June 16, 2020

Danny Agueda
Blue Sky Dairy
2395 Sierra Spring Court
Atwater, CA 95301

Re: Notice of Preliminary Decision - Authority to Construct
Facility Number: N-6733
Project Number: N-1191038

Dear Mr. Agueda:

Enclosed for your review and comment is the District’s analysis of Blue Sky Dairy’s application for an Authority to Construct for the expansion of an existing dairy operation to increase herd capacity from 1,350 combined milk and dry cows to 3,310 combined milk and dry cows; including the construction of new cow housing units and a new milking parlor, at 4390 N Fox Road, Merced, CA.

The notice of preliminary decision for this project has been posted on the District’s website (www.valleyair.org). After addressing all comments made during the 30-day public notice period, the District intends to issue the Authority to Construct. Please submit your written comments on this project within the 30-day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Rupi Gill of Permit Services at (209) 557-6458.

Sincerely,

[Signature]
Arnaud Marjollet
Director of Permit Services

AM:rg
Enclosures

cc: Courtney Graham, CARB (w/ enclosure) via email
I. Proposal

Blue Sky Dairy has requested Authority to Construct (ATC) permits for the following changes at the existing dairy:

- Increase herd size from 1,200 milk cows and 1,350 mature cows (milk and dry) to 2,750 milk cows and 3,310 mature cows (milk and dry). Increase support stock from 640 to 2,056.
- Add three new freestall barns. The expansion will increase the total number of freestall barns from two to five.
- Add heifer and calf hutches area.
- Add mechanical manure separator and processing pit.
- Add new 80 stall rotary parlor. The existing double 12 herringbone (24 stalls) will remain and converted to double 24 parallel (48 stalls) milk barn.

<table>
<thead>
<tr>
<th></th>
<th>Milk Cows</th>
<th>Dry Cows</th>
<th>Mature Cows</th>
<th>Support Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>1,200</td>
<td>150</td>
<td>1,350</td>
<td>640</td>
</tr>
<tr>
<td>Proposed</td>
<td>2,750</td>
<td>560</td>
<td>3,310</td>
<td>2,056</td>
</tr>
<tr>
<td>Change</td>
<td>1,550</td>
<td>410</td>
<td>1,960</td>
<td>1,416</td>
</tr>
</tbody>
</table>

The draft ATC permits for the proposed project are included in Appendix A. A project site plan showing the proposed facility is included in Appendix C and the current permits are shown in the Appendix B.
II. Applicable Rules

Rule 2201 New and Modified Stationary Source Review Rule (8/15/19)
Rule 2410 Prevention of Significant Deterioration (6/16/11)
Rule 2520 Federally Mandated Operating Permits (8/15/19)
Rule 2550 Federally Mandated Preconstruction Review for Major Sources of Air Toxics (6/18/98)
Rule 4101 Visible Emissions (2/17/05)
Rule 4102 Nuisance (12/17/92)
Rule 4550 Conservation Management Practices (CMP) (8/19/04)
Rule 4570 Confined Animal Facilities (10/21/10)
CH&SC §41700 Health Risk Assessment
CH&SC §42301.6 School Notice
Public Resources Code 21000-21177: California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines

III. Project Location

The facility is located at 4390 North Fox Road, in Merced, CA. The equipment is not located within 1,000 feet of the outer boundary of a K-12 school. Therefore, the public notification requirement of California Health and Safety Code 42301.6 is not applicable to this project.

IV. Process Description

The primary function of the proposed facility will be the production of dairy milk, which is used to make various food products, such as fluid milk, 1 butter, cheese, ice cream, and yogurt. Production of milk requires a herd of mature dairy cows that are lactating (milk cows). A cow’s lactation cycle starts shortly after calving and lasts for approximately 12 months. Typically, a 10-month lactation period is followed by a 2-month non-lactation (dry cow) period, during which the cow prepares to calve again and begin a new lactation cycle. After the first few lactation cycles, the cow’s milk yield is expected to decline steadily with each subsequent cycle.

