November 25, 2020

APPENDIX C

COST EFFECTIVENESS ANALYSIS FOR PROPOSED AMENDMENTS TO RULE 4306 AND RULE 4320

November 25, 2020

Appendix C: Cost Effectiveness Analysis

November 25, 2020

This page intentionally blank.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

APPENDIX C COST EFFECTIVENESS ANALYSIS

I. INTRODUCTION

The California Health and Safety Code 40920.6(a) requires the San Joaquin Valley Unified Air Pollution Control District to conduct both an "absolute" cost effectiveness analysis and an incremental cost effectiveness analysis of available emission control options prior to adopting each Best Available Retrofit Control Technology (BARCT) rule. The purpose of conducting a cost effectiveness analysis is to evaluate the economic reasonableness of the pollution control measure or rule. The analysis also serves as a guideline in developing the control requirements of a rule.

II. SUMMARY AND CONCLUSION

A. Absolute Cost Effectiveness Analysis

Absolute cost effectiveness examines the cost of reaching the proposed emission limits using the current emissions as a baseline. Cost effectiveness is calculated as the added annual cost (in \$/year) of a control technology or technique, divided by the emission reduction achieved (in tons reduced/year). The annual costs include annualized capital equipment costs and engineering design costs plus the annual labor and maintenance costs. Higher cost numbers are typically for smaller, low-use units since the annual costs result in relatively lower emission reductions. The analysis shows that the cost effectiveness values improve for larger units, units with a higher operating capacity factor, and more restrictive NOx limits relative to the current limits.

The detailed analyses showing the costs for installed capital equipment, electricity, fuel, and operations and maintenance costs are shown in Tables C-2 to C-40. Results are summarized in Table C-1, below. Rule 4306 establishes NOx limits that units must achieve to operate in the District and are based on technologic and economic feasibility. The Rule 4320 Advanced Emission Reduction Option (AERO) limits are meant to be the most stringent technologically feasible options but may not be economically feasible for all units to achieve. The controls required to reach the final NOx emission levels are either Selective Catalytic Reduction (SRC) or Ultra-Low NOx Burners (ULNB). As summarized in Table 1, cost for these controls can be very high and implementation may not be possible due to space limitations that would prevent installation of the control equipment. As discussed in the Staff Report, an option for operators to pay a lower-cost emission fee is included in the rule to mitigate the economic feasibility of the proposed limits.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

Table C	-1 Cost Effectiveness Sur	nmary
Compliance Scenario	Average Cost Effectiveness (\$/ton)	Absolute Cost Effectiveness Range (\$/ton)
RULE 4306		
ULNB (15 ppmv to 7 ppmv)	\$54,700	\$49,800 to \$62,900
Tuning (9 ppmv to 7 ppmv)	\$72,700 to 84,000	\$57,600 to \$100,700
ULNB (15 ppmv to 9 ppmv)	\$72,600	\$66,100 to \$83,500
Tuning (12 ppmv to 9 ppmv)	\$65,600	\$55,700 to \$82,400
ULNB (12 ppmv to 9 ppmv)	\$106,500	\$93,900 to \$128,300
SCR (9 ppmv to 5 ppmv)	\$22,000 to \$52,000	\$2,100 to \$70,100
SCR (7 ppmv to 5 ppmv)	\$44,100 to \$104,000	\$4,200 to \$140,200
Oil Field Steam Generator (15 ppmv to 9 ppmv)	\$43,100 to \$106,000	\$43,100 to \$118,500
Refinery Boilers (25 ppmv to 9 ppmv)	\$27,600	\$27,300 to \$28,000
Refinery Heaters (30 ppmv to 15 ppmv)	\$13,000	\$12,000 to \$15,200
RULE 4320		
SCR (9 ppmv to 2.5 ppmv)	\$13,400 to \$66,100	\$1,300 to \$145,900
SCR (7 ppmv to 2.5 ppmv)	\$19,300 to \$94,900	\$1,800 to \$209,600
Oil Field Steam Generator (7 ppmv to 5 ppmv)	\$50,600	\$50,600
Existing SCR Modification (5 ppmv to 2.5 ppmv)	\$13,200 to \$14,900	\$10,000 to \$17,400

Note: The Average Value is the average for the range of units with a spread indicating the different fuel usages that were analyzed. The Absolute Value is the lowest and highest values calculated under that compliance scenario and typically represent the cost for a large, high-use unit and a small, low-use unit. All values were rounded to two significant digits due to uncertainty in the data and variations between units.

B. Incremental Cost Effectiveness

Incremental cost effectiveness (ICE) indicates the additional cost for further controlling a unit from the proposed limit to the lowest possible level. Costs are evaluated similar to absolute costs but are only calculated for the controls and reductions beyond what is required to comply with the rule. ICE does not reveal the emission reduction potential of the control options, but examines the more stringent options which were not considered to be cost effective. Due to the increased costs and marginal emission reductions, the ICE calculations are typically much higher cost effectiveness than the absolute cost effectiveness values are not directly comparable.

The incremental cost effectiveness analysis result would be similar to those shown in Tables C-2 through C-40. For the ICE analysis, the emission reduction is the

difference between the current rule NOx limits to proposed NOx limits. Those tables show that the cost-effectiveness for the smaller units.

III. SOURCES OF COST DATA

District staff used cost information provided by control equipment manufacturers and vendors, and from stakeholders to conduct a cost effectiveness analysis of the proposed NOx limits in Proposed Rules 4306 and 4320. Specifically the data used in the analysis came from the following sources:

- 1. R.F. MacDonald Company
- 2. Nationwide Boiler
- 3. Esys The Energy Controls Company
- 4. PCL Industrial Services, Inc
- 5. Aera Energy LLC.
- 6. Zeeco, Inc.
- 7. Honeywell International Inc. (Callidus Technologies)
- 8. Kern Oil & Refining Co.
- 9. Western States Petroleum Association
- 10. Bakersfield Renewable Fuels, LLC

Cost information submitted to the District was used to create the range of costs located in Tables C-1 through C-40.

IV. COST EFFECTIVENESS ANALYSIS PROCEDURE

A. Cost Effectiveness Analysis Procedure

To illustrate the cost effectiveness of complying with the proposed limits, District staff's analysis provides varying cost effectiveness values depending on the size of the unit and the annual capacity factor that the unit is operated. The actual compliance costs and cost effectiveness values would depend on several factors such as the type of unit, site-specific operating conditions, and the appropriate emission limits the unit has to meet.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

B. Absolute Cost Effectiveness (ACE) Calculation Method

The absolute cost effectiveness of a control technology is calculated as follows:

- 1. Determine an equivalent annual equipment cost using a capital recovery factor based on an assumed interest rate of 10 percent and equipment life of 10 years. The annualized capital equipment cost is calculated by multiplying the installed capital equipment cost by the capital recovery factor of 0.163.
- 2. Determine the annual electricity, fuel, and operation and maintenance costs of a control technology.
- 3. Calculate the annual cost by adding the costs calculated in Step 1 and Step 2.
- 4. Calculate the emission reduction in tons/year.
- 5. Calculate the absolute cost effectiveness by dividing the cost in Step 3 by the emissions reduction in Step 4.

C. Incremental Cost Effectiveness (ICE) Calculation Method

The incremental cost effectiveness of a control technology is calculated as follows:

- 1. Identify the complying control options appropriate to the existing equipment.
- 2. Estimate the annual average cost of each control option by using Steps 1 to 3 of the ACE calculation method.
- 3. Calculate the potential emission reduction for each control option. The potential emission reductions (PE) are the difference between the current emissions and the potential emissions using the new control technology.

D. Cost Calculation Details

For Rule 4306, District staff analyzed the absolute cost effectiveness based on installing and operating an ultra low NOx (ULNB) burner system, tuning of the unit, or installing a selective catalytic reduction (SCR) system. The absolute cost effectiveness analysis was conducted for several sizes of units operating at 75% capacity factor for boilers and heaters. 80% capacity factor was used for oil field steam generators.

E. Cost Effectiveness Tables

Rule 4306 Category A.1 (>5 MMBtu/hr and ≤20 MMBtu/hr Fire Tube Boilers)

Category A.1a

Retrofit Technology Needed to Achieve Proposed Rule Limit of 7 ppmv by 2023:

C - 6

 New Ultra Low NOx (ULN) burner, Combustion Controls Upgrade, and FGR fan Upgrade

			10									
ULN Re	ULN Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 15 ppmv to 7 ppmv Cost Effectiveness											
Size	Total CapitalIncrementalIncrementalAnnualizedNOxSizeCostAnnualizedElectricityO&MCostreducedCE											
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx					
20	\$85,500	\$13,937	\$4,016	\$13,758	\$31,710	0.64	\$49,757					
15	\$68,400	\$11,149	\$3,346	\$10,318	\$24,814	0.48	\$51,915					
10	\$51,300	\$8,362	\$2,008	\$6,879	\$17,248	0.32	\$54,131					
>5	\$34,200	\$5,575	\$1,004	\$3,439	\$10,018	0.16	\$62,878					
	Average Cost Effectiveness \$54,670											

Table C-2

Category A.1b

Retrofit Technology Needed to Achieve Proposed Rule Limit of 7 ppmv by 2029:

• Tuning existing burner, Combustion Controls Upgrade, and FGR fan Upgrade

Based on meetings with manufacturers and vendors, the majority of units permitted at 9 ppmv can comply with the 7 ppmv NOx limit by tuning the existing burner, upgrading combustion controls, and upgrading the FGR fan. However, some units may be required to retrofit their units with ultra low NOx burners. The longer compliance schedule for these units will allow for technological advances and for operators to explore more cost effective options to comply with the proposed Rule 4306 or Rule 4320 NOx limits.

