AUG 19 2013

George Holland
Holland Nut Company
P.O. Box 80
Kerman, CA 93630

Re: Notice of Preliminary Decision - Authority to Construct
Facility Number: C-8593
Project Number: C-1132329

Dear Mr. Holland:

Enclosed for your review and comment is the District's analysis of Holland Nut Company's application for an Authority to Construct for the installation of an almond processing facility consisting of an almond receiving and precleaning operation and an almond hulling and shelling operation, at 23986 West Whitesbridge Avenue in Kerman, CA.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. After addressing all comments made during the 30-day public notice period, the District intends to issue the Authority to Construct. Please submit your written comments on this project within the 30-day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Derek Fukuda of Permit Services at (559) 230-5917.

Sincerely,

[Signature]

David Warner
Director of Permit Services

Enclosures

cc: Mike Tollstrup, CARB (w/ enclosure) via email
NOTICE OF PRELIMINARY DECISION
FOR THE PROPOSED ISSUANCE OF
AN AUTHORITY TO CONSTRUCT

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollution Control District solicits public comment on the proposed issuance of Authority to Construct to Holland Nut Company for the installation of an almond processing facility consisting of an almond receiving and preacleaning operation and an almond hulling and shelling operation, at 23986 West Whitesbridge Avenue in Kerman, CA.

The analysis of the regulatory basis for this proposed action, Project #C-1132329, is available for public inspection at http://www.valleyair.org/notices/public_notices_idx.htm and at any District office. For additional information, please contact the District at (559) 230-6000. Written comments on this project must be submitted by September 23, 2013 to DAVID WARNER, DIRECTOR OF PERMIT SERVICES, SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 1990 EAST GETTYSBURG AVENUE, FRESNO, CA 93726.
San Joaquin Valley Air Pollution Control District
Authority to Construct Application Review
(Almond Hulling Operation)

Facility Name: Holland Nut Company Date: August 5, 2013
Mailing Address: P.O. Box 80 Engineer: Derek Fukuda
Kerman, CA 93630 Lead Engineer: Joven Refuerzo
Contact Person: Don Wilkey Telephone: (209) 656-0561
Fax: (209) 656-0359 E-Mail: don@wilkeyindustries.com
Application #(s): C-8593-1-0 and -2-0
Project #: C-1132329
Deemed Complete: July 25, 2013

I. Proposal

Holland Nut Company is applying for Authority to Construct (ATC) permits for the installation of an almond processing facility consisting of an almond receiving and precleaning operation, and an almond hulling and shelling operation. The almond receiving and precleaning operation will be controlled by a single baghouse. The almond hulling and shelling operation will be controlled by two baghouses.

II. Applicable Rules

Rule 2201 New and Modified Stationary Source Review Rule (4/21/11)
Rule 2410 Prevention of Significant Deterioration (6/16/11)
Rule 2520 Federally Mandated Operating Permits (6/21/01)
Rule 4001 New Source Performance Standards (4/14/99)
Rule 4002 National Emissions Standards for Hazardous Air Pollutants (5/20/04)
Rule 4101 Visible Emissions (2/17/05)
Rule 4102 Nuisance (12/17/92)
Rule 4201 Particulate Matter Concentration (12/17/92)
CH&SC 41700 Health Risk Assessment
CH&SC 42301.6 School Notice
Public Resources Code 21000-21177: California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines
III. Project Location

The facility is located at 23986 West Whitesbridge Avenue in Kerman, CA. The equipment is not located within 1,000 feet of the outer boundary of a K-12 school. Therefore, the public notification requirement of California Health and Safety Code 42301.6 is not applicable to this project.

IV. Process Description

Holland Nut Company is in the business of hulling and shelling almonds. The equipment proposed in this project will be used to clean, hull, and shell almonds received from the field.

Unit -1-0 (Receiving and Precleaning):

The field harvested almonds are delivered to the receiving pit by truck and trailer. The almonds are dumped into the receiving pit hopper. This hopper is closed down to a minimum opening and the dust is aspirated to the precleaning baghouse.

The received product is conveyed out of the hopper via a screw conveyor that feeds a totally enclosed vertical bucket elevator, discharging through a leaf aspirator, which removes leaves and light debris and is vented to the precleaner baghouse. The product then falls onto the stick chain. Good product falls through the relatively large hex opening of the conveyor belt. The large debris is discharged onto the stick conveyor and transferred into a stick bunker for later disposal.

The good product, after falling through the stick chain, is conveyed to a vibrating sandscreen. The screen captures all fine dirt, sand, etc. and spouts them away via an enclosed dirt conveyor. The good product, "overs", is evenly fed into one of three parallel enclosed destoners. These machines utilize the principle of varying shake amplitudes on a screen deck to separate the stones found in the field run product and delivers them to a dirt conveyor.

The good product is then evenly fed onto three parallel shaking "detwigger" decks, covered by moving "drag" belts to separate out the small sticks and delivers them to the stick conveyor and onto the stick bunker. The destoner and detwigger discharges are vented to the precleaner baghouse.

The in hull almonds discharge from the detwiggers, and are conveyed to a totally enclosed elevator and corresponding screw conveyor to be distributed to any one of the "in hull bins" to await the hulling/shelling process.

The dirt conveyor is aspirated at various locations to eliminate any fugitive dust within the enclosure, and to insure clean piling at the final dirt house.
Unit -2-0 (Hulling and Shelling):

Almonds are removed from the storage bins and transferred by conveyor and elevator to the first stage of hulling (split between two shear rolls). All of the shear rolls are designed to separate first the hull (hulling) and then the shell (shelling) from the almond kernel. The almonds pass from the first stage shear rolls to two aspirators (split flow). The aspirators remove hull and shell from the main product flow. After passing through the aspirators the almonds fall onto a classifying deck wherein almond kernels are removed from the main flow and wherein smaller inshell almonds are separated from the larger in hull almonds. The separated kernels are conveyed to the kernel cleaning area. The larger in hull fraction is conveyed and elevated to the “second stage” of hulling. The smaller inshell fraction bypasses further hulling stages and is conveyed to the first of four stages of shelling.

The larger in hull fraction passes through the “second stage” of hulling shear rolls. Again, after passing through the shear roll the in hull fraction passes through an aspirator and classifying deck. The functions of these machines are the same as that of the identical machines in the first stage of hulling described above. The kernels are conveyed to the kernel cleaning area, the smaller in shell is combined with the smaller in shell from stage 1, and the larger in hull is conveyed to hulling stage 3, which follows the same process as stage two described above. The larger in hull is the conveyed to hulling stage 4.

The fourth stage of hulling once again flows the product though a shear roll. There are no aspirators on this stage so the flow drops directly onto the classifying decks. Stage 4 hulling decks have a similar function in that they separate meats from larger inshell (and any in hull that is remaining) but they have a different function in that they do not separate larger in hull from smaller in shell, but instead separate large hull pieces from in hull/in shell. The hull is removed (scalped) and conveyed to the hull storage area. The large in hull that remains is then sent to hulling stage 5 which is the same as stage 4. Once the product goes through the fifth stage, the in hull/in shell that remains is combined with all in shell from hulling stages 1 thru 4 and conveyed to shelling stage 1.

The inshell almonds now pass through four “stages” of shelling (removal of shell from the kernel). Each “stage” consists of one shear roll and one classifying deck. The shear rolls are calibrated progressively tighter to break the shell away from the kernel with minimal damage to that kernel. Each classifying deck is designed to remove the kernel from the larger inshell. The remaining inshell is conveyed to the next stage of shelling. After passing through the four stages of shelling the shell has been removed from virtually all of the almonds.

All kernels are conveyed to the kernel cleaning area. First the almonds enter an aspirator and classifying deck wherein large hull pieces are removed from whole almonds, and smaller almond and hull pieces are removed from larger whole almonds. The larger hull pieces are conveyed to the hull storage area, the whole almonds (and hull pieces of similar size) pass through an aspirator where further hull removal occurs. After passing through the aspirators the kernels are conveyed to a gravity system for further cleaning.
The gravity system consists of first a gravity separator wherein the whole good almond kernels are separated from whatever hull is left in the product flow. The "bad" cut from the gravity table is conveyed to a classifying deck which is the final mechanical attempt at removing hull and other foreign material from the good almond kernels. The "good" product from the classifying deck is returned to the gravity table. The "bad" product from the classifying deck is conveyed to a final cracker shear roll that is intended to break and remove the shell from very small inshell almonds (pee-wees) that are mixed in with the kernels. After passing through this "pee-wee" shear roll the almonds pass through a final classifying deck and aspirator to once again classify hull, whole meats, and meat and hull pieces.

The "heavy" cut from the gravity table is sent to a destoner to remove small rock. Rocks are removed and sent to a storage bin. The "good" cut from the gravity table and destoner are conveyed to a box out station. This is the end of the hulling/shelling/kernel cleaning process.

All aspirators shear rolls, gravity separators, accumulators and various dust control aspiration points are ducted through galvanized pipe to one of two cloth dust collectors. The shell and dirt that are removed from the cloth filter are conveyed to a shell/dirt storage area.