Female calves are retained in the herd while the male calves are sold off for meat production or other purposes. The calves take approximately 15 to 24 months to reach reproductive maturity, at which point they enter the milk production stream as bred heifers. Thus, in addition to the mature cows (milk and dry), a typical dairy herd also includes a certain proportion of calves and heifers at various stages of development (support stock). Mature cows that are culled from the herd (primarily due to diminishing milk yield, but also due to injury, disease, or other reasons) are replaced by the bred heifers entering the milk production stream. The support stock may also include a certain number of mature bulls for breeding purposes, although this is not common due to the prevalent use of artificial insemination.

1 Milk that has been processed in various ways (e.g. pasteurization, homogenization, fortification, etc.) and is intended to be consumed primarily as a beverage.
The primary functions involved in the day to day operation of a dairy include housing and feeding the herd, milking, and management of manure. These functions are described in more detail in the following sections:

A. Milking Operation (N-6733-1):

Milking is a dairy’s primary income generating activity. The lactating cows are milked two to four times per day. The milk is chilled and temporarily stored in onsite tanks until it is collected by tanker truck for delivery to a creamery. A purpose-built structure known as the milking barn is used for milking and the associated onsite milk handling activities. The milking barn is located in proximity to, but separate from the lactating cow housing areas. It is designed to facilitate efficient in-and-out movement of groups of cows being milked; and also to allow workers access to individual cows during milking. The first part of the milking barn, known as the holding area, is an open-sided roofed space where cows that are ready for milking are temporarily confined as they enter the milking parlor. The milking occurs in the milking parlor within the barn. Under the proposed project

There are several different parlor designs, including flat, parallel, herringbone, and rotary. Blue Sky Dairy currently has one double 12 herringbone (24 stalls total) milking parlor. Under the proposed project new 80 stall rotary parlor will be added. The existing double 12 herringbone (24 stalls) will remain and converted to double 24 parallel (48 stalls) milk barn.

Due to food safety regulations, high standards of hygiene must be observed in the milking parlor. The parlor floors are constructed of concrete, and are properly sloped to ensure effective drainage. Any manure that is deposited on the parlor floors during milking is promptly sprayed down with clean water and flushed into the drainage system, from where it is carried through pipes into the manure lagoons.

B. Cow Housing N-6733-2

Freestall Barns:

Typically majority of milk cows and dry cows are housed in the freestall barns. The standard freestall barn design consists of an elongated, open-frame, roofed metal structure; with concrete-paved flooring and a central drive-through feed alley. Feed bunks are located along both sides of the drive-through alley. Stanchion fences separate the housing areas from the feed alley and also facilitate the cows’ orderly access to the feed (i.e. one cow per stanchion). Watering troughs are located along the outer edges of the barn and can be accessed through the barn fencing. The rest of the barn floor is divided into bays of individual resting stalls. The stalls are padded with various bedding materials, such as sand or dried manure, to increase cow comfort and prevent injury. The stall bays are separated by access lanes, which also serve as manure collection/removal lanes (flush lanes). Manure from barn feed lanes is typically removed by flushing with water.

This dairy will house all milking cows, dry cows, and the part of their support stock in the freestall areas.
Shaded Barn:

Support stock is also housed in the shaded barn.

Detailed pre-project and post project housing arrangements are shown in Appendix C and Appendix D (PM10 Mitigation Measures’ sheet).

C. Liquid Manure Handling System (N-6733-3):

Milk cows generate anywhere from 130 to 150 pounds of manure per day. The manure is deposited primarily in areas where the cows are housed and fed (cow housing), but a small amount is deposited in the milking barn and other transit areas. The manure is collected and managed in liquid and solid forms. Manure with a total solids content of 20% or higher usually can be handled as a solid, while manure with a total solids content of 10% or less can be handled as a liquid.