	Table C-3											
Tuni	Tuning Existing Burner Cost Effectiveness Calculation for Units at 75%											
	Capacity Factor											
		9 ppm\	<u>/ to 7 ppmv 0</u>	Cost Effective	eness							
	Total Capital		Incremental	Incremental	Annualized	NOx						
Size	Cost	Annualized	Electricity	O&M	Cost	reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx					
20	\$28,500	\$4,646	\$1,004	\$3,439	\$9,089	0.16	\$57,641					
15	\$24,700	\$4,026	\$837	\$2,580	\$7,442	0.12	\$62,931					
10	\$20,900	\$3,407	\$502	\$1,720	\$5,628	0.08	\$71,389					
>5	\$17,100	\$2,787	\$251	\$860	\$3,898	0.04	\$98,887					
	Average Cost											
					Effective	eness	\$72,712					

Appendix C: Cost Effectiveness Analysis

November 25, 2020

Rule 4306 Categories A.2-A.5 (>5 MMBtu/hr and ≤20 MMBtu/hr)

Category A.2-A.5a

Retrofit Technology Needed to Achieve Proposed Rule Limit of 9 ppmv by 2023:

New Ultra Low NOx (ULN) burner, Combustion Controls Upgrade, FGR fan • Upgrade

			lable	e C-4								
ULN Re	ULN Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 15 ppmv to 9 ppmv Cost Effectiveness											
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental O&M	Annualized Cost	NOx reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx					
20	\$85,500	\$13,937	\$4,016	\$13,758	\$31,710	0.48	\$66,115					
15	\$68,400	\$11,149	\$3,346	\$10,318	\$24,814	0.36	\$68,983					
10	\$51,300	\$8,362	\$2,008	\$6,879	\$17,248	0.24	\$71,927					
>5	\$34,200	\$5,575	\$1,004	\$3,439	\$10,018	0.12	\$83,550					
					Average Effective		\$72,644					

Category A.2-A.5b

Retrofit Technology Needed to Achieve Proposed Rule Limit of 9 ppmv by 2029:

- Tuning existing burner, Combustion Controls Upgrade, and FGR fan Upgrade
- New Ultra Low NOx (ULN) burner, Combustion Controls Upgrade, and FGR fan Upgrade

Based on meetings with manufacturers and vendors, some units permitted at 12 ppm can comply with the 9 ppm NOx limit by tuning the existing burner, upgrading combustion controls, and upgrading the FGR fan. Other units may be required to retrofit their units with ultra low NOx burners. The longer compliance schedule for these units will allow for technological advances and for operators to explore more cost effective options to comply with the proposed Rule 4306 or Rule 4320 NOx limits.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

			Table	e C-5									
Tuni	Tuning Existing Burner Cost Effectiveness Calculation for Units at 75%												
	Capacity Factor												
		12 ppm	v to 9 ppmv	Cost Effectiv	eness								
	Total Capital Incremental Incremental Annualized NOx												
Size													
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx						
20	\$28,500	\$4,646	\$2,008	\$6,879	\$13,532	0.24	\$55,667						
15	\$24,700	\$4,026	\$1,673	\$5,159	\$10,858	0.18	\$59,557						
10	\$20,900	\$3,407	\$1,004	\$3,439	\$7,850	0.12	\$64,585						
>5	\$17,100	\$2,787	\$502	\$1,720	\$5,009	0.06	\$82,421						
					Average	Cost							
					Effective	eness	\$65,558						

Table C-6

ULN Re	ULN Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 12 ppmv to 9 ppmv Cost Effectiveness											
SizeTotal Capital CostIncremental AnnualizedIncremental ElectricityAnnualizedNOx 												
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx					
20	\$85,500	\$13,937	\$2,008	\$6,879	\$22,823	0.24	\$93,887					
15	\$68,400	\$11,149	\$1,673	\$5,159	\$17,981	0.18	\$98,627					
10	\$51,300	\$8,362	\$1,004	\$3,439	\$12,805	0.12	\$105,353					
>5	\$34,200	\$5,575	\$502	\$1,720	\$7,796	0.06	\$128,286					
	Average Cost											
					Effective	eness	\$106,538					

Rule 4306 Category B.1 and B.2 (>20 MMBtu/hr and ≤75 MMBtu/hr)

Category B.1 and B.2

Retrofit Technology Needed to Achieve Proposed Rule Limit of 7 ppmv by 2023:

• Tuning existing burner, Combustion Controls Upgrade, and FGR fan Upgrade

Based on meetings with manufacturers and vendors, the majority of units permitted at 9 ppm can comply with the 7 ppm NOx limit by tuning the existing burner, upgrading combustion controls, and upgrading the FGR fan.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

			Table	C-7									
Tuni	Tuning Existing Burner Cost Effectiveness Calculation for Units at 75% Capacity Factor 9 ppmv to 7 ppmv Cost Effectiveness												
Size MMBtu/hr	Total Capital Cost \$	Annualized Capital Cost	Incremental Electricity \$/yr	Incremental O&M \$/yr	Annualized Cost \$/yr	NOx reduced tons/yr	CE \$/ton NOx						
75	\$95,190	\$15,516	\$13,385	\$17,197	\$46,098	0.59	\$77,961						
70 65	\$91,720 \$88,248	\$14,950 \$14,384	\$13,385 \$10,039	\$16,051 \$14,904	\$44,386 \$39,327	0.55 0.51	\$80,427 \$76,742						
60 55	\$84,776 \$81,304	\$13,818 \$13,253	\$10,039 \$10,039	\$13,758 \$12,611	\$37,615 \$35,903	0.47 0.43	\$79,517 \$82,797						
50	\$77,832	\$12,687	\$8,366	\$11,465	\$32,517	0.39	\$82,489						
45 40	\$74,360 \$70,888	\$12,121 \$11,555	\$6,693 \$5,019	\$10,318 \$9,172	\$29,131 \$25,746	0.35 0.32	\$82,111 \$81,640						
35 30	\$67,416 \$63,944	\$10,989 \$10,423	\$4,016 \$3,346	\$8,025 \$6,879	\$23,030 \$20,648	0.28	\$83,459 \$87,299						
25	\$60,472	\$9,857	\$2,677	\$5,732	\$18,266	0.20	\$92,675						
>20	>20 \$57,000 \$9,291 \$2,008 \$4,586 \$15,885 0.16 \$100,740 Average Cost Effectiveness \$83,988												

Rule 4306 Category B.3 (>75 MMBtu/hr)

Category B.3a

Retrofit Technology Needed to Achieve Proposed Rule Limit of 5 ppmv by 2023:

- SCR with anhydrous ammonia reagent system
- SCR with urea or aqueous ammonia reagent system with reagent vaporizer

Boilers and process heaters with a heat input greater than 75 MMBtu/hr require SCR retrofit to comply with the proposed 5 ppm NOx limit. SCR systems require a reducing agent to reduce NOx emissions. Anhydrous ammonia is the least expensive reagent, but can be hazardous. Aqueous ammonia and urea are safer reagents, but are more expensive because they are less efficient.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

				Tabl	e C-8				
	SCR R				llation for U ess – Anhydro			actor	
	Total Capital		Incremental	Incremental	Reagent Cost \$/yr		Annualized	NOx	
Size	Cost	Annualized	Electricity	Fuel	φ/ γι	Replacement \$/yr	Cost	reduced	CE
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx
200	\$689,000	\$112,307	-\$33,463	-\$91,717	\$7,260	\$12,221	\$6,608	3.15	\$2,095
150	\$689,000	\$112,307	-\$33,463	-\$68,788	\$5,445	\$12,221	\$27,722	2.37	\$11,721
125	\$689,000	\$112,307	-\$33,463	-\$57,323	\$4,537	\$12,221	\$38,279	1.97	\$19,421
100	\$627,000	\$102,201	-\$33,463	-\$45,859	\$3,630	\$11,110	\$37,619	1.58	\$23,858
95	\$627,000	\$102,201	-\$33,463	-\$43,566	\$3,448	\$11,110	\$39,731	1.50	\$26,523
90	\$627,000	\$102,201	-\$33,463	-\$41,273	\$3,267	\$11,110	\$41,842	1.42	\$29,485
85	\$570,000	\$92,910	-\$33,463	-\$38,980	\$3,085	\$10,100	\$33,653	1.34	\$25,109
80	\$570,000	\$92,910	-\$33,463	-\$36,687	\$2,904	\$10,100	\$35,764	1.26	\$28,352
>75	\$570,000	\$92,910	-\$33,463	-\$34,394	\$2,722	\$10,100	\$37,876	1.18	\$32,027
							Average Effective		\$22,066