V. Equipment Listing

C-8593-1-0: ALMOND RECEIVING AND PRECLEANING OPERATION WITH A RECEIVING PIT, RECEIVING AUGER, ASPIRATORS, STICK CHAIN, PRECLEANER DECKS, DESTONERS, CONVEYORS AND ELEVATORS ALL SERVED BY A DONALDSON TORIT MODEL 684-LP-12 BAGHOUSE

C-8593-2-0: ALMOND HULLING AND SHELLING OPERATION WITH SHEAR ROLLERS, ASPIRATORS, DETWIGGERS, HARD SHELL CRACKERS, VARIOUS DECKS, GRAVITY TABLES, DESTONER, COLOR SORTER, CONVEYORS AND ELEVATORS ALL SERVED BY TWO DONALDSON TORIT MODEL 882-LP-12 BAGHOUSES

See Appendix B for a full equipment list.

VI. Emission Control Technology Evaluation

Particulate matter less than 10 microns in aerodynamic diameter (PM₁₀) are the only pollutant of concern emitted from the almond receiving and precleaning operation and the almond hulling and shelling operation. A baghouse dust collector controls emission points for the entire facility. The baghouse is expected to have a control efficiency of 99% if properly designed.
Baghouse design check calculations:

Unit -1-0:

The almond receiving and precleaning operation will be served by one baghouse. The baghouse will utilize a reverse air system to periodically clean the bags.

<table>
<thead>
<tr>
<th>Air Flow Calculation for Baghouse Dust Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baghouse</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Donaldson Torit 684-LP-12</td>
</tr>
</tbody>
</table>

According to the Air Pollution Control Manual (1992), p. 128, Table 5, typical air/cloth ratio for reverse air filters serving feeds and grains is 14. The calculated air/cloth ratio falls below this typical value; therefore proper control efficiencies are expected.

Unit -2-0:

The almond hulling and shelling operation will be served by two baghouses. Both baghouses will utilize a reverse air system to periodically clean the bags.

<table>
<thead>
<tr>
<th>Air Flow Calculation for Baghouse Dust Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baghouse</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Donaldson Torit 882-LP-12</td>
</tr>
<tr>
<td>Donaldson Torit 882-LP-12</td>
</tr>
</tbody>
</table>

According to the Air Pollution Control Manual (1992), p. 128, Table 5, typical air/cloth ratio for reverse air filters serving feeds and grains is 14. The calculated air/cloth ratio falls below this typical value; therefore proper control efficiencies are expected.

The following conditions will be added to the permits to ensure the baghouses are optimally operated.

Units -1-0 and -2-0:

- {10} The baghouse shall be equipped with a pressure differential gauge to indicate the pressure drop across the bags. The gauge shall be maintained in good working condition at all times and shall be located in an easily accessible location. [District Rule 2201]

- {3457} The baghouse shall be maintained and operated according to manufacturer's specifications. [District Rule 2201]
- {3458} Replacement bags numbering at least 10% of the total number of bags in the baghouse shall be maintained on the premises. [District Rule 2201]

- {120} The baghouse cleaning frequency and duration shall be adjusted to optimize the control efficiency. [District Rule 2201]

- {73} Material removed from the dust collector(s) shall be disposed of in a manner preventing entrainment into the atmosphere. [District Rule 2201]

- When in operation, the differential pressure of the baghouse shall not be less than 0.5 inches water column nor greater than 5.0 inches water column. [District Rule 2201]

- {3463} Differential operating pressure shall be monitored and recorded on each day that the baghouse operates. [District Rule 2201]

- {3464} Records of all maintenance of the baghouse, including all change outs of filter media, shall be maintained. [District Rule 2201]

VII. General Calculations

A. Assumptions

PM\textsubscript{10} is the only pollutant emitted by the permit units in this project.

Unit -1-0:
- Maximum hourly processing rate = 71 FWT/hour (per applicant).
- Maximum daily processing rate = 1,704 FWT/day (per applicant).
- Maximum annual processing rate = 192,000 FWT/year (per applicant).

Unit -2-0:
- Maximum hourly processing rate = 71 FWT/hour (per applicant).
- Maximum daily processing rate = 1,704 FWT/day (per applicant).
- Maximum annual processing rate = 192,000 FWT/year (per applicant).

B. Emission Factors

Unit -1-0:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Emission Factor (EF)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EF</td>
<td>Source</td>
</tr>
<tr>
<td></td>
<td>(lb-PM\textsubscript{10}/FWT)</td>
<td>AP-42, Table 9.10.2.1-1 (1-95)</td>
</tr>
<tr>
<td>Receiving and Precleaning</td>
<td>0.0156</td>
<td></td>
</tr>
</tbody>
</table>
Unit -2-0:

The emission factor for the almond hulling and shelling operation is based off the EF shown in AP-42, Table 9.10.2.1-1 (1-95) for almond hulling and shelling operations controlled with a baghouse. The facility has proposed an EF greater than the AP-42 EF to ensure they are not out of compliance with their permitted emissions limit when the permit unit is source tested. The facility has indicated that they will submit an ATC application to lower the PM\textsubscript{10} EF from this permit unit after an accurate EF is determined based on the initial source test.

<table>
<thead>
<tr>
<th>Emission Factor</th>
<th>Operation</th>
<th>EF (lb-PM\textsubscript{10}/FWT)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hulling and Shelling</td>
<td>0.12</td>
<td>Per Applicant</td>
</tr>
</tbody>
</table>

C. Calculations

1. Pre-Project Potential to Emit (PE1)

Since this is a new emissions unit, PE1 = 0 for all pollutants.

2. Post Project Potential to Emit (PE2)

Unit -1-0:

The potential to emit for the operation is calculated as follows:

\[
\text{PE2} = (1,704 \text{ FWT/day}) \times (0.0156 \text{ lb PM}_{10}/\text{FWT})
\]
\[
= 26.6 \text{ lb PM}_{10}/\text{day}
\]

\[
\text{PE2} = (192,000 \text{ FWT/day}) \times (0.0156 \text{ lb PM}_{10}/\text{FWT})
\]
\[
= 2,995 \text{ lb PM}_{10}/\text{year}
\]

Unit -2-0:

The potential to emit for the operation is calculated as follows:

\[
\text{PE2} = (1,704 \text{ FWT/day}) \times (0.12 \text{ lb PM}_{10}/\text{FWT})
\]
\[
= 204.5 \text{ lb PM}_{10}/\text{day}
\]

\[
\text{PE2} = (192,000 \text{ FWT/day}) \times (0.12 \text{ lb PM}_{10}/\text{FWT})
\]
\[
= 23,040 \text{ lb PM}_{10}/\text{year}
\]
3. Pre-Project Stationary Source Potential to Emit (SSPE1)

Since this is a new facility, there are no valid ATCs, PTOs, or ERCs at the Stationary Source; therefore, the SSPE1 is equal to zero.

4. Post Project Stationary Source Potential to Emit (SSPE2)

Pursuant to District Rule 2201, the SSPE2 is the PE from all units with valid ATCs or PTOs at the Stationary Source and the quantity of ERCs which have been banked since September 19, 1991 for AER that have occurred at the source, and which have not been used on-site.

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOₓ</th>
<th>SOₓ</th>
<th>PM₁₀</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-8593-1-0</td>
<td>0</td>
<td>0</td>
<td>2,995</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C-8593-2-0</td>
<td>0</td>
<td>0</td>
<td>23,040</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SSPE2</td>
<td>0</td>
<td>0</td>
<td>26,035</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5. Major Source Determination

Rule 2201 Major Source Determination:

Pursuant to District Rule 2201, a Major Source is a stationary source with a SSPE2 equal to or exceeding one or more of the following threshold values. For the purposes of determining major source status the following shall not be included:

- any ERCs associated with the stationary source
- Emissions from non-road IC engines (i.e. IC engines at a particular site at the facility for less than 12 months)
- Fugitive emissions, except for the specific source categories specified in 40 CFR 51.165

<table>
<thead>
<tr>
<th>Rule 2201 Major Source Determination (lb/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Facility emissions pre-project</td>
</tr>
<tr>
<td>Facility emissions post-project</td>
</tr>
<tr>
<td>Major Source Threshold</td>
</tr>
<tr>
<td>Major Source?</td>
</tr>
</tbody>
</table>

As seen in the table above, the facility is not an existing Major Source and is not becoming a Major Source as a result of this project.
Rule 2410 Major Source Determination:

The facility or the equipment evaluated under this project is not listed as one of the categories specified in 40 CFR 52.21 (b)(1)(i). Therefore the following PSD Major Source thresholds are applicable.

<table>
<thead>
<tr>
<th>PSD Major Source Determination (tons/year)</th>
<th>NO2</th>
<th>VOC</th>
<th>SO2</th>
<th>CO</th>
<th>PM</th>
<th>PM10</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Facility PE before Project Increase</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>100,000</td>
</tr>
<tr>
<td>PSD Major Source ? (Y/N)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

As shown above, the facility is not an existing major source for PSD for at least one pollutant. Therefore the facility is not an existing major source for PSD.

6. Baseline Emissions (BE)

The BE calculation (in lbs/year) is performed pollutant-by-pollutant for each unit within the project to calculate the QNEC, and if applicable, to determine the amount of offsets required.