The liquid manure handling system for the dairy includes the following components:

- Settling basin(s)
- Two storage lagoons/ponds with dimensions 750 ft x 137 ft x 14 ft and 1,295 ft x 64 ft x 10 ft with a side slope of 2 ft each onsite. One 371 ft x 187 ft x 25 ft with a side slope of 1.7 ft offsite

Under the proposed project applicant is proposing to add mechanical separator(s) and processing pit to further improve the manure management.

Mechanical Separation System:

Flush water from the milk barn, freestall barns and corral feed lanes is collected into a processing pit near the mechanical separators. The flush water is periodically agitated and pumped over the mechanical separator screens. The liquid passes through the screens and flows into the settling basins and eventually into the liquid manure ponds. The solids fall off the bottom of the screen onto a stacking pad, from where it is later removed by a front end loader and spread out to dry on the drying pads. Flush water in the processing pit is also recycled for flushing feedlanes.

Settling Basin:

The liquid manure from the flushed lanes will flow to the existing settling basin for solids separation prior to entering the lagoon/waste water system. Settling basins are structures designed to separate solids from liquid manure by sedimentation. The inflow of manure is restricted to allow some of the solids to settle out. A settling basin may achieve a solids removal rate of 40-70%. The liquids from the settling basins will gradually drain to the treatment lagoon. Solids remaining in settling basins are left to dry and then are removed. Solids separation reduces the land area required when designing a liquid manure treatment system since the volume to be treated is less. The dairy currently includes settling basin(s). The separated solids will either be applied to cropland or stored for use as fertilizer or bedding in the freestalls.
Anaerobic Treatment System:

An anaerobic treatment system is a waste treatment lagoon/liquid waste storage that is designed to facilitate the decomposition of manure by microbes in the absence of oxygen. This process of anaerobic decomposition results in the preferential conversion of organic compounds in the manure into methane, carbon dioxide, and water rather than intermediate metabolites (VOC). The Natural Resources Conservation Service (NRCS) Field Office Technical Guide No. 359, Waste Treatment Lagoon, for California specifies the following criteria for anaerobic treatment lagoons:

1) Minimum treatment volume - the minimum design volume must account for all potential sludge, treatment, precipitation, and runoff volumes;
2) Minimum hydraulic retention time - the retention time of the material in the lagoon must be adequate to provide environmentally safe utilization of waste;
3) Maximum volatile solids (VS) loading rate - the VS loading rate shall be based on maximum daily loading considering all waste sources that will be treated by the lagoon. The suggested loading rate for the San Joaquin Valley is 6.5 - 11 lb-VS/1000 ft3/day depending on the type of system and solids separation; and
4) Minimum operating depth is also stated in the NRCS Guide No. 359 - maximizing the depth of the lagoon has the following advantages: i) The surface area in contact with the atmosphere is minimized, which will reduce volatilization of air pollutants; ii) The smaller surface area reduces the effects of the environment on the lagoon, which provides a more stable and favorable environment for anaerobic bacteria; iii) There is better mixing of lagoon due to rising gas bubbles; and iv) A deeper lagoon requires less land for the required treatment volume.

Land Application:

Liquid manure from the lagoon/storage ponds will be applied to cropland as fertilizer/irrigation water. The application will be done through flood and furrow irrigation, at agronomic rates in conformance with a nutrient management plan that has been approved by the Regional Water Quality Control Board.

D. Solid Manure Handling Operation (N-6733-4):

Solid manure will be stored in stockpiles until ready to be applied to cropland as fertilizer, or shipped offsite. Separated solids will be dried and stockpiled for use as bedding material in the freestalls.

E. Feed Storage and Handing Operation (N-6733-5):

The feed storage and handling area will be used for the storage of feed ingredients and for the preparation of daily feed rations (known as ‘total mixed rations’ or TMR). Silage, the main ingredient in TMR, is typically stored in large elongated piles on concrete slabs. The required amount is extracted from one end of the pile, as needed. Other additive ingredients such as almond hulls, various grains, and cotton seed are stored in covered barns (commodity barns) to prevent damage from exposure to weather elements. Front-end loaders are used to retrieve the required proportions of the silage and additive ingredients and load them into a feed wagon with
a built-in mixer. Once the silage and additive ingredients are thoroughly mixed, the feed wagon drives over to the cow housing areas to spread the TMR along the feed lanes.