Table C-9

	SCR R					nits at 75% 5% Urea Reag		actor	
Size MMBtu/hr	Total Capital Cost \$	Annualized Capital Cost	Incremental Electricity \$/yr	Incremental Fuel \$/yr	Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost \$/yr	NOx reduced tons/yr	CE \$/ton NOx
200	\$917,000	\$149,471	-\$33,463	-\$91,717	\$8,515	\$12,221	\$45,027	3.61	\$12,461
150	\$917,000	\$149,471	-\$33,463	-\$68,788	\$6,386	\$12,221	\$65,827	2.71	\$24,289
125	\$917,000	\$149,471	-\$33,463	-\$57,323	\$5,322	\$12,221	\$76,228	2.26	\$33,752
100	\$855,000	\$139,365	-\$33,463	-\$45,859	\$4,257	\$11,110	\$75,411	1.81	\$41,738
95	\$855,000	\$139,365	-\$33,463	-\$43,566	\$4,044	\$11,110	\$77,491	1.72	\$45,147
90	\$855,000	\$139,365	-\$33,463	-\$41,273	\$3,832	\$11,110	\$79,571	1.63	\$48,934
85	\$798,000	\$130,074	-\$33,463	-\$38,980	\$3,619	\$10,100	\$71,350	1.54	\$46,460
80	\$798,000	\$130,074	-\$33,463	-\$36,687	\$3,406	\$10,100	\$73,430	1.45	\$50,803
>75	\$798,000	\$130,074	-\$33,463	-\$34,394	\$3,193	\$10,100	\$75,510	1.36	\$55,725
							Average Effective		\$39,923

Appendix C: Cost Effectiveness Analysis

November 25, 2020

				Table	e C-10				
	SCR R					nits at 75%		actor	
		9 ppmv to 5	ppmv Cost i		-	eous Ammon	la Reagent		1
	Total Capital		Incremental	Incremental	Reagent Cost \$/yr	Catalyst Replacement	Annualized	NOx	
Size	Cost	Annualized	Electricity	Fuel	φ/yi	\$/yr	Cost	reduced	CE
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx
200	\$917,000	\$149,471	-\$33,463	-\$91,717	\$28,185	\$12,221	\$64,697	3.15	\$20,515
150	\$917,000	\$149,471	-\$33,463	-\$68,788	\$21,139	\$12,221	\$80,580	2.37	\$34,069
125	\$917,000	\$149,471	-\$33,463	-\$57,323	\$17,616	\$12,221	\$88,522	1.97	\$44,912
100	\$855,000	\$139,365	-\$33,463	-\$45,859	\$14,093	\$11,110	\$85,246	1.58	\$54,063
95	\$855,000	\$139,365	-\$33,463	-\$43,566	\$13,388	\$11,110	\$86,834	1.50	\$57,968
90	\$855,000	\$139,365	-\$33,463	-\$41,273	\$12,683	\$11,110	\$88,423	1.42	\$62,308
85	\$798,000	\$130,074	-\$33,463	-\$38,980	\$11,979	\$10,100	\$79,710	1.34	\$59,473
80	\$798,000	\$130,074	-\$33,463	-\$36,687	\$11,274	\$10,100	\$81,298	1.26	\$64,449
>75	\$798,000	\$130,074	-\$33,463	-\$34,394	\$10,569	\$10,100	\$82,887	1.18	\$70,089
							Average Effective		\$51,983

Category B.3b

Retrofit Technology Needed to Achieve Proposed Rule Limit of 5 ppmv by 2029:

- SCR with anhydrous ammonia reagent system
- SCR with urea or aqueous ammonia reagent system with reagent vaporizer

District staff determined that it was less cost effective for units permitted at 7 ppm or less to retrofit to meet the proposed 4306 NOx limit of 5 ppm than for units permitted at higher limits. The longer compliance schedule for these units will allow for technological advances and for operators to explore more cost effective options to comply with the proposed Rule 4306 or Rule 4320 NOx limits.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

				Table	e C-11							
	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 7 ppmv to 5 ppmv Cost Effectiveness – Anhydrous Ammonia Reagent											
Size	Total Capital Cost	Annualized	Incremental Electricity		Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE			
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	¢7.060		\$/yr	tons/yr	\$/ton NOx			
200 150	\$689,000 \$689,000	\$112,307 \$112,307	-\$33,463 -\$33,463	-\$91,717 -\$68,788	\$7,260 \$5,445	\$12,221 \$12,221	\$6,608 \$27,722	1.58 1.18	\$4,191 \$23,442			
125 100	\$689,000 \$627,000	\$112,307 \$102,201	-\$33,463 -\$33,463	-\$57,323 -\$45,859	\$4,537 \$3,630	\$12,221 \$11,110	\$38,279 \$37,619	0.99 0.79	\$38,842 \$47,716			
95	\$627,000	\$102,201	-\$33,463	-\$43,566	\$3,448	\$11,110	\$39,731	0.75	\$53,047			
90 85	\$627,000 \$570,000	\$102,201 \$92,910	-\$33,463 -\$33,463	-\$41,273 -\$38,980	\$3,267 \$3,085	\$11,110 \$10,100	\$41,842 \$33,653	0.71	\$58,969 \$50,217			
80	\$570,000	\$92,910	-\$33,463	-\$36,687	\$2,904	\$10,100	\$35,764	0.63	\$56,704			
>75	\$570,000	\$92,910	-\$33,463	-\$34,394	\$2,722	\$10,100	\$37,876 Average Effective		\$64,055 \$44,131			

Table C-12

	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 7 ppmv to 5 ppmv Cost Effectiveness – 32.5% Urea Reagent											
Size	Total Capital Cost	Annualized	Incremental Electricity		Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE			
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx			
200	\$917,000	\$149,471	-\$33,463	-\$91,717	\$8,278	\$12,221	\$44,790	1.58	\$28,406			
150	\$917,000	\$149,471	-\$33,463	-\$68,788	\$6,209	\$12,221	\$65,650	1.18	\$55,513			
125	\$917,000	\$149,471	-\$33,463	-\$57,323	\$5,174	\$12,221	\$76,080	0.99	\$77,199			
100	\$855,000	\$139,365	-\$33,463	-\$45,859	\$4,139	\$11,110	\$75,293	0.79	\$95,501			
95	\$855,000	\$139,365	-\$33,463	-\$43,566	\$3,932	\$11,110	\$77,379	0.75	\$103,312			
90	\$855,000	\$139,365	-\$33,463	-\$41,273	\$3,725	\$11,110	\$79,465	0.71	\$111,991			
85	\$798,000	\$130,074	-\$33,463	-\$38,980	\$3,518	\$10,100	\$71,250	0.67	\$106,320			
80	\$798,000	\$130,074	-\$33,463	-\$36,687	\$3,311	\$10,100	\$73,336	0.63	\$116,273			
>75	\$798,000	\$130,074	-\$33,463	-\$34,394	\$3,104	\$10,100	\$75,422	0.59	\$127,552			
							Average Effective		\$91,341			

Appendix C: Cost Effectiveness Analysis

November 25, 2020

	Table C-13												
	SCR R					nits at 75%		actor					
7 ppmv to 5 ppmv Cost Effectiveness – 19.5% Aqueous Ammonia Reagent													
					Reagent Cost								
	Total Capital		Incremental		\$/yr	Replacement	Annualized	NOx					
Size	Cost	Annualized	Electricity	Fuel		\$/yr	Cost	reduced	CE				
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx				
200	\$917,000	\$149,471	-\$33,463	-\$91,717	\$28,185	\$12,221	\$64,697	1.58	\$41,031				
150	\$917,000	\$149,471	-\$33,463	-\$68,788	\$21,139	\$12,221	\$80,580	1.18	\$68,138				
125	\$917,000	\$149,471	-\$33,463	-\$57,323	\$17,616	\$12,221	\$88,522	0.99	\$89,824				
100	\$855,000	\$139,365	-\$33,463	-\$45,859	\$14,093	\$11,110	\$85,246	0.79	\$108,126				
95	\$855,000	\$139,365	-\$33,463	-\$43,566	\$13,388	\$11,110	\$86,834	0.75	\$115,937				
90	\$855,000	\$139,365	-\$33,463	-\$41,273	\$12,683	\$11,110	\$88,423	0.71	\$124,616				
85	\$798,000	\$130,074	-\$33,463	-\$38,980	\$11,979	\$10,100	\$79,710	0.67	\$118,945				
80	\$798,000	\$130,074	-\$33,463	-\$36,687	\$11,274	\$10,100	\$81,298	0.63	\$128,898				
>75	\$798,000	\$130,074	-\$33,463	-\$34,394	\$10,569	\$10,100	\$82,887	0.59	\$140,177				
							Average Cost						
	Effectiveness \$103,966												

Rule 4306 Category C.1 (>5 MMBtu/hr and ≤20 MMBtu/hr Oil Field Steam Generators)

Retrofit Technology Needed to Achieve Proposed Rule Limit of 9 ppmv:

 New Ultra Low NOx (ULN) burner, Combustion Controls Upgrade, and FGR fan Upgrade

	Table C-14											
ULN Retrofit Cost Effectiveness Calculation for Units at 80% Capacity Factor 15 ppmv to 9 ppmv Cost Effectiveness												
Size	Avg Capital Cost	Annualized	Incremental Electricity	Incremental O&M	Annualized Cost	NOx reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx					
20	\$339,750	\$55,379	\$5,230	-	\$60,609	0.51	\$118,473					
18	\$275,198	\$44,857	\$2,615	-	\$47,472	0.46	\$103,105					
15	\$210,645	\$34,335	\$2,615	-	\$36,950	0.38	\$96,302					
					Average		¢405.000					
					Effective	eness	\$105,960					

Rule 4306 Category C.2 (>20 MMBtu/hr and ≤75 MMBtu/hr Oil Field Steam Generators)

Retrofit Technology Needed to Achieve Proposed Rule Limit of 9 ppmv:

November 25, 2020

 New Ultra Low NOx (ULN) burner, Combustion Controls Upgrade, and FGR fan Upgrade

Approximately 90% of the oilfield steam generators in this size range have a heat input of 62.5 MMBtu/hr. As this is the most common size unit, the cost effectiveness analysis focused on units with a heat input of 62.5 MMBtu/hr. These units are generally older and higher emitting than larger oilfield steam generators. Units in this category will be required to retrofit to meet the proposed 9 ppm NOx limit.