Pursuant to District Rule 2201, BE = PE1 for:
- Any unit located at a non-Major Source,
- Any Highly-Utilized Emissions Unit, located at a Major Source,
- Any Fully-Offset Emissions Unit, located at a Major Source, or
- Any Clean Emissions Unit, located at a Major Source.

otherwise,

BE = Historic Actual Emissions (HAE), calculated pursuant to District Rule 2201.

As shown in Section VII.C.5 above, the facility is not a Major Source for any pollutant.

Therefore BE=PE1.

Since these are new emissions units, BE = PE1 = 0 for all pollutants.

7. SB 288 Major Modification

Since this facility is not a major source for any of the pollutants addressed in this project, this project does not constitute an SB 288 major modification.
8. Federal Major Modification

District Rule 2201 states that a Federal Major Modification is the same as a "Major Modification" as defined in 40 CFR 51.165 and part D of Title I of the CAA.

Since this facility is not a Major Source for any pollutants, this project does not constitute a Federal Major Modification. Additionally, since the facility is not a major source for PM$_{10}$ (140,000 lb/year), it is not a major source for PM$_{2.5}$ (200,000 lb/year).

9. Rule 2410 – Prevention of Significant Deterioration (PSD) Applicability Determination

Rule 2410 applies to pollutants for which the District is in attainment or for unclassified, pollutants. The pollutants addressed in the PSD applicability determination are listed as follows:

- NO$_2$ (as a primary pollutant)
- SO$_2$ (as a primary pollutant)
- CO
- PM
- PM$_{10}$
- Greenhouse gases (GHG): CO$_2$, N$_2$O, CH$_4$, HFCs, PFCs, and SF$_6$

The first step of this PSD evaluation consists of determining whether the facility is an existing PSD Major Source or not (See Section VII.C.5 of this document).

In the case the facility is an existing PSD Major Source, the second step of the PSD evaluation is to determine if the project results in a PSD significant increase.

In the case the facility is NOT an existing PSD Major Source but is an existing source, the second step of the PSD evaluation is to determine if the project, by itself, would be a PSD major source.

In the case the facility is new source, the second step of the PSD evaluation is to determine if this new facility will become a new PSD major Source as a result of the project and if so, to determine which pollutant will result in a PSD significant increase.

I. Potential to Emit for New or Modified Emission Units vs PSD Major Source Thresholds

As a screening tool, the project potential to emit from all new and modified units is compared to the PSD major source threshold, and if total project potential to emit from all new and modified units is below this threshold, no further analysis will be needed.
The facility or the equipment evaluated under this project is not listed as one of the categories specified in 40 CFR 52.21 (b)(1)(i). Therefore the following PSD Major Source thresholds are applicable.

<table>
<thead>
<tr>
<th>PSD Major Source Determination: Potential to Emit (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Total PE from New and Modified Units</td>
</tr>
<tr>
<td>PSD Major Source threshold</td>
</tr>
<tr>
<td>New PSD Major Source?</td>
</tr>
</tbody>
</table>

As shown in the table above, the project potential to emit, by itself, does not exceed any of the PSD major source thresholds. Therefore Rule 2410 is not applicable and no further discussion is required.

VIII. Compliance

Rule 2201 New and Modified Stationary Source Review Rule

A. Best Available Control Technology (BACT)

1. BACT Applicability

BACT requirements are triggered on a pollutant-by-pollutant basis and on an emissions unit-by-emissions unit basis. Unless specifically exempted by Rule 2201, BACT shall be required for the following actions*:

a. Any new emissions unit with a potential to emit exceeding two pounds per day,
b. The relocation from one Stationary Source to another of an existing emissions unit with a potential to emit exceeding two pounds per day,
c. Modifications to an existing emissions unit with a valid Permit to Operate resulting in an AIPE exceeding two pounds per day, and/or
d. Any new or modified emissions unit, in a stationary source project, which results in an SB 288 Major Modification or a Federal Major Modification, as defined by the rule.

*Except for CO emissions from a new or modified emissions unit at a Stationary Source with an SSPE2 of less than 200,000 pounds per year of CO.
a. New emissions units – PE > 2 lb/day

As seen in Section VII.C.2 above, the applicant is proposing to install a new almond receiving and precleaning operation and a new almond hulling and shelling operation with PEs greater than 2 lb/day for PM$_{10}$. BACT is triggered for PM$_{10}$ since the PEs are greater than 2 lbs/day.

b. Relocation of emissions units – PE > 2 lb/day

As discussed in Section I above, there are no emissions units being relocated from one stationary source to another; therefore BACT is not triggered.

c. Modification of emissions units – AIPE > 2 lb/day

As discussed in Section I above, there are no modified emissions units associated with this project. Therefore BACT is not triggered.

d. SB 288/Federal Major Modification

As discussed in Section VII.C.7 above, this project does not constitute an SB 288 and/or Federal Major Modification for NO$_x$ emissions. Therefore BACT is not triggered for any pollutant.

2. BACT Guideline

BACT Guideline 5.2.1, applies to the almond receiving and precleaning operations, and the almond hulling and shelling operation. [Almond Hulling = or > 5 tons/hr] (See Appendix C)

3. Top-Down BACT Analysis

Per Permit Services Policies and Procedures for BACT, a Top-Down BACT analysis shall be performed as a part of the application review for each application subject to the BACT requirements pursuant to the District's NSR Rule.

Pursuant to the attached Top-Down BACT Analysis (see Appendix C), BACT has been satisfied with the following:

PM$_{10}$: Fabric Filter Baghouse
B. Offsets

1. Offset Applicability

Offset requirements shall be triggered on a pollutant by pollutant basis and shall be required if the SSPE2 equals to or exceeds the offset threshold levels in Table 4-1 of Rule 2201.

The SSPE2 is compared to the offset thresholds in the following table.

<table>
<thead>
<tr>
<th>Offset Determination (lb/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
</tr>
<tr>
<td>SSPE2</td>
</tr>
<tr>
<td>Offset Thresholds</td>
</tr>
<tr>
<td>Offsets triggered?</td>
</tr>
</tbody>
</table>

2. Quantity of Offsets Required

As seen above, the SSPE2 is not greater than the offset thresholds for all the pollutants; therefore offset calculations are not necessary and offsets will not be required for this project.

C. Public Notification

1. Applicability

Public noticing is required for:
 a. New Major Sources, Federal Major Modifications, and SB 288 Major Modifications,
 b. Any new emissions unit with a Potential to Emit greater than 100 pounds during any one day for any one pollutant,
 c. Any project which results in the offset thresholds being surpassed, and/or
 d. Any project with an SSIFE of greater than 20,000 lb/year for any pollutant.

 a. New Major Sources, Federal Major Modifications, and SB 288 Major Modifications

New Major Sources are new facilities, which are also Major Sources. As shown in Section VII.C.5 above, the SSPE2 is not greater than the Major Source threshold for any pollutant. Therefore, public noticing is not required for this project for new Major Source purposes.
b. PE > 100 lb/day

The PE2 for the new units in this project are compared to the daily PE Public Notice thresholds in the following table:

PM$_{10}$ is the only pollutant emitted by these permit units.

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>Pollutant</th>
<th>PE2 (lb/day)</th>
<th>Public Notice Threshold</th>
<th>Public Notice Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-8593-1-0</td>
<td>PM$_{10}$</td>
<td>26.6</td>
<td>100 lb/day</td>
<td>No</td>
</tr>
<tr>
<td>C-8593-2-0</td>
<td>PM$_{10}$</td>
<td>204.5</td>
<td>100 lb/day</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Therefore, public noticing for PE > 100 lb/day purposes is required.

c. Offset Threshold

The SSPE1 and SSPE2 are compared to the offset thresholds in the following table.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE1 (lb/year)</th>
<th>SSPE2 (lb/year)</th>
<th>Offset Threshold</th>
<th>Public Notice Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_{x}$</td>
<td>0</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>SO$_{x}$</td>
<td>0</td>
<td>0</td>
<td>54,750 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>0</td>
<td>26,035</td>
<td>29,200 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>0</td>
<td>0</td>
<td>200,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>0</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
</tbody>
</table>

As detailed above, there were no thresholds surpassed with this project; therefore public noticing is not required for offset purposes.

d. SSIPE > 20,000 lb/year

Public notification is required for any permitting action that results in a SSIPE of more than 20,000 lb/year of any affected pollutant. According to District policy, the SSIPE = SSPE2 − SSPE1. The SSIPE is compared to the SSIPE Public Notice thresholds in the following table.
SSIPE Public Notice Thresholds

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE2 (lb/year)</th>
<th>SSPE1 (lb/year)</th>
<th>SSIEP (lb/year)</th>
<th>SSIPE Public Notice Threshold</th>
<th>Public Notice Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>26,035</td>
<td>0</td>
<td>26,035</td>
<td>20,000 lb/year</td>
<td>Yes</td>
</tr>
<tr>
<td>CO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
</tbody>
</table>

As demonstrated above, the SSIPE for PM\textsubscript{10} is greater than 20,000 lb/year; therefore public noticing for SSIPE purposes is required.