V. Equipment Listing

Pre-Project Equipment Description:

N-6733-1-0: 1,200 COW MILKING OPERATION WITH ONE DOUBLE 12 HERRINGBONE (24 STALLS) MILKING PARLOR

N-6733-2-0: COW HOUSING - 1,200 MILK COWS NOT TO EXCEED A COMBINED TOTAL OF 1,350 MATURE COWS (MILK AND DRY COWS); 640 SUPPORT STOCK (HEIFERS, CALVES, AND BULLS); AND 2 FREESTALLS WITH A FLUSH SYSTEM

N-6733-3-0: LIQUID MANURE HANDLING SYSTEM CONSISTING OF ONE SETTLING BASIN; TWO LAGOONS; MANURE LAND APPLIED THROUGH FLOOD IRRIGATION AND FURROW IRRIGATION

N-6733-4-0: SOLID MANURE HANDLING CONSISTING OF MANURE STOCK PILES; SOLID MANURE APPLICATION TO LAND

N-6733-5-0: FEED STORAGE AND HANDLING CONSISTING OF COVERED FEED STORAGE OR COMMODITY BARN(S), SILAGE PILE(S) AND DRY GRAIN TANKS

Proposed Modification:

N-6733-1-1: MODIFICATION OF 1,200 COW MILKING OPERATION WITH ONE DOUBLE 12 HERRINGBONE (24 STALLS) MILKING PARLOR: INCREASE MILK COWS FROM 1,200 TO 2,750 MILK COWS AND ADD A NEW 80 STALL ROTARY PARLOR. THE EXISTING DOUBLE 12 HERRINGBONE (24 STALLS) WILL REMAIN AND CONVERTED TO DOUBLE 24 PARALLEL (48 STALLS) MILK BARN

N-6733-2-1: MODIFICATION OF COW HOUSING - 1,200 MILK COWS NOT TO EXCEED A COMBINED TOTAL OF 1,350 MATURE COWS (MILK AND DRY COWS); 640 SUPPORT STOCK (HEIFERS, CALVES, AND BULLS); AND 2 FREESTALLS WITH A FLUSH SYSTEM: INCREASE HERD SIZE FROM 1,200 MILK COWS AND 1,350 MATURE COWS (MILK AND DRY) TO 2,750 MILK COWS AND 3,310 MATURE COWS (MILK AND DRY), INCREASE SUPPORT STOCK FROM 640 TO 2,056, ADD THREE NEW FREESTALL BARNs AND HEIFER/CALF HUTCH AREA

N-6733-3-2: MODIFICATION OF LIQUID MANURE HANDLING SYSTEM CONSISTING OF ONE SETTLING BASIN; TWO LAGOONS; MANURE LAND APPLIED THROUGH FLOOD IRRIGATION AND FURROW IRRIGATION: INCREASE IN LIQUID MANURE DUE TO INCREASE HERD PROFILE AS AUTHORIZED BY ATC N-6733-2-1, ADD MECHANICAL SEPARATOR(S) AND PROCESSING PIT, AND OPERATE LIQUID MANURE STORAGE IN AN ANAEROBIC TREATMENT SYSTEM AS PER ANAEROBIC TREATMENT SPECIFICATION
N-6733-4-1: MODIFICATION OF SOLID MANURE HANDLING CONSISTING OF MANURE STOCK PILES; SOLID MANURE APPLICATION TO LAND: INCREASE IN SOLID MANURE DUE TO INCREASE IN HERD PROFILE AS AUTHORIZED BY ATC N-6733-2-1

N-6733-5-1: MODIFICATION OF FEED STORAGE AND HANDLING CONSISTING OF COVERED FEED STORAGE OR COMMODITY BARN(S), SILAGE PILE(S) AND DRY GRAIN TANKS: INCREASE IN TOTAL MIX RATION DUE TO INCREASE IN HERD PROFILE AS AUTHORIZED BY ATC N-6733-2-1