ULN Re	ULN Retrofit Cost Effectiveness Calculation for Units at 80% Capacity Factor 15 ppmv to 9 ppmv Cost Effectiveness												
Size MMBtu/hr	Annualized												
62.5	\$342,581	\$55,841	\$13,075	-	\$68,915	1.60	\$43,107						
	Average Cost Effectiveness												

Table C-15

Rule 4306 Category C.3 (>75 MMBtu/hr Oil Field Steam Generators)

98% of the oilfield steam generators in this size range have a heat input of 85 MMBtu/hr. These units are generally newer and have better control technology than smaller oilfield steam generators. All permitted units in this category already meet proposed Rule 4306 NOx limit of 7 ppmv.

Rule 4306 Category C.4 (>20 MMBtu/hr and ≤75 MMBtu/hr Oil Field Steam Generators fired on <50% PUC natural gas)

The District is proposing to maintain the Rule 4306 NOx limit of 15 ppmv for units fired on less than 50% PUC quality gas. This is because the impurities in waste gas can increase NOx emissions and ultra low NOx burners are designed to be operated on PUC quality gas. All permitted units in this category already meet proposed Rule 4306 limit of 15 ppmv.

Rule 4306 Category D.1 (>5 MMBtu/hr and ≤40 MMBtu/hr Boilers at Refineries)

The District is proposing to maintain the Rule 4306 NOx limit of 30 ppmv for smaller boilers at refineries. This is because many of these units are fired on non-PUC quality gas, the impurities in waste gas can increase NOx emissions, and ultra low NOx burners are designed to be operated on PUC quality gas. All permitted units in this category already meet proposed Rule 4306 limit of 30 ppmv. However, the units will be subject to a 5 ppmv NOx limit when the unit is replaced. The cost effectiveness

November 25, 2020

analysis below is for the incremental cost of installing an SCR system on the replacement unit.

Retrofit Technology Needed to Achieve Proposed Rule Limit of 5 ppmv upon replacement:

- SCR with anhydrous ammonia reagent system
- SCR with urea or aqueous ammonia reagent system

Table C-16

	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 30 ppmv to 5 ppmv Cost Effectiveness – <i>Anhydrous Ammonia Reagent</i>												
	Reagent Cost Catalyst												
	Total Capital		Incremental	Incremental	\$/yr	Replacement	Annualized	NOx					
Size	Cost	Annualized	Electricity	Fuel		\$/yr	Cost	reduced	CE				
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx				
30	\$407,290	\$66,388	-	-	\$2,681	\$5,509	\$74,578	2.99	\$24,975				
25	\$390,320	\$63,622	-	-	\$2,234	\$5,280	\$71,136	2.49	\$28,587				
							Average Effective		\$26,781				

Table C-17

	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 30 ppmv to 5 ppmv Cost Effectiveness – 32.5% Urea Reagent												
Size	Total Capital Cost	Annualized	Incremental Electricity		Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE				
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx				
30	\$705,970	\$115,073	-	-	\$3,087	\$5,509	\$123,669	2.99	\$41,415				
25	\$689,000	\$112,307	-	-	\$2,572	\$5,280	\$120,159	2.49	\$48,288				
	Average Cost Effectiveness \$44,852												

Appendix C: Cost Effectiveness Analysis

November 25, 2020

h	Table C-18												
SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 30 ppmv to 5 ppmv Cost Effectiveness – 19.5% Aqueous Reagent													
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental Fuel	Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE				
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx				
30	\$705,970	\$115,073	-	-	\$10,634	\$5,509	\$131,216	2.99	\$43,943				
25	\$689,000	\$112,307	-	-	\$8,861	\$5,280	\$126,448	2.49	\$50,815				
	Average Cost Effectiveness												

Rule 4306 Category D.2 (>40 MMBtu/hr and ≤110 MMBtu/hr Boilers at Refineries)

Retrofit/Replacement Technology Needed to Achieve Proposed Rule Limit of 9 ppmv by **2023**:

 New Ultra Low NOx (ULN) burner, Combustion Controls Upgrade, and FGR fan Upgrade

The District is proposing a Rule 4306 NOx limit of 9 ppmv for boilers at refineries with a heat input greater than 40 MMBtu/hr and less than or equal to 110 MMBtu/hr. This NOx limit is lower for process heaters. Based on conversations with operators, vendors, and manufacturers, boilers in this size range are capable of meeting lower NOx limits than process heaters. The cost effectiveness analysis below is based on units retrofitting from a 25 ppmv NOx limit, because all units in this size range are currently permitted at 25 ppmv, to a 9 ppmv limit.

	Table C-19											
ULN Re	ULN Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 25 ppmv to 9 ppmv Cost Effectiveness											
		25 ppm	v to 9 ppmv	LOST Effectiv	eness							
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental O&M	Annualized Cost	NOx reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx					
100	\$438,900	\$71,541	\$33,463	\$68,788	\$173,791	6.37	\$27,270					
95	\$418,950	\$68,289	\$33,463	\$65,349	\$167,100	6.05	\$27,600					
90	\$399,000	\$65,037	\$33,463	\$61,909	\$160,409	5.74	\$27,967					
					Average							
					Effective	eness	\$27,613					

Retrofit Technology Needed to Achieve Proposed Rule Limit of 5 ppmv <u>upon</u> <u>replacement</u>:

C - 17

November 25, 2020

- SCR with anhydrous ammonia reagent system
- SCR with urea or aqueous ammonia reagent system

Units in this size range will be subject to a 5 ppmv NOx limit when the unit is replaced. The cost effectiveness analysis below is for the incremental cost of installing an SCR system on the replacement unit.

SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 25 ppmv to 5 ppmv Cost Effectiveness – Anhydrous Ammonia Reagent

Table C-20

							Average Effective		\$20,358
90	\$821,370	\$133,883	-	-	\$8,042	\$11,110	\$153,035	7.15	\$21,389
95	\$821,370	\$133,883	-	-	\$8,488	\$11,110	\$153,482	7.55	\$20,323
100	\$821,370	\$133,883	-	-	\$8,935	\$11,110	\$153,929	7.95	\$19,363
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental Fuel	0	Replacement \$/yr	Annualized Cost	NOx reduced	CE
					Reagent Cost	Catalyst			

Table C-21

SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 30 ppmv to 5 ppmv Cost Effectiveness – 32.5% Urea Reagent Reagent Cost Catalvst Total Capital Replacement Annualized NOx Incremental Incremental \$/yr CE Size Cost Electricity Fuel \$/vr Cost reduced Annualized MMBtu/hr \$ Capital Cost \$/yr \$/vr tons/yr \$/ton NOx \$/yr \$25,657 100 \$1,120,050 \$182,568 \$10.289 \$11.110 \$203,967 7.95 --\$1,120,050 \$182,568 \$9,774 \$11,110 \$203,452 7.55 \$26,939 95 -_ 90 \$1,120,050 \$182,568 \$9,260 \$11,110 \$202,938 7.15 \$28,364 --Average Cost Effectiveness \$26,987

Appendix C: Cost Effectiveness Analysis

November 25, 2020

	Table C-22												
	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 30 ppmv to 5 ppmv Cost Effectiveness – 19.5% Aqueous Reagent												
Size	Total Capital SizeTotal Capital CostIncremental ElectricityReagent Cost 												
MMBtu/hr		Capital Cost	\$/yr	\$/yr	• • • • • • •		\$/yr	tons/yr	\$/ton NOx				
100	\$1,120,050	\$182,568	-	-	\$35,445	\$11,110	\$229,123	7.95	\$28,822				
95	\$1,120,050	\$182,568	-	-	\$33,673	\$11,110	\$227,351	7.55	\$30,104				
90	\$1,120,050	\$182,568	-	-	\$31,901	\$11,110	\$225,579	7.15	\$31,529				
	Average Cost Effectiveness \$3												

Rule 4306 Category D.3 (>110 MMBtu/hr Boilers at Refineries)

The District is proposing to maintain the Rule 4306 NOx limit of 5 ppmv for boilers with a heat input greater than 110 MMBtu/hr. There is only one boiler in this size range operating in the District. This unit has a SCR system and meets the proposed Rule 4306 limit of 5 ppmv.