2. **Public Notice Action**

As discussed above, public noticing is required for this project for PM\textsubscript{10} emissions in excess of 100 lb/day and a SSIPE greater than 20,000 lb/year. Therefore, public notice documents will be submitted to the California Air Resources Board (CARB) and a public notice will be published in a local newspaper of general circulation prior to the issuance of the ATC for this equipment.

D. **Daily Emission Limits (DELS)**

DELS and other enforceable conditions are required by Rule 2201 to restrict a unit's maximum daily emissions, to a level at or below the emissions associated with the maximum design capacity. The DEL must be contained in the latest ATC and contained in or enforced by the latest PTO and enforceable, in a practicable manner, on a daily basis. DELs are also required to enforce the applicability of BACT.

For these permit units, the DELs are stated in the form of emission factors (lb-PM\textsubscript{10}/FWT), the maximum daily almond throughput, and the maximum annual throughput.

Proposed Rule 2201 (DEL) Conditions:

Unit -1-0:

- The PM10 emissions from the almond receiving and precleaning operation shall not exceed 0.0156 pounds per ton of field weight. [District Rule 2201]

- The daily quantity of almonds processed through the receiving and precleaning operation shall not exceed 1,704 field weight tons per day. [District Rule 2201]

- The annual quantity of almonds processed through the receiving and precleaning operation shall not exceed 192,000 field weight tons in any one calendar year. [District Rule 2201]
Unit -2-0:

- The PM10 emissions from the almond hulling and shelling operation shall not exceed 0.12 pounds per ton of field weight. [District Rule 2201]

- The daily quantity of almonds processed through the hulling and shelling operation shall not exceed 1,704 field weight tons per day. [District Rule 2201]

- The annual quantity of almonds processed through the hulling and shelling operation shall not exceed 192,000 field weight tons in any one calendar year. [District Rule 2201]

E. Compliance Assurance

1. Source Testing

Per the District’s Almond Hulling Permit Processing policy SSP-2105, dated 8/22/02, the following source testing requirements apply to almond processors:

1. Any facility that is a "small emitter" as defined in District Policy BACT 1 shall not be required to perform source testing. As of the date of this policy, a small emitter is a facility with post-project PM$_{10}$ potential to emit of less than 30 pounds per day or 2 tons per year.

2. Any modification to an existing permit unit that does not result in an increase in permitted emissions for that unit shall not be required to perform source testing.

3. Any new permit unit or modification to an existing permit unit that is not exempt from source testing pursuant to items 1) or 2) above shall be required to perform source testing on one of the new or modified permit units per each independently operating process line.

This is a new facility which is not a “small emitter” for PM$_{10}$ emissions therefore, in accordance with the guidelines of the District Policy SSP-2105, Almond Hulling Permit Processing, dated 8/22/02, the receiving and precleaning operation (unit -1) and the hulling and shelling operation (unit -2) are considered one independently operating process line. Therefore initial source testing on one of the baghouse controlling the operations will be required.

4. Any permit applicant required to perform source testing may either test for PM10 or test only for total particulate matter and assume that all particulate matter emitted is PM10.

The facility has proposed to source test for PM$_{10}$ emissions.
5. States that the District reserves the right to specify the operation(s) to be source tested. The specific operation may be listed on the applicable ATC or will be specified by the District, in writing, within 5 working days after submittal of the facility's source test plan.

The facility has indicated that the emissions factor they provided for the hulling and shelling operation is conservatively high. They also indicated that they could potentially submit an ATC application in the future to lower the emission factor based on a source test. Based on this information, the District will require source testing on one of the baghouses controlling the hulling and shelling operation.

Per District Policy APR-1710, Specifying Test Methods on Permits, dated 10/9/97, EPA method 201A or 202 are to be used when source testing for PM$_{10}$ emissions.

The following conditions will be listed on ATC C-8593-2-0 to ensure compliance with source testing requirements:

Unit -2-0:

- One of the two baghouses controlling this almond hulling and shelling operation shall be source tested for PM$_{10}$ emissions within 60 days of initial start-up. [District Rule 2201]

- Source testing for PM$_{10}$ emissions shall be conducted using the following methods: EPA Method 201 or 201A, both in conjunction with EPA Method 202, or ARB Method 5 with all particulate emissions counted as PM$_{10}$. The District must be notified at least 30 days prior to any compliance source test, and a source test plan must be submitted for approval at least 15 days prior to testing. [District Rule 1081]

2. **Monitoring**

No monitoring is required to demonstrate compliance with Rule 2201.

3. **Recordkeeping**

Recordkeeping is required to demonstrate compliance with the offset, public notification and daily emission limit requirements of Rule 2201. The following condition(s) are listed on the permits to operate:

Unit -1-0:

- Permittee shall maintain daily and annual records of the amount of almonds processed by the receiving and precleaning operation in field weight tons. [District Rule 1070]
• {3465} Records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rule 2201]

Unit -2-0:

• Permittee shall maintain daily and annual records of the amount of almonds processed by the hulling and shelling operation in field weight tons. [District Rule 1070]

• {3465} Records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rule 2201]

4. Reporting

No reporting is required to demonstrate compliance with Rule 2201.

F. Ambient Air Quality Analysis (AAQA)

An AAQA shall be conducted for the purpose of determining whether a new or modified Stationary Source will cause or make worse a violation of an air quality standard. The District’s Technical Services Division conducted the required analysis. Refer to Appendix D of this document for the AAQA summary sheet.

The proposed location is in a non-attainment area for the state PM$_{10}$ standard. The increase in the ambient PM$_{10}$ concentration due to the proposed equipment is shown on the table titled Calculated Contribution. The levels of significance, from 40 CFR Part 51.165 (b)(2), are shown on the table titled Significance Levels.

The proposed location is in a non-attainment area for the state’s PM10 as well as federal and state PM2.5 thresholds. As shown by the AAQA summary sheet the proposed equipment will not cause a violation of an air quality standard for PM10 and PM2.5.

Rule 2520 Federally Mandated Operating Permits

Since this facility’s potential emissions do not exceed any major source thresholds of Rule 2201, this facility is not a major source, and Rule 2520 does not apply.

Rule 4001 New Source Performance Standards (NSPS)

This rule incorporates NSPS from Part 60, Chapter 1, Title 40, Code of Federal Regulations (CFR); and applies to all new sources of air pollution and modifications of existing sources of air pollution listed in 40 CFR Part 60. However, no subparts of 40 CFR Part 60 apply to almond processing operations.
Rule 4002 National Emission Standards for Hazardous Air Pollutants (NESHAPs)

This rule incorporates NESHAPs from Part 61, Chapter I, Subchapter C, Title 40, CFR and the NESHAPs from Part 63, Chapter I, Subchapter C, Title 40, CFR; and applies to all sources of hazardous air pollution listed in 40 CFR Part 61 or 40 CFR Part 63. However, no subparts of 40 CFR Part 61 or 40 CFR Part 63 apply to almond processing operations.

Rule 4101 Visible Emissions

Rule 4101 states that no person shall discharge into the atmosphere emissions of any air contaminant aggregating more than 3 minutes in any hour which is as dark as or darker than Ringelmann 1 (or 20% opacity). As long as the equipment is properly maintained and operated, visible emissions are not expected to exceed Ringelmann 1 or 20% opacity. The following condition will be placed on all permits in this project to ensure compliance with this rule:

• {15} No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]

Per District Policy SSP 1005, the visible emissions from processes served by a baghouse or fabric filter shall not equal or exceed 5% opacity for a period or periods aggregating more than three (3) minutes in any one (1) hour. If the equipment is properly maintained this condition should not be exceeded. The following conditions will be placed on the permits ensure compliance with this District Policy:

Unit -1-0:

• Visible emissions from the baghouse serving the almond receiving and precleaning operation shall not equal or exceed 5% opacity for a period or periods aggregating more than three minutes in one hour. [District Rules 2201 and 4101]

Unit -2-0:

• Visible emissions from the baghouses serving the almond hulling and shelling operation shall not equal or exceed 5% opacity for a period or periods aggregating more than three minutes in one hour. [District Rules 2201 and 4101]
Rule 4102 Nuisance

Rule 4102 prohibits discharge of air contaminants which could cause injury, detriment, nuisance or annoyance to the public. Public nuisance conditions are not expected as a result of these operations, provided the equipment is well maintained. Therefore, compliance with this rule is expected. The following condition will be added to the permit to ensure compliance with this rule.

- {98} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

California Health & Safety Code 41700 (Health Risk Assessment)

District Policy APR 1905 – Risk Management Policy for Permitting New and Modified Sources specifies that for an increase in emissions associated with a proposed new source or modification, the District perform an analysis to determine the possible impact to the nearest resident or worksite.

An HRA is not required for a project with a total facility prioritization score of less than or equal to one. According to the Technical Services Memo for this project (Appendix D), the total facility prioritization score including this project was less than or equal to one. Therefore, no future analysis is required to determine the impact from this project and compliance with the District’s Risk Management Policy is expected.

Rule 4201 Particulate Matter Concentration

Section 3.1 prohibits discharge of dust, fumes, or total particulate matter into the atmosphere from any single source operation in excess of 0.1 grain per dry standard cubic foot.