Post Project Equipment Description:

N-6733-1-1: 2,750 COW MILKING OPERATION WITH A 80 STALL ROTARY PARLOR AND A DOUBLE 24 PARALLEL (48 STALLS) MILK PARLOR

N-6733-2-1: COW HOUSING – 2,750 MILK COWS NOT TO EXCEED A COMBINED TOTAL OF 3,310 MATURE COWS (MILK AND DRY COWS); 2,056 SUPPORT STOCK (HEIFERS, CALVES, AND BULLS); AND 5 FREESTALLS WITH A FLUSH SYSTEM

N-6733-3-2: LIQUID MANURE HANDLING SYSTEM CONSISTING OF MECHANICAL SEPARATOR(S) AND PROCESSING PIT; ONE SETTLING BASIN; TWO LAGOONS; MANURE LAND APPLIED THROUGH FLOOD IRRIGATION AND FURROW IRRIGATION

N-6733-4-1: SOLID MANURE HANDLING CONSISTING OF MANURE STOCK PILES; SOLID MANURE APPLICATION TO LAND OR HAULED OFFSITE

N-6733-5-1: FEED STORAGE AND HANDLING CONSISTING OF COVERED FEED STORAGE OR COMMODITY BARN(S), SILAGE PILE(S) AND DRY GRAIN TANKS

VI. Emission Control Technology Evaluation

Particulate Matter (PM), Volatile Organic Compounds (VOCs), and Ammonia (NH₃) are the major pollutants of concern from dairy operations. Hydrogen sulfide (H₂S) is also emitted from anaerobic processes on dairies. Gaseous pollutant emissions at a dairy result from the ruminant digestive processes (enteric emissions), the decomposition and fermentation of feed, and also from the decomposition of organic material in dairy manure. Volatile Organic Compounds are formed as intermediate metabolites when organic matter in manure degrades. Ammonia volatilization is the result of the microbial decomposition of nitrogenous compounds in manure. Hydrogen sulfide and other reduced sulfur compounds are produced when sulfur-containing compounds in manure decompose anaerobically. The quantity of enteric emissions depends directly on the number and types of cows. The quantity of emissions from manure decomposition depends on the amount of manure generated, which also depends on the number and types of cows. Therefore, the total herd size and composition is the critical factor in quantifying emissions from a dairy. Various management practices will be used to control emissions at this dairy. Examples of some of these practices are discussed below:
A. Milking Parlor (N-6733-1):

This dairy uses a flush/spray system to wash out the manure from the milking parlor after each group of cows is milked. Since the milking parlor is constantly flushed, there will be no particulate matter emissions from the milking parlor. Manure, which is a source of VOC emissions, is removed from the milking parlor many times a day by flushing after each milking. Because of ammonia’s high affinity for and solubility in water, volatilization of ammonia from the milking parlor will also be reduced by flushing after each milking. Flushing the milking parlor after each milking will also reduce anaerobic decomposition of manure on the milking parlor floor thereby eliminating the potential for H₂S emissions from the milking parlor floor.

B. Cow Housing (N-6733-2)

Majority of the mature cattle (milk cows and dry cows) and part of support stock at this dairy are housed in freestall barns and some support stock are housed in the shaded barn with flushed lanes. Practices that will be utilized to reduce emissions at the dairy include: frequent flushing of lanes, scraping of exercise pens, and feeding animals in accordance with NRC guidelines. These practices are discussed further below.

Freestall Barns:

Blue Sky Dairy will house all milking and dry cows and some support stock in the freestall areas.

Housing cattle in freestall barns greatly reduces PM emissions because the cows will be on a paved surface rather than on dry dirt. Additionally, flushing of the freestall lanes creates a moist environment, which further decreases particulate matter emissions.

Shaded Barn:

Manure, which is a source of emissions, will be removed from the shaded barn corral surface lanes by flushing and scraping. When a flush system is used, a large proportion of the VOCs emitted from fresh cow manure will dissolve in the flush water and will not be emitted from the cow housing permit unit. Because of ammonia’s high affinity for and solubility in water, flushing the lanes and walkways will also reduce volatilization of ammonia from the manure deposited in the corral lanes.

