nonattainment Area; Determination Regarding Applicability of Certain Clean Air Act Requirements, Final Rule, October 30th, 63642-63664.

Federal Register, 2008, Approval and Promulgation of Implementation Plans; Designation of Areas for Air Quality Planning Purposes; State of California; PM-10; Revision of Designation; Re-designation of the San Joaquin Valley Air Basin PM-10 Nonattainment Area to Attainment; Approval of PM-10 Maintenance Plan for the San Joaquin Valley Air Basin; Approval of Commitments for the East Kern PM-10 Nonattainment Area, Final Rule, November 12th, 66759-66775.

Turkiewicz, K., Magliano, K; and Najita, T., 2006, Comparison of Two Winter Air Quality Episodes during the California Regional Particulate Air Quality Study, Journal of Air & Waste Management Association, 56, 467-473.