Unit -1-0:

\[
\text{PM Conc. (gr/scf)} = \frac{(PM \text{ emission rate}) \times (7,000 \text{ gr/lb})}{(\text{Air flow rate}) \times (60 \text{ min/hr}) \times (24 \text{ hr/day})}
\]

\[
\text{PM}_{10} \text{ emission rate} = 26.6 \text{ lb/day}. \text{ Assuming } 100\% \text{ of PM is PM}_{10}
\]
\[
\text{Exhaust Gas Flow} = 80,099 \text{ scfm}
\]

\[
\text{PM Conc. (gr/scf)} = \frac{[(26.6 \text{ lb/day}) \times (7,000 \text{ gr/lb})]}{[(80,099 \text{ ft}^3/\text{min}) \times (1,440 \text{ min/day})]}
\]

\[
\text{PM Conc.} = 0.002 \text{ gr/scf}
\]

Unit -2-0:

Calculations will be done assuming a worse case flow rate of 140,000 scfm, when only one fan is in service. If the unit shows compliance with one fan in service, compliance can be expected with both fans running. Thus:
PM Conc. (gr/scf) = (PM emission rate) x (7,000 gr/lb) / (Air flow rate) x (60 min/hr) x (24 hr/day)

PM_{10} emission rate = 204.5 lb/day. Assuming 100% of PM is PM_{10}
Exhaust Gas Flow = 140,957 scfm

PM Conc. (gr/scf) = [(204.5 lb/day) * (7,000 gr/lb)] / [(140,957 ft^3/min) * (1,440 min/day)]
PM Conc. = 0.007 gr/scf

As seen in the calculations above, both units in this project will have a PM concentration lower than 0.1 gr/scf. In addition, the following permit condition will be added to the permits to ensure compliance with the requirements of this rule:

- {14} Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201]

California Health & Safety Code 42301.6 (School Notice)

The District has verified that this site is not located within 1,000 feet of a school. Therefore, pursuant to California Health and Safety Code 42301.6, a school notice is not required.

California Environmental Quality Act (CEQA)

CEQA requires each public agency to adopt objectives, criteria, and specific procedures consistent with CEQA Statutes and the CEQA Guidelines for administering its responsibilities under CEQA, including the orderly evaluation of projects and preparation of environmental documents. The District adopted its Environmental Review Guidelines (ERG) in 2001. The basic purposes of CEQA are to:

- Inform governmental decision-makers and the public about the potential, significant environmental effects of proposed activities;
- Identify the ways that environmental damage can be avoided or significantly reduced;
- Prevent significant, avoidable damage to the environment by requiring changes in projects through the use of alternatives or mitigation measures when the governmental agency finds the changes to be feasible; and
- Disclose to the public the reasons why a governmental agency approved the project in the manner the agency chose if significant environmental effects are involved.

Greenhouse Gas (GHG) Significance Determination

It is determined that another agency has prepared an environmental review document for the project. The District is a Responsible Agency for the project because of its discretionary approval power over the project via its Permits Rule (Rule 2010) and New
Source Review Rule (Rule 2201), (CEQA Guidelines §15381). As a Responsible Agency, the District is limited to mitigating or avoiding impacts for which it has statutory authority. The District does not have statutory authority for regulating greenhouse gas emissions. The District has determined that the applicant is responsible for implementing greenhouse gas mitigation measures, if any, imposed by the Lead Agency.

District CEQA Findings

The District is a Responsible Agency for the project because of its discretionary approval power over the project via its Permits Rule (Rule 2010) and New Source Review Rule (Rule 2201), (CEQA Guidelines §15381). The District’s engineering evaluation of the project (this document) demonstrates that compliance with District rules and permit conditions would reduce Stationary Source emissions from the project to levels below the District’s significance thresholds for criteria pollutants. The District has determined that no additional findings are required (CEQA Guidelines §15096(h)).

IX. Recommendation

Compliance with all applicable rules and regulations is expected. Pending a successful NSR Public Noticing period, issue ATCs C-8593-1-0 and -2-0 subject to the permit conditions on the attached draft ATC in Appendix A.

X. Billing Information

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Fee Schedule</th>
<th>Fee Description</th>
<th>Annual Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-8593-1-0</td>
<td>3020-01-F</td>
<td>480.58 hp electric motors</td>
<td>$607.00</td>
</tr>
<tr>
<td>C-8593-2-0</td>
<td>3020-01-H</td>
<td>1,735.9 hp electric motors</td>
<td>$1,030.00</td>
</tr>
</tbody>
</table>

Appendixes

A: Draft ATCs
B: Equipment List
C: BACT Guideline and BACT Analysis
D: AAQA Summary
Appendix A

Draft ATCs
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: C-8593-1-0
LEGAL OWNER OR OPERATOR: HOLLAND NUT COMPANY
MAILING ADDRESS: PO BOX 80
KERMAN, CA 93630
LOCATION: 23986 WEST WHITESBRIDGE AVENUE
KERMAN, CA

EQUIPMENT DESCRIPTION:
ALMOND RECEIVING AND PRECLEANING OPERATION WITH A RECEIVING PIT, RECEIVING AUGER, ASPIRATORS,
STICK CHAIN, PRECLEANER DECKS, DESTONERS, CONVEYORS AND ELEVATORS ALL SERVED BY A
DONALDSON TORIT MODEL 684-LP-12 BAGHOUSE

CONDITIONS

1. {98} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
2. {14} Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201]
3. {15} No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three
minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]
4. Visible emissions from the baghouse serving the almond receiving and precleaning operation shall not equal or exceed
5% opacity for a period or periods aggregating more than three minutes in one hour. [District Rules 2201 and 4101]
5. {10} The baghouse shall be equipped with a pressure differential gauge to indicate the pressure drop across the bags.
The gauge shall be maintained in good working condition at all times and shall be located in an easily accessible
location. [District Rule 2201]
6. {3457} The baghouse shall be maintained and operated according to manufacturer's specifications. [District Rule
2201]
7. {3458} Replacement bags numbering at least 10% of the total number of bags in the baghouse shall be maintained on
the premises. [District Rule 2201]
8. {120} The baghouse cleaning frequency and duration shall be adjusted to optimize the control efficiency. [District
Rule 2201]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (559) 230-5950 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO
OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE.
Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the
approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all
Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this
Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with
all laws, ordinances and regulations of other governmental agencies which may pertain to the above equipment.

Seyed Sadredin, Executive Director APCO

DAVID WARNER, Director of Permit Services
C-8593-1-0; Aug 5 2013 3:07PM - FNU550: Joint Inspection NOT Required
Central Regional Office • 1990 E. Gettysburg Ave. • Fresno, CA 93726 • (559) 230-5900 • Fax (559) 230-6061
9. Material removed from the dust collector(s) shall be disposed of in a manner preventing entrainment into the atmosphere. [District Rule 2201]

10. When in operation, the differential pressure of the baghouse shall not be less than 0.5 inches water column nor greater than 5.0 inches water column [District Rule 2201]

11. Differential operating pressure shall be monitored and recorded on each day that the baghouse operates. [District Rule 2201]

12. The PM10 emissions from the almond receiving and precleaning operation shall not exceed 0.0156 pounds per ton of field weight. [District Rule 2201]

13. The daily quantity of almonds processed through the receiving and precleaning operation shall not exceed 1,704 field weight tons per day. [District Rule 2201]

14. The annual quantity of almonds processed through the receiving and precleaning operation shall not exceed 192,000 field weight tons in any one calendar year. [District Rule 2201]

15. Permittee shall maintain daily and annual records of the amount of almonds processed by the receiving and precleaning operation in field weight tons. [District Rule 1070]

16. Records of all maintenance of the baghouse, including all change outs of filter media, shall be maintained. [District Rule 2201]

17. Records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rule 2201]
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: C-8593-2-0
LEGAL OWNER OR OPERATOR: HOLLAND NUT COMPANY
MAILING ADDRESS: PO BOX 80
KERMAN, CA 93630
LOCATION: 23986 WEST WHITESBRIDGE AVENUE
KERMAN, CA

EQUIPMENT DESCRIPTION:
ALMOND HULLING AND SHELLING OPERATION WITH SHEAR ROLLERS, ASPIRATORS, DETWIGGERS, HARD SHELL CRACKERS, VARIOUS DECKS, GRAVITY TABLES, DESTONER, COLOR SORTER, CONVEYORS AND ELEVATORS ALL SERVED BY TWO DONALDSON TORIT MODEL 882-LP-12 BAGHOUSES

CONDITIONS

1. {98} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
2. {14} Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201]
3. {15} No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]
4. Visible emissions from the baghouses serving the almond hulling and shelling operation shall not equal or exceed 5% opacity for a period or periods aggregating more than three minutes in one hour. [District Rules 2201 and 4101]
5. The baghouses shall be equipped with a pressure differential gauge to indicate the pressure drop across the bags. The gauge shall be maintained in good working condition at all times and shall be located in an easily accessible location. [District Rule 2201]
6. The baghouses shall be maintained and operated according to manufacturer's specifications. [District Rule 2201]
7. {3458} Replacement bags numbering at least 10% of the total number of bags in the baghouse shall be maintained on the premises. [District Rule 2201]
8. The baghouses cleaning frequency and duration shall be adjusted to optimize the control efficiency. [District Rule 2201]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (559) 230-5950 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT A PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadreedin, Executive Director APCO