Frequent flushing is also used for the removal of manure from the lanes and walkways in the housing barns. The emissions control mechanisms are the same as described above.

Frequent Flushing of Lanes:

Manure, which is a source of emissions, will be removed from the freestall barn lanes by flushing. When a flush system is used, a large proportion of the VOCs emitted from fresh cow manure will dissolve in the flush water and will not be emitted from the cow housing permit unit. Because of ammonia’s high affinity for and solubility in water, flushing the lanes and walkways will also reduce volatilization of ammonia from the manure deposited in the lanes of freestall barns and open corrals.
C. Liquid Manure Handling System (N-6733-3)

All emissions from the liquid manure handling system are the result of manure decomposition.

Anaerobic Treatment:

As stated above, the liquid manure handling system at Blue Sky Dairy includes an existing lagoon/storage ponds and one offsite lagoon/storage pond that meets the anaerobic treatment designed criteria in accordance with the specifications set forth in NRCS practice standard 359. A properly designed and operated anaerobic treatment system will reduce VOC emissions because the organic compounds in the manure will be mostly converted into methane, carbon dioxide, and water rather than a significant amount of VOCs. An anaerobic treatment system also has an air pollution benefit over a system with only a storage ponds. Odorous emissions are reduced with an anaerobic treatment storage system since the lagoons/storage ponds has a constant treatment volume, which promotes more efficient anaerobic digestion. The proposed anaerobic treatment lagoon/storage ponds system meets the appropriate design requirements (see anaerobic treatment lagoon design check in Appendix I).

Solids Separation (Mechanical Separation System):

Solids separation is crucial to a dairy liquid waste management system. Solids separation removes material from the waste stream that would prematurely fill lagoons and storage ponds. Mechanical separators may achieve a solids removal rate of 20-50%. A separator is crucial to the treatment of the lagoon water. The efficiency of the treatment would be significantly lower without separation, which would result in more odors from the lagoon. Most of the separated solids are fibrous material that leads to excessive sludge buildup or the formation of crusts on the lagoon surface, both of which interfere with pumping operations. Also, lagoon cleanout costs are reduced since the cleanout frequency is reduced if the excess fibrous material is prevented from entering the lagoon. Separation will also allow existing lagoons to accommodate more animals, or will reduce the land area required when designing a lagoon since the volume to be treated is less. As a final benefit, the separated solids may be recycled and used for composting, soil amendments, refeeding, bedding, etc.

Solids Separation (Settling Basin):

The liquid manure handling system at Blue Sky Dairy also includes a settling basin for solids separation. Solids separation prevents excessive loading of volatile solids in lagoon/storage ponds treatment systems. Excessive loading of volatile solids in lagoons/storage ponds inhibits the activity of the methanogenic bacteria and leads to increased rates of volatile solids production. When the activity of the methanogenic bacteria is not inhibited, most of the VOCs are metabolized to simpler compounds, and the potential for VOC emissions is reduced.

Liquid Manure Land Application:

Liquid manure from the lagoons/storage ponds will be applied through flood and furrow irrigation. The dairy will apply liquid manure to cropland at agronomic rates. Liquid manure will be applied in thin layers and will be blended with irrigation water in compliance with the dairy’s
comprehensive nutrient management plan and the requirements of the Regional Water Quality Control Board. These practices will reduce odors and result in faster uptake of nutrients, including organic nitrogen, which can emit VOCs and ammonia during decomposition, and ammonium nitrogen, which is readily lost to the atmosphere as gaseous ammonia.