Rule 4306 Category D.4 (>5 MMBtu/hr and ≤40 MMBtu/hr Process Heaters at Refineries)

The District is proposing to maintain the Rule 4306 NOx limit of 30 ppmv for smaller process heaters at refineries. This is because many of these units are fired on non-PUC quality gas, the impurities in waste gas can increase NOx emissions, and ultra low NOx burners are designed to be operated on PUC quality gas. All permitted units in this category already meet proposed Rule 4306 limit of 30 ppmv. However, the units will be subject to a 9 ppmv NOx limit when the unit is replaced. The cost effectiveness analysis below is for the incremental cost of installing ultra low NOx burners, combustion controls, and FGR on the replacement unit.

Retrofit Technology Needed to Achieve Proposed Rule Limit of 9 ppmv <u>upon</u> <u>replacement</u>.

 New Ultra Low NOx (ULN) burner, Combustion Controls Upgrade, and FGR fan Upgrade

Appendix C: Cost Effectiveness Analysis

November 25, 2020

-	Table C-23											
ULN Re	ULN Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 30 ppmv to 9 ppmv Cost Effectiveness											
SizeTotal Capital CostIncremental AnnualizedIncremental ElectricityAnnualizedNOx 												
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx					
40	144,960	23,585	7,355	-	30,940	3.29	9,404					
35	124,009	20,176	7,355	-	27,531	2.87	9,593					
30	103,058	16,768	7,355	-	24,123	2.47	9,766					
25	93,431	15,201	7,355	-	22,556	2.06	10,950					
20	72,480	11,792	7,355	-	19,147	1.64	11,675					
15	62,854	10,226	7,355	-	17,581	1.23	14,293					
10	41,903	6,818	7,355	-	14,173	0.83	11,764					
>5	20,951	3,409	7,355	-	10,764	0.41	26,254					
					Average Effective		12,962					

Rule 4306 Category D.5 (>40 MMBtu/hr and ≤110 MMBtu/hr Process Heaters at Refineries)

Retrofit Technology Needed to Achieve Proposed Rule Limit of 15 ppmv by 2023:

 New Ultra Low NOx (ULN) burner, Combustion Controls Upgrade, and FGR fan Upgrade

The District is proposing a Rule 4306 NOx limit of 15 ppmv for process heaters at refineries with a heat input greater than 40 MMBtu/hr and less than or equal to 110 MMBtu/hr. This NOx limit is higher for process heaters than for similarly sized boilers. Based on conversations with operators, vendors, and manufacturers, process heaters in this size range are not capable of meeting as low of NOx limits as boilers. The cost effectiveness analysis below is based on units retrofitting from a 30 ppmv NOx limit because the majority of units in this size range are currently permitted at 30 ppmv.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

	Table C-24											
ULN Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 30 ppmv to 15 ppmv Cost Effectiveness												
Total CapitalIncrementalIncrementalAnnualizedNOxSizeCostAnnualizedElectricityO&MCostreducedCE												
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx					
110	404,303	65,780	12,257	-	78,037	6.50	12,006					
100	362,400	58,962	12,257	-	71,219	5.91	12,051					
80	289,920	47,170	12,257	-	59,427	4.73	12,564					
60	217,440	35,377	12,257	-	47,634	3.55	13,418					
40	144,960	23,585	12,257	-	35,842	2.36	15,187					
Average Cost Effectiveness 1												

Rule 4306 Category D.6 (>110 MMBtu/hr Process Heaters at Refineries)

The District is proposing to maintain the Rule 4306 NOx limit of 5 ppmv for process heaters with a heat input greater than 110 MMBtu/hr. There is only one unit in this size range operating in the District. This unit has a SCR system and meets the proposed Rule 4306 limit of 5 ppmv.

Rule 4306 Category E (Low Use Boilers – 9-30 Billion Btu/yr)

The District is proposing to maintain the Rule 4306 NOx limit of 30 ppmv units with fuel use less than 30 billion Btu/year. This category is necessary for low use and emergency units. District staff determined that it was not cost effective to require units with low fuel usage to retrofit to meet lower NOx limits. All permitted units in this category already meet proposed Rule 4306 limit of 30 ppmv.

Rule 4320 Cost Effectiveness Discussion

Cost effectiveness for Rule 4320 depend on the current level of controls, unit size, fuel usage and NOx emission limits. For larger, high operating capacity units, SCR costs may be as low as \$1,000 per ton due to the cost savings from decreased fuel and electricity usage. SCR costs for smaller units, with lower total emissions, can be as high as \$210,000 per ton. Below are some examples of cost effectiveness analyses for units retrofitting to meet proposed Rule 4320 NOx limits.

Rule 4320 Categories B.1 and B.2 (>20 MMBtu/hr and ≤75 MMBtu/hr)

Retrofit Technology Needed to Achieve Proposed Rule Limit of 2.5 ppmv:

• SCR with anhydrous ammonia reagent system

C - 21

November 25, 2020

SCR with urea or aqueous ammonia reagent system with reagent vaporizer

Boilers and process heaters with a heat input greater than 20 MMBtu/hr and less than or equal to 75 MMBtu require SCR retrofit to comply with the proposed 2.5 ppm NOx limit. SCR systems require a reducing agent to reduce NOx emissions. Anhydrous ammonia is the least expensive reagent, but can be hazardous. Aqueous ammonia and urea are safer reagents, but are more expensive because they are less efficient. Complying with a 2.5 ppmv NOx limit requires an additional layer of catalyst and more reagent than SCR systems designed to meet a higher NOx limit.

	Table C-25												
	SCR R					nits at 75%		actor					
			2.5 ppmv Co		2	ous Ammonia	Reagent						
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental Fuel	Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE				
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx				
75	\$427,500	\$69,683	-\$33,463	-\$34,394	\$2,722	\$7,575	\$12,123	1.36	\$8,947				
70	\$414,550	\$67,572	-\$33,463	-\$32,101	\$2,541	\$7,346	\$11,894	1.26	\$9,405				
65	\$401,595	\$65,460	-\$33,463	-\$29,808	\$2,359	\$7,116	\$11,664	1.17	\$9,932				
60	\$388,640	\$63,348	-\$33,463	-\$27,515	\$2,178	\$6,886	\$11,435	1.08	\$10,548				
55	\$375,685	\$61,237	-\$33,463	-\$25,222	\$1,996	\$6,657	\$11,205	0.99	\$11,276				
50	\$362,730	\$59,125	-\$16,731	-\$22,929	\$1,815	\$6,427	\$27,707	0.90	\$30,670				
45	\$349,775	\$57,013	-\$16,731	-\$20,636	\$1,633	\$6,198	\$27,477	0.81	\$33,795				
40	\$336,820	\$54,902	-\$16,731	-\$18,343	\$1,452	\$5,968	\$27,247	0.72	\$37,702				
35	\$323,865	\$52,790	-\$10,039	-\$16,051	\$1,270	\$5,739	\$33,710	0.63	\$53,308				
30	\$310,910	\$50,678	-\$6,693	-\$13,758	\$1,089	\$5,509	\$36,826	0.54	\$67,942				
25	\$297,955	\$48,567	-\$6,693	-\$11,465	\$907	\$5,280	\$36,596	0.45	\$81,022				
>20	\$285,000	\$46,455	-\$6,693	-\$9,172	\$726	\$5,050	\$36,367	0.36	\$100,641				
							Average Effective	\$37,932					

Appendix C: Cost Effectiveness Analysis

November 25, 2020

_				Table	e C-26									
	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 9 ppmv to 2.5 ppmv Cost Effectiveness – Anhydrous Ammonia Reagent													
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental Fuel	Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx					
75	\$427,500	\$69,683	-\$33,463	-\$34,394	\$2,722	\$7,575	\$12,123	1.95	\$6,229					
70	\$414,550	\$67,572	-\$33,463	-\$32,101	\$2,541	\$7,346	\$11,894	1.82	\$6,548					
65	\$401,595	\$65,460	-\$33,463	-\$29,808	\$2,359	\$7,116	\$11,664	1.69	\$6,915					
60	\$388,640	\$63,348	-\$33,463	-\$27,515	\$2,178	\$6,886	\$11,435	1.56	\$7,344					
55	\$375,685	\$61,237	-\$33,463	-\$25,222	\$1,996	\$6,657	\$11,205	1.43	\$7,850					
50	\$362,730	\$59,125	-\$16,731	-\$22,929	\$1,815	\$6,427	\$27,707	1.30	\$21,353					
45	\$349,775	\$57,013	-\$16,731	-\$20,636	\$1,633	\$6,198	\$27,477	1.17	\$23,528					
40	\$336,820	\$54,902	-\$16,731	-\$18,343	\$1,452	\$5,968	\$27,247	1.04	\$26,248					
35	\$323,865	\$52,790	-\$10,039	-\$16,051	\$1,270	\$5,739	\$33,710	0.91	\$37,113					
30	\$310,910	\$50,678	-\$6,693	-\$13,758	\$1,089	\$5,509	\$36,826	0.78	\$47,301					
25	\$297,955	\$48,567	-\$6,693	-\$11,465	\$907	\$5,280	\$36,596	0.65	\$56,407					
>20	\$285,000	\$46,455	-\$6,693	-\$9,172	\$726	\$5,050	\$36,367	0.52	\$70,067					
							Average Effective		\$26,409					