DAVID WARNER, Director of Permit Services
C-8593-2-0 Aug 25 2013 3:29PM - FUKUOAI - Joint Inception NOT Required

Central Regional Office • 1990 E. Gettysburg Ave. • Fresno, CA 93726 • (559) 230-5900 • Fax (559) 230-6061
9. Material removed from the baghouses shall be disposed of in a manner preventing entrainment into the atmosphere. [District Rule 2201]

10. When in operation, the differential pressure of the baghouses shall not be less than 0.5 inches water column nor greater than 5.0 inches water column [District Rule 2201]

11. Differential operating pressure shall be monitored and recorded on each day that the baghouses operates. [District Rule 2201]

12. The PM10 emissions from the almond hulling and shelling operation shall not exceed 0.12 pounds per ton of field weight. [District Rule 2201]

13. The daily quantity of almonds processed through the hulling and shelling operation shall not exceed 1,704 field weight tons per day. [District Rule 2201]

14. The annual quantity of almonds processed through the hulling and shelling operation shall not exceed 192,000 field weight tons in any one calendar year. [District Rule 2201]

15. One of the two baghouses controlling this almond hulling and shelling operation shall be source tested for PM10 emissions within 60 days of initial start-up. [District Rule 2201]

16. Source testing for PM10 emissions shall be conducted using the following methods: EPA Method 201 or 201A, both in conjunction with EPA Method 202, or ARB Method 5 with all particulate emissions counted as PM10. The District must be notified at least 30 days prior to any compliance source test, and a source test plan must be submitted for approval at least 15 days prior to testing. [District Rule 1081]

17. Permittee shall maintain daily and annual records of the amount of almonds processed by the hulling and shelling operation in field weight tons. [District Rule 1070]

18. 3464 Records of all maintenance of the baghouse, including all change outs of filter media, shall be maintained. [District Rule 2201]

19. 3465 Records shall be retained on-site for a period of at least five years and made available for District inspection upon request. [District Rule 2201]
Appendix B

Equipment List
<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>H. P.</th>
<th>CFM @ 4000 FT/MIN</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>RECEIVING PIT</td>
<td></td>
<td>6,305</td>
<td>NEW</td>
</tr>
<tr>
<td>P2</td>
<td>PIT AUGER</td>
<td>10</td>
<td>1,396</td>
<td>NEW</td>
</tr>
<tr>
<td>P3</td>
<td>PIT ELEVATOR</td>
<td>10</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P4</td>
<td>ASPIRATOR</td>
<td></td>
<td>3,142</td>
<td>NEW</td>
</tr>
<tr>
<td>P5</td>
<td>STICK CHAIN VIB FEEDER</td>
<td>0.33</td>
<td>2,182</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>STICK CHAIN DRIVE</td>
<td>5</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P6</td>
<td>PRE CLEANER ELEVATOR</td>
<td>10</td>
<td>785</td>
<td>NEW</td>
</tr>
<tr>
<td>P7</td>
<td>PRODUCT SPLITTER</td>
<td></td>
<td>1,069</td>
<td>NEW</td>
</tr>
<tr>
<td>P8</td>
<td>VIBRATORY CONVEYOR</td>
<td>1.5</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P9</td>
<td>VIBRATORY CONVEYOR</td>
<td>1.5</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P10</td>
<td>PRE CLEANER DECK 1</td>
<td>5</td>
<td>1,887</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>PRE CLEANER BELT 1</td>
<td>0.75</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P11</td>
<td>PRE CLEANER DECK 2</td>
<td>5</td>
<td>1,887</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>PRE CLEANER BELT 2</td>
<td>0.75</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P12</td>
<td>PRE CLEANER DECK 3</td>
<td>5</td>
<td>1,887</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>PRE CLEANER BELT 3</td>
<td>0.75</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P13</td>
<td>DESTONER FAN 1</td>
<td>20</td>
<td>17,104</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>DESTONER DECK 1</td>
<td>5</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P14</td>
<td>DESTONER FAN 2</td>
<td>20</td>
<td>17,104</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>DESTONER DECK 2</td>
<td>5</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P15</td>
<td>DESTONER FAN 3</td>
<td>20</td>
<td>17,104</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>DESTONER DECK 3</td>
<td>5</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P16</td>
<td>WEIGH CONVEYOR</td>
<td>10</td>
<td>2,182</td>
<td>NEW</td>
</tr>
<tr>
<td>P17</td>
<td>BIN ELEVATOR</td>
<td>10</td>
<td>785</td>
<td>NEW</td>
</tr>
<tr>
<td>P18</td>
<td>CROSS AUGER</td>
<td>5</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P19</td>
<td>BIN AUGER</td>
<td>20</td>
<td>3,142</td>
<td>NEW</td>
</tr>
<tr>
<td>P21</td>
<td>BAG HOUSE AIR PUMP</td>
<td>40</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>BAG HOUSE CLEANING ARM</td>
<td>1</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P22</td>
<td>BAG HOUSE AIRLOCK</td>
<td>5</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P23</td>
<td>BAG HOUSE FAN</td>
<td>250</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P24</td>
<td>DIRT CONVEYOR 1</td>
<td>3</td>
<td>1,069</td>
<td>NEW</td>
</tr>
<tr>
<td>P25</td>
<td>DIRT CONVEYOR 2</td>
<td>2</td>
<td>1,069</td>
<td>NEW</td>
</tr>
<tr>
<td>P26</td>
<td>STICK CONVEYOR 1</td>
<td>1</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>P27</td>
<td>STICK CONVEYOR 2</td>
<td>3</td>
<td>0</td>
<td>NEW</td>
</tr>
</tbody>
</table>