D. Solid Manure Handling (N-6733-4)

Rapid Incorporation of Solid Manure Applied to Land:

Based on the information currently available, emissions from solid manure applied to cropland are small in comparison to other sources. However, to ensure that any possible emissions are minimized, this dairy will be required to incorporate solid manure applied to cropland immediately (within two hours) after application. Immediate incorporation of the manure into the soil will reduce any volatilization of gaseous pollutants, including VOC and NH$_3$. Reduction in gaseous emissions is achieved by minimizing the amount of time that the manure is exposed to the atmosphere. Once manure has been incorporated into the soil, VOCs, NH$_3$, and any H$_2$S are absorbed onto particles of soil providing the opportunity for microbes in the soil to oxidize these compounds into carbon dioxide, water, nitrates, and sulfates.2

E. Feed Handling and Storage (N-6733-5)

Feeding Animals in Accordance with the NRC Guidelines:

All animals housed at the dairy will be fed in accordance with National Research Council (NRC) guidelines using routine nutritional analysis for rations. Feeding the cows in accordance with NRC guidelines minimizes undigested protein and other undigested nutrients in the manure, which would emit VOCs, NH$_3$, and H$_2$S upon decomposition.

Silage Pile Management:

The feed storage system at Blue Sky Dairy includes storage of silage piles covered with plastic tarps to minimize volatilization of pollutants from the pile surfaces.

The proposed emission reduction measures for feed handling and storage include best management practices such as minimizing the surface area of silage exposed to the atmosphere. This can be done by covering the silage pile securely with a tarp and removing feed only from a small area of the pile (face of pile).

In addition, any refused feed will be removed from the feed lanes on a regular basis to minimize gaseous emissions from decomposition. Silage piles will be covered with plastic tarps to minimize volatilization of pollutants from the pile surfaces.

VII. General Calculations

A. Assumptions

- Potential to emit calculations will be based on the permitted limits for the different age categories of cows in the proposed herd.

- Only non-fugitive emissions are considered when determining major source status. For this facility, the lagoon/storage pond and an emergency IC engine are the only sources of non-fugitive emissions.

- All PM$_{10}$ emissions will be allocated to the cow housing permit unit (N-6733-2).

- All H$_2$S emissions will be allocated to the liquid manure permit unit - lagoons/storage ponds (N-6733-3); and will be assumed to be equivalent to 10% of the NH$_3$ emissions from the lagoons/storage ponds.

- The PM$_{10}$ control efficiency for shade structures is from a District document titled “Dairy/Feedlot PM$_{10}$ Mitigation Practices and their Control Efficiencies.”

- The PM$_{10}$ emission factors are from a District document titled “Dairy and Feedlot PM$_{10}$ Emissions Factors,” which compiled data from studies performed by Texas A&M and ASAE, and a USDA/UC Davis report, quantifying dairy and feedlot emissions.

- The VOC emission factors for milk cows are from a District document titled “Air Pollution Control Officer’s Revision to the Dairy VOC Emission Factors, February 2012.” Volatile solids excretion ratios were used to derive the proportionate VOC emission factors for dry cows and support stock.

- The NH$_3$ emission factor for milk cows is based on California Air Resources Board’s dairy cattle ammonia emission factor. Manure-based VOC emission ratios were used to apportion the NH$_3$ emission factor to the various emissions units. Further, nitrogen excretion ratios were used to derive the proportionate NH$_3$ emission factors for dry cows and support stock.

- All the mitigation measures evaluated are expected to result in VOC emission reductions. Where a specific control efficiency has not been determined, a conservative 10% control efficiency will be assumed, unless noted otherwise.

- An anaerobic waste liquid treatment system designed and operated in accordance with NRCS Field Office Technical Guide No. 359 has the potential to significantly reduce VOC emissions by promoting the conversion of volatile solids in the manure into methane and carbon dioxide. Although significant VOC emission reductions are expected, a conservative control efficiency of 40% will be applied to this mitigation measure for both storage and land application of liquid manure.

6 http://www.arb.ca.gov/ei/areasrc/livestockemisfwp.pdf
• Post project all cow housing, except for the freestall barn #1 housing the support stock, will have no exercise pens (manure bedding). This addition is over and above the level of control needed to satisfy the requirements of District Rule 4570.