Table C-27

	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 7 ppmv to 2.5 ppmv Cost Effectiveness – 32.5% Urea Reagent													
	Reagent Cost Catalyst													
	Total Capital		Incremental	Incremental	keagent Cost \$/yr	Replacement	Annualized	NOx						
Size	Cost		Electricity	Fuel	φ/ y i	\$/yr	Cost	reduced	CE					
		Annualized				φ/ y1			-					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr		•	\$/yr	tons/yr	\$/ton NOx					
75	\$655,000	\$106,765	-\$33,463	-\$34,394	\$3,193	\$7,575	\$49,676	1.36	\$36,660					
70	\$642,090	\$104,661	-\$33,463	-\$32,101	\$2,980	\$7,346	\$49,422	1.26	\$39,078					
65	\$629,181	\$102,557	-\$33,463	-\$29,808	\$2,767	\$7,116	\$49,169	1.17	\$41,868					
60	\$616,272	\$100,452	-\$33,463	-\$27,515	\$2,554	\$6,886	\$48,915	1.08	\$45,123					
55	\$603,363	\$98,348	-\$33,463	-\$25,222	\$2,342	\$6,657	\$48,661	0.99	\$48,969					
50	\$590,454	\$96,244	-\$16,731	-\$22,929	\$2,129	\$6,427	\$65,139	0.90	\$72,107					
45	\$577,545	\$94,140	-\$16,731	-\$20,636	\$1,916	\$6,198	\$64,886	0.81	\$79,806					
40	\$564,636	\$92,036	-\$16,731	-\$18,343	\$1,703	\$5,968	\$64,632	0.72	\$89,431					
35	\$551,727	\$89,932	-\$10,039	-\$16,051	\$1,490	\$5,739	\$71,071	0.63	\$112,389					
30	\$538,818	\$87,827	-\$6,693	-\$13,758	\$1,277	\$5,509	\$74,163	0.54	\$136,827					
25	\$525,909	\$85,723	-\$6,693	-\$11,465	\$1,064	\$5,280	\$73,910	0.45	\$163,630					
>20	\$513,000	\$83,619	-\$6,693	-\$9,172	\$851	\$5,050	\$73,656	0.36	\$203,836					
							Average	Cost						
							Effective	eness	\$89,144					

Appendix C: Cost Effectiveness Analysis

November 25, 2020

				Table	e C-28									
	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 9 ppmv to 2.5 ppmv Cost Effectiveness – 32.5% Urea Reagent													
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental Fuel	Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx					
75	\$655,000	\$106,765	-\$33,463	-\$34,394	\$3,193	\$7,575	\$49,676	1.95	\$25,523					
70	\$642,090	\$104,661	-\$33,463	-\$32,101	\$2,980	\$7,346	\$49,422	1.82	\$27,206					
65	\$629,181	\$102,557	-\$33,463	-\$29,808	\$2,767	\$7,116	\$49,169	1.69	\$29,148					
60	\$616,272	\$100,452	-\$33,463	-\$27,515	\$2,554	\$6,886	\$48,915	1.56	\$31,414					
55	\$603,363	\$98,348	-\$33,463	-\$25,222	\$2,342	\$6,657	\$48,661	1.43	\$34,093					
50	\$590,454	\$96,244	-\$16,731	-\$22,929	\$2,129	\$6,427	\$65,139	1.30	\$50,201					
45	\$577,545	\$94,140	-\$16,731	-\$20,636	\$1,916	\$6,198	\$64,886	1.17	\$55,561					
40	\$564,636	\$92,036	-\$16,731	-\$18,343	\$1,703	\$5,968	\$64,632	1.04	\$62,262					
35	\$551,727	\$89,932	-\$10,039	-\$16,051	\$1,490	\$5,739	\$71,071	0.91	\$78,246					
30	\$538,818	\$87,827	-\$6,693	-\$13,758	\$1,277	\$5,509	\$74,163	0.78	\$95,259					
25	\$525,909	\$85,723	-\$6,693	-\$11,465	\$1,064	\$5,280	\$73,910	0.65	\$113,920					
>20	\$513,000	\$83,619	-\$6,693	-\$9,172	\$851	\$5,050	\$73,656	0.52	\$141,911					
							Average Effective		\$62,062					

Table C-29

	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 7 ppmv to 2.5 ppmv Cost Effectiveness – 19.5% Aqueous Ammonia Reagent													
					Reagent Cost		na rioùgent							
	Total Capital		Incremental	Incremental	\$/yr	Replacement	Annualized	NOx						
Size	Cost	Annualized	Electricity	Fuel	φ/ γι	\$/yr	Cost	reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr		4. y	\$/yr	tons/yr	\$/ton NOx					
75	\$655,000	\$106,765	-\$33,463	-\$34,394	\$11,050	\$7,575	\$57,533	1.36	\$42,458					
70	\$642,090	\$104,661	-\$33,463	-\$32,101	\$10,313	\$7,346	\$56,756	1.26	\$44,876					
65	\$629,181	\$102,557	-\$33,463	-\$29,808	\$9,577	\$7,116	\$55,978	1.17	\$47,666					
60	\$616,272	\$100,452	-\$33,463	-\$27,515	\$8,840	\$6,886	\$55,201	1.08	\$50,921					
55	\$603,363	\$98,348	-\$33,463	-\$25,222	\$8,103	\$6,657	\$54,423	0.99	\$54,768					
50	\$590,454	\$96,244	-\$16,731	-\$22,929	\$7,367	\$6,427	\$70,377	0.90	\$77,905					
45	\$577,545	\$94,140	-\$16,731	-\$20,636	\$6,630	\$6,198	\$69,600	0.81	\$85,605					
40	\$564,636	\$92,036	-\$16,731	-\$18,343	\$5,893	\$5,968	\$68,822	0.72	\$95,229					
35	\$551,727	\$89,932	-\$10,039	-\$16,051	\$5,157	\$5,739	\$74,737	0.63	\$118,188					
30	\$538,818	\$87,827	-\$6,693	-\$13,758	\$4,420	\$5,509	\$77,306	0.54	\$142,625					
25	\$525,909	\$85,723	-\$6,693	-\$11,465	\$3,683	\$5,280	\$76,529	0.45	\$169,429					
>20	\$513,000	\$83,619	-\$6,693	-\$9,172	\$2,947	\$5,050	\$75,751	0.36	\$209,634					
							Average	Cost						
							Effective		\$94,942					

C - 24

Appendix C: Cost Effectiveness Analysis

November 25, 2020

				Table	e C-30									
	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 9 ppmv to 2.5 ppmv Cost Effectiveness – 19.5% Aqueous Ammonia Reagent													
	Reagent Cost Reagent Cost Catalyst													
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental Fuel	\$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx					
75	\$655,000	\$106,765	-\$33,463	-\$34,394	\$11,050	\$7,575	\$57,533	1.95	\$29,559					
70	\$642,090	\$104,661	-\$33,463	-\$32,101	\$10,313	\$7,346	\$56,756	1.82	\$31,243					
65	\$629,181	\$102,557	-\$33,463	-\$29,808	\$9,577	\$7,116	\$55,978	1.69	\$33,185					
60	\$616,272	\$100,452	-\$33,463	-\$27,515	\$8,840	\$6,886	\$55,201	1.56	\$35,451					
55	\$603,363	\$98,348	-\$33,463	-\$25,222	\$8,103	\$6,657	\$54,423	1.43	\$38,129					
50	\$590,454	\$96,244	-\$16,731	-\$22,929	\$7,367	\$6,427	\$70,377	1.30	\$54,237					
45	\$577,545	\$94,140	-\$16,731	-\$20,636	\$6,630	\$6,198	\$69,600	1.17	\$59,598					
40	\$564,636	\$92,036	-\$16,731	-\$18,343	\$5,893	\$5,968	\$68,822	1.04	\$66,299					
35	\$551,727	\$89,932	-\$10,039	-\$16,051	\$5,157	\$5,739	\$74,737	0.91	\$82,283					
30	\$538,818	\$87,827	-\$6,693	-\$13,758	\$4,420	\$5,509	\$77,306	0.78	\$99,296					
25	\$525,909	\$85,723	-\$6,693	-\$11,465	\$3,683	\$5,280	\$76,529	0.65	\$117,957					
>20	\$513,000	\$83,619	-\$6,693	-\$9,172	\$2,947	\$5,050	\$75,751	0.52	\$145,948					
							Average Effective		\$66,099					

Rule 4320 Category B.3 (>75 MMBtu/hr Boilers)

Category B.3a

Retrofit Technology Needed to Achieve Proposed Rule Limit of 2.5 ppmv by 2023:

- SCR with anhydrous ammonia reagent system
- SCR with urea or aqueous ammonia reagent system and reagent vaporizer

Boilers and process heaters with a heat input greater than 75 MMBtu/hr require SCR retrofit to comply with the proposed 2.5 ppmv NOx limit. SCR systems require a reducing agent to reduce NOx emissions. Anhydrous ammonia is the least expensive reagent, but can be hazardous. Aqueous ammonia and urea are safer reagents, but are more expensive because they are less efficient. Complying with a 2.5 ppmv NOx limit requires an additional layer of catalyst and more reagent than SCR systems designed to meet a higher NOx limit.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