TOTAL | 480.58 | 80,099 |
<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>H. P.</th>
<th>Baghouse B CFM @ 4000 FT/MIN</th>
<th>Baghouse C CFM @ 4000 FT/MIN</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>BIN CONVEYOR</td>
<td>7.5</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H2</td>
<td>FEED ELEVATOR</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H3</td>
<td>FEED AUGER</td>
<td>15</td>
<td>3,574</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H4</td>
<td>VIBRATORY FEEDER 1A</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H5</td>
<td>SHEAR ROLL BELT 1A</td>
<td>5</td>
<td>3,142</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 1A</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H6</td>
<td>ASPIRATOR FEEDER 1A</td>
<td>0.33</td>
<td>7,876</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 1A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H7</td>
<td>SEPERATOR DECK 1A</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H8</td>
<td>VIBRATORY FEEDER 1B</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H9</td>
<td>SHEAR ROLL BELT 1B</td>
<td>5</td>
<td>3,142</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 1B</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H10</td>
<td>ASPIRATOR FEEDER 1B</td>
<td>0.33</td>
<td>7,876</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 1B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H11</td>
<td>SEPERATOR DECK 1B</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H12</td>
<td>VIBRATORY FEEDER 1C</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H13</td>
<td>SHEAR ROLL BELT 1C</td>
<td>5</td>
<td>3,142</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 1C</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H14</td>
<td>ASPIRATOR FEEDER 1C</td>
<td>0.33</td>
<td>7,876</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 1C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H15</td>
<td>SEPERATOR DECK 1C</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H16</td>
<td>VIBRATORY FEEDER 2A</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H17</td>
<td>HARD SHELL CRACKER 2A</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H18</td>
<td>SHEAR ROLL BELT 2A</td>
<td>3</td>
<td>2,182</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 2A</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H19</td>
<td>ASPIRATOR FEEDER 2A</td>
<td>0.33</td>
<td>6,305</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 2A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H20</td>
<td>SEPERATOR DECK 2A</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H21</td>
<td>ASPIRATOR FEEDER 2A</td>
<td>0.33</td>
<td>6,305</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 2A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H22</td>
<td>VIBRATORY FEEDER 2B</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H23</td>
<td>HARD SHELL CRACKER 2B</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H24</td>
<td>SHEAR ROLL BELT 2B</td>
<td>3</td>
<td>2,182</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 2B</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H25</td>
<td>ASPIRATOR FEEDER 2B</td>
<td>0.33</td>
<td>6,305</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 2B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H26</td>
<td>SEPERATOR DECK 2B</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H27</td>
<td>ASPIRATOR FEEDER 2B</td>
<td>0.33</td>
<td>6,305</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 2B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>ITEM</td>
<td>DESCRIPTION</td>
<td>H. P.</td>
<td>Baghouse B CFM @ 4000 FT/MIN</td>
<td>Baghouse C CFM @ 4000 FT/MIN</td>
<td>NOTES</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>-------</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>H28</td>
<td>VIBRATORY FEEDER 3A</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H29</td>
<td>HARD SHELL CRACKER 3A</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H30</td>
<td>SHEAR ROLL BELT 3A</td>
<td>3</td>
<td>2,182</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 3A</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H31</td>
<td>ASPIRATOR FEEDER 3A</td>
<td>0.33</td>
<td>6,305</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 3A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H32</td>
<td>SEPARATOR DECK 3A</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H33</td>
<td>VIBRATORY FEEDER 3B</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H34</td>
<td>HARD SHELL CRACKER 3B</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H35</td>
<td>SHEAR ROLL BELT 3B</td>
<td>3</td>
<td>2,182</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 3B</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H36</td>
<td>ASPIRATOR FEEDER 3B</td>
<td>0.33</td>
<td>6,305</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 3B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H37</td>
<td>SEPARATOR DECK 3B</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H38</td>
<td>VIBRATORY FEEDER 4</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H39</td>
<td>HARD SHELL CRACKER 4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H40</td>
<td>SHEAR ROLL BELT 4</td>
<td>3</td>
<td>2,182</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H41</td>
<td>ASPIRATOR FEEDER 4</td>
<td>0.33</td>
<td>6,305</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H42</td>
<td>SEPARATOR DECK 4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H43</td>
<td>VIBRATORY FEEDER 5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H44</td>
<td>HARD SHELL CRACKER 5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H45</td>
<td>SHEAR ROLL BELT 5</td>
<td>3</td>
<td>2,182</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H46</td>
<td>SEPARATOR DECK 5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H47</td>
<td>VIBRATORY FEEDER 6</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H48</td>
<td>HARD SHELL CRACKER 6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H49</td>
<td>SHEAR ROLL BELT 6</td>
<td>3</td>
<td>2,182</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H50</td>
<td>SEPARATOR DECK 6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H51</td>
<td>FEED ELEVATOR 7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H52</td>
<td>FEED AUGER 7 & 9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H53</td>
<td>VIBRATORY FEEDER 7</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H54</td>
<td>HARD SHELL CRACKER 7</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H55</td>
<td>SHEAR ROLL BELT 7</td>
<td>3</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H56</td>
<td>SEPARATOR DECK 7 & 8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H57</td>
<td>FEED ELEVATOR 8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>ITEM</td>
<td>DESCRIPTION</td>
<td>H. P.</td>
<td>Baghouse B CFM @ 4000 FT/Min</td>
<td>Baghouse C CFM @ 4000 FT/Min</td>
<td>NOTES</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>H58</td>
<td>VIBRATORY FEEDER 8</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H59</td>
<td>HARD SHELL CRACKER 8</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H60</td>
<td>SHEAR ROLL BELT 8</td>
<td>3</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H61</td>
<td>FEED ELEVATOR 9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H62</td>
<td>VIBRATORY FEEDER 9</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H63</td>
<td>HARD SHELL CRACKER 9</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H64</td>
<td>SHEAR ROLL BELT 9</td>
<td>3</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 9</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H65</td>
<td>SEPARATOR DECK 9 & 10</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H66</td>
<td>FEED ELEVATOR 10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H67</td>
<td>VIBRATORY FEEDER 10</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H68</td>
<td>HARD SHELL CRACKER 10</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H69</td>
<td>SHEAR ROLL BELT 10</td>
<td>3</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER 10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H70</td>
<td>FEED ELEVATOR 6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H71</td>
<td>FEED AUGER 6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H72</td>
<td>FEED ELEVATOR 5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H73</td>
<td>FEED AUGER 5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H74</td>
<td>FEED ELEVATOR 4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H75</td>
<td>FEED AUGER 4</td>
<td>5</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H76</td>
<td>FEED ELEVATOR 3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H77</td>
<td>FEED AUGER 3</td>
<td>7.5</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H78</td>
<td>FEED ELEVATOR 3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H79</td>
<td>FEED AUGER 3</td>
<td>7.5</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H80</td>
<td>INHULL AUGER</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H81</td>
<td>IN SHELL AUGER</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H82</td>
<td>MEAT CONVEYOR</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>H83</td>
<td>MEAT CONVEYOR</td>
<td>5</td>
<td>2,182</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M1</td>
<td>EZ MEAT ELEVATOR</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M2</td>
<td>PRODUCT DIVIDER</td>
<td></td>
<td>0</td>
<td>1,396</td>
<td>NEW</td>
</tr>
<tr>
<td>M5</td>
<td>ASPIRATOR FEEDER 1A</td>
<td>0.33</td>
<td>0</td>
<td>6,305</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 1A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M6</td>
<td>ASPIRATOR FEEDER 1B</td>
<td>0.33</td>
<td>0</td>
<td>6,305</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 1B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M7</td>
<td>ASPIRATOR FEEDER 1C</td>
<td>0.33</td>
<td>0</td>
<td>6,305</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 1C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M8</td>
<td>TRASH AUGER</td>
<td>3</td>
<td>0</td>
<td>1,396</td>
<td>NEW</td>
</tr>
<tr>
<td>M9</td>
<td>ASPIRATOR FEEDER</td>
<td>0.33</td>
<td>0</td>
<td>7,876</td>
<td>NEW</td>
</tr>
<tr>
<td>ITEM</td>
<td>DESCRIPTION</td>
<td>H. P.</td>
<td>Baghouse B CFM @ 4000 FT/Min</td>
<td>Baghouse C CFM @ 4000 FT/Min</td>
<td>NOTES</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>M10</td>
<td>SEPARATOR DECK MEAT 1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M11</td>
<td>SEPARATOR DECK MEAT 2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M12</td>
<td>SEPARATOR DECK MEAT 3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M13</td>
<td>SPLIT MEAT CONVEYOR</td>
<td>0</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M14</td>
<td>SPLIT MEAT ELEVATOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M15</td>
<td>ASPIRATOR FEEDER</td>
<td>0.33</td>
<td>0</td>
<td>6,305</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M16</td>
<td>ASPIRATOR FEEDER 1D</td>
<td>0.33</td>
<td>0</td>
<td>6,305</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 1D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M17</td>
<td>ASPIRATOR FEEDER 1E</td>
<td>0.33</td>
<td>0</td>
<td>6,305</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 1E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M18</td>
<td>ASPIRATOR FEEDER 1F</td>
<td>0.33</td>
<td>0</td>
<td>6,305</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK 1F</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M19</td>
<td>VIBRATORY CONVEYOR</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M20</td>
<td>SURGE ELEVATOR</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M22</td>
<td>VIBRATORY FEEDER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M23</td>
<td>GRAVITY FEED ELEVATOR</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M24</td>
<td>GRAVITY FEED CONVEYOR</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M25</td>
<td>GRAVITY FAN 1A</td>
<td>15</td>
<td>0</td>
<td>17,104</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>GRAVITY DECK 1A</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M26</td>
<td>GRAVITY FAN 1B</td>
<td>15</td>
<td>0</td>
<td>17,104</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>GRAVITY DECK 1B</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M27</td>
<td>GRAVITY REJECT CONVEYOR</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M28</td>
<td>GRAVITY REJECT ELEVATOR</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M29</td>
<td>ACCUMULATOR FAN</td>
<td>15</td>
<td>0</td>
<td>17,104</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ACCUMULATOR DECK</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M30</td>
<td>CONVEYOR PEE WEE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M31</td>
<td>SEPARATOR DECK PEE WEE</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M32</td>
<td>ASPIRATOR FEEDER</td>
<td>0.33</td>
<td>0</td>
<td>2,182</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M33</td>
<td>ELEVATOR</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M34</td>
<td>VIBRATORY FEEDER</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M35</td>
<td>HARD SHELL CRACKER</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M36</td>
<td>SHEAR ROLL BELT</td>
<td>3</td>
<td>0</td>
<td>1,396</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>SHEAR ROLL ROLLER</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M37</td>
<td>ASPIRATOR FEEDER</td>
<td>0.33</td>
<td>0</td>
<td>2,182</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR AIRLOCK</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M38</td>
<td>CONVEYOR BY PASS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M39</td>
<td>CONVEYOR DESTONER FEED</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>ITEM</td>
<td>DESCRIPTION</td>
<td>H. P.</td>
<td>Baghouse B CFM @ 4000 FT/Min</td>
<td>Baghouse C CFM @ 4000 FT/Min</td>
<td>NOTES</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>M40</td>
<td>DESTONER FAN</td>
<td>20</td>
<td>0</td>
<td>17,104</td>
<td>NEW</td>
</tr>
<tr>
<td>M41</td>
<td>DESTONER DECK</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M42</td>
<td>VIBRATORY CONVEYOR</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M43</td>
<td>EZ MEAT ELEVATOR</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M44</td>
<td>BAG HOUSE AIR PUMP</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M45</td>
<td>BAG HOUSE CLEANING ARM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M46</td>
<td>BAG HOUSE AIRLOCK</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M47</td>
<td>BAG HOUSE FAN</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>M48</td>
<td>BAG HOUSE FAN</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T1</td>
<td>HULL AUGER IN FLOOR</td>
<td>7.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T2</td>
<td>HULL AUGER IN FLOOR</td>
<td>7.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T3</td>
<td>HULL AUGER IN FLOOR</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T4</td>
<td>ELEVATOR DETWIGGER FEED</td>
<td>3</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T6</td>
<td>DETWIGGER DECK</td>
<td>2</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T7</td>
<td>DETWIGGER BELT</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T8</td>
<td>SEPERATOR DECK HULL 1A</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T9</td>
<td>SEPERATOR DECK HULL 2A</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T10</td>
<td>CONVEYOR TWIGGS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T12</td>
<td>ASPIRATOR FEED</td>
<td>0.33</td>
<td>6,305</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T13</td>
<td>ASPIRATOR FEED</td>
<td>0.33</td>
<td>6,305</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T14</td>
<td>AUGER HULL</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T15</td>
<td>ASPIRATOR FEED</td>
<td>0.33</td>
<td>7,876</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T16</td>
<td>AUGER HULL</td>
<td>2</td>
<td>1,396</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T17</td>
<td>ELEVATOR HULL</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T18</td>
<td>AUGER HULL TRANSFER</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T19</td>
<td>AUGER HULL TRANSFER</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T20</td>
<td>AUGER HULL TRANSFER</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T21</td>
<td>AUGER HULL TRANSFER</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T22</td>
<td>AUGER HULL STORAGE</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T23</td>
<td>AUGER HULL STORAGE</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T24</td>
<td>AUGER SHELL TRANSFER</td>
<td>7.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T25</td>
<td>ELEVATOR SHELL TRANSFER</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T26</td>
<td>AUGER SHELL TRANSFER</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>T27</td>
<td>AUGER SHELL TRANSFER</td>
<td>7.5</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>ITEM</td>
<td>DESCRIPTION</td>
<td>H. P.</td>
<td>Baghouse B CFM @ 4000 FT/MIN</td>
<td>Baghouse C CFM @ 4000 FT/MIN</td>
<td>NOTES</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>-------</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>T28</td>
<td>AUGER SHELL STORAGE</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>S1</td>
<td>VIBRATORY CONVEYOR IN SHELL</td>
<td>3</td>
<td>0</td>
<td>1,069</td>
<td>NEW</td>
</tr>
<tr>
<td>S2</td>
<td>ASPIRATOR AIRLOCK IN SHELL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>ASPIRATOR FEED IN SHELL</td>
<td>0.33</td>
<td>0</td>
<td>6,305</td>
<td>NEW</td>
</tr>
<tr>
<td>S3</td>
<td>CONVEYOR IN SHELL</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>S4</td>
<td>ELEVATOR IN SHELL</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NEW</td>
</tr>
<tr>
<td>S5</td>
<td>COLOR SORTER</td>
<td>0</td>
<td>1,069</td>
<td>1,069</td>
<td>NEW</td>
</tr>
<tr>
<td>S6</td>
<td>ELEVATOR IN SHELL</td>
<td>2</td>
<td>0</td>
<td>1,069</td>
<td>NEW</td>
</tr>
<tr>
<td>S7</td>
<td>CONVEYOR IN SHELL</td>
<td>5</td>
<td>0</td>
<td>1,069</td>
<td>NEW</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>1735.9</td>
<td>135,456</td>
<td>140,957</td>
</tr>
</tbody>
</table>
Appendix C