				Table	e C-31									
	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 7 ppmv to 2.5 ppmv Cost Effectiveness – Anhydrous Ammonia Reagent													
Size	Total Capital SizeTotal Capital CostIncremental ElectricityIncremental 													
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr	#7 000		\$/yr	tons/yr	\$/ton NOx					
200 150	\$689,000 \$689,000	\$112,307 \$112,307	-\$33,463 -\$33,463	-\$91,717 -\$68,788	\$7,260 \$5,445	\$12,221 \$12,221	\$6,608 \$27,722	3.61 2.71	\$1,829 \$10,229					
125 100	\$689,000 \$627,000	\$112,307 \$102,201	-\$33,463 -\$33,463	-\$57,323 -\$45,859	\$4,537 \$3,630	\$12,221 \$11,110	\$38,279 \$37,619	2.26 1.81	\$16,949 \$20,822					
95	\$627,000	\$102,201	-\$33,463	-\$43,566	\$3,448	\$11,110	\$39,731	1.72	\$23,148					
90 85	\$627,000 \$570,000	\$102,201 \$92,910	-\$33,463 -\$33,463	-\$41,273 -\$38,980	\$3,267 \$3,085	\$11,110 \$10,100	\$41,842 \$33,653	1.63 1.54	\$25,732 \$21,913					
80 >75	\$570,000 \$570,000	\$92,910 \$92,910	-\$33,463 -\$33,463	-\$36,687 -\$34,394	\$2,904 \$2,722	\$10,100 \$10,100	\$35,764 \$37,876	1.45 1.36	\$24,743 \$27,951					
		•					Average Effective		\$19,257					

Table C-32

	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 9 ppmv to 2.5 ppmv Cost Effectiveness – <i>Anhydrous Ammonia Reagent</i>													
Size	Total Capital Cost		Incremental Electricity		Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE					
MMBtu/hr	\$	Annualized Capital Cost	\$/yr	\$/yr		φ/ y1	\$/yr	tons/yr	€L \$/ton NOx					
200	\$689,000	\$112,307	-\$33,463	-\$91,717	\$7,260	\$12,221	\$6,608	5.19	\$1,273					
150	\$689,000	\$112,307	-\$33,463	-\$68,788	\$5,445	\$12,221	\$27,722	3.89	\$7,122					
125	\$689,000	\$112,307	-\$33,463	-\$57,323	\$4,537	\$12,221	\$38,279	3.24	\$11,800					
100	\$627,000	\$102,201	-\$33,463	-\$45,859	\$3,630	\$11,110	\$37,619	2.60	\$14,496					
95	\$627,000	\$102,201	-\$33,463	-\$43,566	\$3,448	\$11,110	\$39,731	2.47	\$16,115					
90	\$627,000	\$102,201	-\$33,463	-\$41,273	\$3,267	\$11,110	\$41,842	2.34	\$17,915					
85	\$570,000	\$92,910	-\$33,463	-\$38,980	\$3,085	\$10,100	\$33,653	2.21	\$15,256					
80	\$570,000	\$92,910	-\$33,463	-\$36,687	\$2,904	\$10,100	\$35,764	2.08	\$17,226					
>75	\$570,000	\$92,910	-\$33,463	-\$34,394	\$2,722	\$10,100	\$37,876	1.95	\$19,460					
	Average Cost Effectiveness \$13,407													

Appendix C: Cost Effectiveness Analysis

November 25, 2020

				Table	e C-33										
	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 7 ppmv to 2.5 ppmv Cost Effectiveness – <i>32.5% Urea Reagent</i>														
		7 ppi	iv to 2.5 ppi	IV COSt Effec	Reagent Cost		Jen								
	Total Capital		Incremental	Incremental	\$/yr	Replacement	Annualized	NOx							
Size	Cost	Annualized	Electricity	Fuel		\$/yr	Cost	reduced	CE						
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx						
200	\$917,000	\$149,471	-\$33,463	-\$91,717	\$8,515	\$12,221	\$45,027	3.61	\$12,461						
150	\$917,000	\$149,471	-\$33,463	-\$68,788	\$6,386	\$12,221	\$65,827	2.71	\$24,289						
125	\$917,000	\$149,471	-\$33,463	-\$57,323	\$5,322	\$12,221	\$76,228	2.26	\$33,752						
100	\$855,000	\$139,365	-\$33,463	-\$45,859	\$4,257	\$11,110	\$75,411	1.81	\$41,738						
95	\$855,000	\$139,365	-\$33,463	-\$43,566	\$4,044	\$11,110	\$77,491	1.72	\$45,147						
90	\$855,000	\$139,365	-\$33,463	-\$41,273	\$3,832	\$11,110	\$79,571	1.63	\$48,934						
85	\$798,000	\$130,074	-\$33,463	-\$38,980	\$3,619	\$10,100	\$71,350	1.54	\$46,460						
80	\$798,000	\$130,074	-\$33,463	-\$36,687	\$3,406	\$10,100	\$73,430	1.45	\$50,803						
>75	\$798,000	\$130,074	-\$33,463	-\$34,394	\$3,193	\$10,100	\$75,510	1.36	\$55,725						
							Average Effective		\$39,923						

Table C-34

	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 9 ppmv to 2.5 ppmv Cost Effectiveness – 32.5% Urea Reagent													
					Reagent Cost	Catalyst								
	Total Capital		Incremental	Incremental	\$/yr	Replacement	Annualized	NOx						
Size	Cost	Annualized	Electricity	Fuel		\$/yr	Cost	reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx					
200	\$917,000	\$149,471	-\$33,463	-\$91,717	\$8,515	\$12,221	\$45,027	5.19	\$8,675					
150	\$917,000	\$149,471	-\$33,463	-\$68,788	\$6,386	\$12,221	\$65,827	3.89	\$16,910					
125	\$917,000	\$149,471	-\$33,463	-\$57,323	\$5,322	\$12,221	\$76,228	3.24	\$23,498					
100	\$855,000	\$139,365	-\$33,463	-\$45,859	\$4,257	\$11,110	\$75,411	2.60	\$29,058					
95	\$855,000	\$139,365	-\$33,463	-\$43,566	\$4,044	\$11,110	\$77,491	2.47	\$31,431					
90	\$855,000	\$139,365	-\$33,463	-\$41,273	\$3,832	\$11,110	\$79,571	2.34	\$34,068					
85	\$798,000	\$130,074	-\$33,463	-\$38,980	\$3,619	\$10,100	\$71,350	2.21	\$32,345					
80	\$798,000	\$130,074	-\$33,463	-\$36,687	\$3,406	\$10,100	\$73,430	2.08	\$35,369					
>75	\$798,000	\$130,074	-\$33,463	-\$34,394	\$3,193	\$10,100	\$75,510	1.95	\$38,796					
							Average Effective		\$27,794					

Appendix C: Cost Effectiveness Analysis

November 25, 2020

				Table	e C-35				
						nits at 75% ueous Ammor		actor	
Size	Total Capital Cost		Incremental Electricity		Reagent Cost \$/yr		Annualized Cost	NOx reduced	CE
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx
200	\$917,000	\$149,471	-\$33,463	-\$91,717	\$29,466	\$12,221	\$65,978	3.61	\$18,259
150	\$917,000	\$149,471	-\$33,463	-\$68,788	\$22,100	\$12,221	\$81,541	2.71	\$30,088
125	\$917,000	\$149,471	-\$33,463	-\$57,323	\$18,417	\$12,221	\$89,322	2.26	\$39,551
100	\$855,000	\$139,365	-\$33,463	-\$45,859	\$14,733	\$11,110	\$85,887	1.81	\$47,537
95	\$855,000	\$139,365	-\$33,463	-\$43,566	\$13,997	\$11,110	\$87,443	1.72	\$50,945
90	\$855,000	\$139,365	-\$33,463	-\$41,273	\$13,260	\$11,110	\$88,999	1.63	\$54,733
85	\$798,000	\$130,074	-\$33,463	-\$38,980	\$12,523	\$10,100	\$80,255	1.54	\$52,258
80	\$798,000	\$130,074	-\$33,463	-\$36,687	\$11,787	\$10,100	\$81,811	1.45	\$56,601
>75	\$798,000	\$130,074	-\$33,463	-\$34,394	\$11,050	\$10,100	\$83,367	1.36	\$61,523
							Average Effective		\$45,722

Table C-36

	SCR Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 9 ppmv to 2.5 ppmv Cost Effectiveness – 19.5% Aqueous Ammonia Reagent													
					Reagent Cost	Catalyst								
	Total Capital		Incremental	Incremental	\$/yr	Replacement	Annualized	NOx						
Size	Cost	Annualized	Electricity	Fuel		\$/yr	Cost	reduced	CE					
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx					
200	\$917,000	\$149,471	-\$33,463	-\$91,717	\$29,466	\$12,221	\$65,978	5.19	\$12,712					
150	\$917,000	\$149,471	-\$33,463	-\$68,788	\$22,100	\$12,221	\$81,541	3.89	\$20,947					
125	\$917,000	\$149,471	-\$33,463	-\$57,323	\$18,417	\$12,221	\$89,322	3.24	\$27,535					
100	\$855,000	\$139,365	-\$33,463	-\$45,859	\$14,733	\$11,110	\$85,887	2.60	\$33,095					
95	\$855,000	\$139,365	-\$33,463	-\$43,566	\$13,997	\$11,110	\$87,443	2.47	\$35,468					
90	\$855,000	\$139,365	-\$33,463	-\$41,273	\$13,260	\$11,110	\$88,999	2.34	\$38,105					
85	\$798,000	\$130,074	-\$33,463	-\$38,980	\$12,523	\$10,100	\$80,255	2.21	\$36,382					
80	\$798,000	\$130,074	-\$33,463	-\$36,687	\$11,787	\$10,100	\$81,811	2.08	\$39,406					
>75	\$798,000	\$130,074	-\$33,463	-\$34,394	\$11,050	\$10,100	\$83,367	1.95	\$42,832					
							Average	Cost						
							Effective	eness	\$31,831					

Rule 4320 Category C.3 (>75 MMBtu/hr Oil Field Steam Generators)

Retrofit Technology Needed to Achieve Proposed Rule Limit of 5 ppmv:

• New Ultra Low NOx (ULN) burner and Combustion Controls Upgrade

Appendix C: Cost Effectiveness Analysis

November 25, 2020

The proposed Rule 4320 NOx limit for oilfield steam generators with a heat input greater than 75 MMBtu/hr is 5 ppmv. These units are generally newer and have better control technology than smaller oilfield steam generators. All permitted units in this category already meet proposed Rule 4306 NOx limit of 7 ppmv, The cost analysis below is based on ULN burner retrofit.

_ . . _ ._

			Ta	ble C-37										
ULN Re	ULN Retrofit Cost Effectiveness Calculation for Units at 80% Capacity Factor 7 ppmv to 5 ppmv Cost Effectiveness													
Size MMBtu/hr	Avg Capital Cost \$	Annualized Capital Cost	Incremental Electricity \$/yr	Incremental O&M \$/yr	Annualized Cost \$/yr	NOx reduced tons/yr	CE \$/ton NOx							
85	\$141,563	\$23,075	\$13,075	-	\$36,149	0.71	\$50,572							
					Average Effective									

Rule 4320 Category D.3 and D.6 (>110 MMBtu/hr Petroleum Refinery Boilers and Heaters)

Retrofit Technology Needed to Achieve Proposed Rule Limit of 2.5 ppmv:

• Extra layer of catalyst, additional reagent, and tuning

The cost effectiveness analysis below is for the incremental retrofit costs for units with existing SCR systems to go from 5 ppmv to 2.5 ppmv. This is achieved by installing an extra layer of catalyst, using more reagent, and tuning the unit. If existing SCR housing cannot accept an additional layer of catalyst the units would require a new SCR housing which would increase costs

Table C-38										
Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor										
5 ppmv to 2.5 ppmv Cost Effectiveness – Anhydrous Ammonia Reagent										
					Reagent Cost	Catalyst				
	Total Capital		Incremental	Incremental	\$/yr	Replacement	Annualized	NOx		
Size	Cost	Annualized	Electricity	Fuel		\$/yr	Cost	reduced	CE	
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx	
250	\$114,000	\$18,582	\$0	\$0	\$209	\$6,722	\$25,513	2.55	\$10,021	
200	\$105,855	\$17,254	\$0	\$0	\$168	\$6,111	\$23,532	2.04	\$11,554	
150	\$97,712	\$15,927	\$0	\$0	\$126	\$6,111	\$22,163	1.53	\$14,509	
125	\$93,641	\$15,263	\$0	\$0	\$105	\$6,111	\$21,479	1.27	\$16,873	
							Average Cost			
							Effectiveness		\$13,239	

Appendix C: Cost Effectiveness Analysis

November 25, 2020

Table C-39											
Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 5 ppmv to 2.5 ppmv Cost Effectiveness – 32.5% Urea Reagent											
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental Fuel	Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE		
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx		
200	\$105,855	\$17,254	\$0	\$0	\$237	\$6,111	\$23,601	2.04	\$11,588		
150	\$97,712	\$15,927	\$0	\$0	\$177	\$6,111	\$22,215	1.53	\$14,543		
125	\$93,641	\$15,263	\$0	\$0	\$148	\$6,111	\$21,522	1.27	\$16,907		
							Average Cost Effectiveness		\$14,346		

Table C-40

Retrofit Cost Effectiveness Calculation for Units at 75% Capacity Factor 5 ppmv to 2.5 ppmv Cost Effectiveness – 19.5% Aqueous Ammonia Reagent										
Size	Total Capital Cost	Annualized	Incremental Electricity	Incremental Fuel	Reagent Cost \$/yr	Catalyst Replacement \$/yr	Annualized Cost	NOx reduced	CE	
MMBtu/hr	\$	Capital Cost	\$/yr	\$/yr			\$/yr	tons/yr	\$/ton NOx	
200	\$105,855	\$17,254	\$0	\$0	\$1,281	\$6,111	\$24,646	2.04	\$12,101	
150	\$97,712	\$15,927	\$0	\$0	\$961	\$6,111	\$22,998	1.53	\$15,056	
125	\$93,641	\$15,263	\$0	\$0	\$801	\$6,111	\$22,175	1.27	\$17,420	
							Average Cost Effectiveness		\$14,859	

Direct PM2.5 Control Technology

Currently, there are a several produced gas fired steam generators operating in crude oil production facilities that are required by their permits to operate SOx scrubbers and ESPs (to reduce SOx emissions and visible emissions to burning high sulfur produced gas).

As illustrated below, electrostatic precipitator (ESP) and wet scrubber PM control technology are not a cost-effective option for this source category. The cost of the ESP technology does not include costs of retrofitting equipment and/or the facility or compliance monitoring costs, which would drive the cost-effectiveness up even more. In addition, the annualized costs provided by EPA for the wet scrubber system are in 2002 dollars, which means the value above would be even greater if it were adjusted to 2018 dollars.

PM Potential Emissions Reductions for an ESP and Scrubber

November 25, 2020

For the purposes of these calculations, the following assumptions were made:

- 1. For simplicity, the analysis will evaluate the cost-effectiveness of these technologies for total PM reductions from liquid fuel fired units.
- 2. The PM control efficiency of an ESP is 99%.
- 3. The PM control efficiency of a scrubber is 99%.

Potential Emissions Reductions_{ESP} = (Total PM Emissions) x (Control Efficiency) Potential Emissions Reduction_{ESP} = 0.02 tons/year X 0.99Potential Emissions Reduction_{ESP} = 0.0198 tons/ year (tpy)

Potential Emissions Reductions _{scrubber} = (Total PM Emissions) x (Control Efficiency) Potential Emissions Reduction _{scrubber} = 0.02 tons/year X 0.99 Potential Emissions Reduction _{scrubber} = 0.0198 tons/ year (tpy)

Annualized Cost of an ESP and Wet Scrubber

The capital cost for the installation of an ESP for a 1-5 MMBtu/hr boiler ranges from \$90,000 - \$100,000 and the annual maintenance cost is \$1,000-\$2,000.¹ For the wet scrubber system, EPA estimated the annualized cost at \$5,300-\$102,000 per sm³/sec at an average air flow rate of 0.7- 47 sm³/sec.² The following assumptions in the cost-effectiveness calculations:

- 1. The capital cost of an ESP for a 5 MMBtu/hr boiler is assumed to be \$100,000.
- 2. The annual maintenance cost of an ESP for a 5 MMBtu/hr boiler is assumed to be \$2,000.
- 3. The annualized cost of a wet scrubber system is assumed to be the median of the range above (\$53,650 per sm³/sec).
- 4. The average air flow rate for a wet scrubber system is assumed to be the median of the range above (23.85 sm³/sec).
- 5. The total capital and maintenance cost of an ESP will be calculated by multiplying the cost of 1 unit by the total number of units.
- 6. The total annualized cost of a wet scrubber will be calculated by multiplying the annualized cost of 1 unit by the total number of units.
- 7. Lifetime of the ESP is 10 years at 10% interest. To account for this, the annualized capital cost will be calculated by multiplying the total capital cost by the capital recovery factor of 0.1627 and adding the annual maintenance costs.

¹ Catherine Roberts. (March 2009) *Information on Air Pollution Control Technology for Woody Biomass Boilers.* Environmental Protection Agency Office of Air Quality Planning and Standards and Northeast States for Coordinated Air Use Management.

² (2002). *Air Pollution Control Technology Fact Sheet: Spray-Chamber/Spray-Tower Wet Scrubber.* Environmental Protection Agency.

Appendix C: Cost Effectiveness Analysis

November 25, 2020

Annual Cost_{ESP} = (Total Capital Cost) x (0.1627) + (Annual Maintenance Cost x 62) Annual Cost_{ESP} = ($100,000 \times 62$) x (0.1627) + ($2,000 \times 62$) Annual Cost_{ESP} = 1,132,740/year

Annual Cost_{scrubber} = (Annualized Cost of 1 unit) x (Number of Units) x (Average Flow Rate) Annual Cost_{scrubber} = (\$53,650/ sm³/sec) x (62) x (23.85 sm³/sec) Annual Cost_{scrubber} = \$79,332,255 year

Cost-effectiveness of an ESP and Wet Scrubber

Cost-effectiveness = Annual Cost / Annual Emissions Reductions

Cost-effectiveness_{ESP} = (\$1,132,740/year) / (0.0198 tons/ year) Cost-effectiveness_{ESP} = \$57,209,091/ton of PM

Cost-effectiveness_{scrubber} = (\$79,332,255/year) / (0.0198 tons/ year) Cost-effectiveness_{scrubber} = \$4,006,679,545/ton of PM