BACT Guideline and BACT Analysis
Best Available Control Technology (BACT) Guideline 5.2.1
Last Update: 6/14/1993

Almond Hulling - = or > 5 tons/hr

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Fabric Filter Baghouse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a state implementation plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source. For background information, see Permit Specific BACT Determinations on Details Page.
Top-Down BACT Determination for PM$_{10}$ Emissions

Step 1 - Identify All Possible PM$_{10}$ Control Technologies

The SJVUAPCD BACT Clearinghouse Guideline 5.2.1, 3rd quarter 2013, identifies achieved in practice and technologically feasible BACT for almond hulling operations as follows:

- Fabric Filter Baghouse - Achieved-In-Practice

Step 2 - Eliminate Technologically Infeasible Options

None of the above listed technologies are technologically infeasible.

Step 3 - Rank Remaining Control Technologies by Control Effectiveness

1) Fabric Filter Baghouse - 99% Control Efficiency.

Step 4 - Cost Effectiveness Analysis

The applicant has proposed to control PM$_{10}$ emissions from the almond receiving and precleaning operation, and almond hulling and shelling operation with fabric filter baghouses. Since the applicant has chosen the most effective control technology in step 3, a cost effectiveness analysis is not required.

Step 5 - Select BACT

BACT for PM$_{10}$ emissions from the almond receiving and precleaning operation, and almond hulling and shelling operations is a fabric filter baghouse.
Appendix D

AAQA Summary
San Joaquin Valley Air Pollution Control District
Risk Management Review

To: Derek Fukuda – Permit Services
From: Leland Villalvazo – Technical Services
Date: August 4, 2013
Facility Name: Holland Nut
Location: 23986 W. Whitesbridge Rd
Application #(s): C-8593-1-0, 2-0
Project #: C-1132329

A. RMR SUMMARY

<table>
<thead>
<tr>
<th>Categories</th>
<th>(Unit 1-0)</th>
<th>(Unit 2-0)</th>
<th>Project Totals</th>
<th>Facility Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritization Score</td>
<td>0.08</td>
<td>0.66</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>Acute Hazard Index</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Chronic Hazard Index</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Maximum Individual Cancer Risk (10^{-6})</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>T-BACT Required?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Special Permit Conditions?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Proposed Permit Conditions

To ensure that human health risks will not exceed District allowable levels; the following permit conditions must be included for:

Unit # 1-0, 2-0

No special conditions are required.

B. RMR REPORT

I. Project Description

Technical Services received a request on July 24, 2013, to perform an Ambient Air Quality Analysis and a Risk Management Review for of an almond processing operation.
II. Analysis

Toxic emissions for this proposed unit were calculated using District approved almond processing emission factors. In accordance with the District’s Risk Management Policy for Permitting New and Modified Sources (APR 1905, March 2, 2001), risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 1990 CAPCOA Facility Prioritization Guidelines and incorporated in the District’s HEARTs database. The prioritization score for this proposed unit was less than 1.0 (see RMR Summary Table). Therefore, no further analysis was necessary.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 1-0 Baghouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Stack Height (m)</td>
</tr>
<tr>
<td></td>
<td>32.6</td>
</tr>
<tr>
<td></td>
<td>Stack Diameter. (m)</td>
</tr>
<tr>
<td></td>
<td>Stack Exit Velocity (m/s)</td>
</tr>
<tr>
<td></td>
<td>Stack Exit Temp. (°K)</td>
</tr>
<tr>
<td></td>
<td>Burner Rating (MMBtu/hr)</td>
</tr>
<tr>
<td>Location Type</td>
<td>Closest Receptor (m)</td>
</tr>
<tr>
<td>Rural</td>
<td>Residential</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 2-0 (A) Baghouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Stack Height (m)</td>
</tr>
<tr>
<td></td>
<td>36.58</td>
</tr>
<tr>
<td></td>
<td>Stack Diameter. (m)</td>
</tr>
<tr>
<td></td>
<td>Stack Exit Velocity (m/s)</td>
</tr>
<tr>
<td></td>
<td>Stack Exit Temp. (°K)</td>
</tr>
<tr>
<td></td>
<td>Burner Rating (MMBtu/hr)</td>
</tr>
<tr>
<td>Location Type</td>
<td>Closest Receptor (m)</td>
</tr>
<tr>
<td>Rural</td>
<td>Residential</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 2-0 (B) Baghouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Stack Height (m)</td>
</tr>
<tr>
<td></td>
<td>36.58</td>
</tr>
<tr>
<td></td>
<td>Stack Diameter. (m)</td>
</tr>
<tr>
<td></td>
<td>Stack Exit Velocity (m/s)</td>
</tr>
<tr>
<td></td>
<td>Stack Exit Temp. (°K)</td>
</tr>
<tr>
<td></td>
<td>Burner Rating (MMBtu/hr)</td>
</tr>
<tr>
<td>Location Type</td>
<td>Closest Receptor (m)</td>
</tr>
<tr>
<td>Urban</td>
<td>Residential</td>
</tr>
</tbody>
</table>

Technical Services performed modeling for criteria pollutants PM_{10} and PM_{2.5}, as well as a RMR. The emission rates used for criteria pollutant modeling were provided by the processing engineer.

The results from the Criteria Pollutant Modeling are as follows:
Criteria Pollutant Modeling Results

<table>
<thead>
<tr>
<th>Diesel ICE</th>
<th>1 Hour</th>
<th>3 Hours</th>
<th>8 Hours</th>
<th>24 Hours</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>NA</td>
<td>X</td>
<td>NA</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOx</td>
<td>NA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>NA</td>
</tr>
<tr>
<td>SOx</td>
<td>NA</td>
<td>NA</td>
<td>X</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PM10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pass</td>
<td>Pass²</td>
</tr>
<tr>
<td>PM2.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pass</td>
<td>Pass²</td>
</tr>
</tbody>
</table>

*Results were taken from the attached PSD spreadsheet.

²The criteria pollutants are below EPA’s level of significance as found in 40 CFR Part 51.165 (b)(2).

III. Conclusion

The prioritization score is less than 1.0. In accordance with the District’s Risk Management Policy, the project is approved without Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed District allowable levels; the permit conditions listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

The emissions from the proposed equipment will not cause or contribute significantly to a violation of the State and National AAQS.

IV. Attachments

A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Toxic emissions summary
D. Prioritization score
E. Facility Summary