B. Emission Factors

Detailed emission factors are listed in the emissions calculation spreadsheet in Appendix D ('Dairy Emission Factors' sheet).

C. Calculations

1. Pre-Project Potential to Emit (PE1)

Pre-Project Potential to Emit (PE1) for the dairy will be calculated below based on the maximum design capacity for each type of cow and the pre-project emission control practices in use at the dairy.

Emission calculations for this project are included in the dairy emissions calculation spreadsheet in Appendix D. PE1 for each dairy permit unit is shown in the tables below.

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6733-1-0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-2-0</td>
<td>0</td>
<td>0</td>
<td>7.8</td>
<td>0</td>
<td>41.0</td>
<td>83.6</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-3-0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.3</td>
<td>30.1</td>
<td>1.2</td>
</tr>
<tr>
<td>N-6733-4-0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.9</td>
<td>11.2</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-5-0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>51.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>7.8</td>
<td>0.0</td>
<td>106.1</td>
<td>125.3</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6733-1-0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>480</td>
<td>164</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-2-0</td>
<td>0</td>
<td>0</td>
<td>2,852</td>
<td>0</td>
<td>14,983</td>
<td>30,503</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-3-0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,768</td>
<td>10,945</td>
<td>416</td>
</tr>
<tr>
<td>N-6733-4-0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>699</td>
<td>4,091</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-5-0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18,835</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>2,852</td>
<td>0.0</td>
<td>38,765</td>
<td>45,703</td>
<td>416</td>
</tr>
</tbody>
</table>

2. Post Project Potential to Emit (PE2)

The PE2 is based on the maximum permitted capacity for each age category of cows and the controls required and proposed by the applicant. All the emission calculations are included in Appendix D. A summary of the PE2 is shown in the following table:
Daily Project Potential to Emit (PE2)

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOₓ</th>
<th>SOₓ</th>
<th>PM₁₀</th>
<th>CO</th>
<th>VOC</th>
<th>NH₃</th>
<th>H₂S</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6733-1-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-2-1</td>
<td>0</td>
<td>0</td>
<td>6.1</td>
<td>0</td>
<td>98.7</td>
<td>203.0</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-3-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.2</td>
<td>47.1</td>
<td>1.2</td>
</tr>
<tr>
<td>N-6733-4-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.6</td>
<td>27.2</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-5-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>119.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0.0</td>
<td>6.1</td>
<td>0.0</td>
<td>239.9</td>
<td>278.3</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Annual Project Potential to Emit (PE2)

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOₓ</th>
<th>SOₓ</th>
<th>PM₁₀</th>
<th>CO</th>
<th>VOC</th>
<th>NH₃</th>
<th>H₂S</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6733-1-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,100</td>
<td>376</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-2-1</td>
<td>0</td>
<td>0</td>
<td>2,201</td>
<td>0</td>
<td>36,026</td>
<td>74,092</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-3-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,562</td>
<td>17,171</td>
<td>416</td>
</tr>
<tr>
<td>N-6733-4-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,296</td>
<td>9,936</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-5-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43,586</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0.0</td>
<td>2,201</td>
<td>0.0</td>
<td>87,570</td>
<td>101,575</td>
<td>416</td>
</tr>
</tbody>
</table>

3. Pre-Project Stationary Source Potential to Emit (SSPE1)

Pursuant to District Rule 2201, the SSPE1 is the Potential to Emit (PE) from all units with valid Authorities to Construct (ATC) or Permits to Operate (PTO) at the Stationary Source and the quantity of Emission Reduction Credits (ERC) which have been banked since September 19, 1991 for Actual Emissions Reductions (AER) that have occurred at the source, and which have not been used on-site.

SSPE1

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOₓ</th>
<th>SOₓ</th>
<th>PM₁₀</th>
<th>CO</th>
<th>VOC</th>
<th>NH₃</th>
<th>H₂S</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6733-1-0 (milking parlor)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>480</td>
<td>164</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-2-0 (cow housing)</td>
<td>0</td>
<td>0</td>
<td>2,852</td>
<td>0</td>
<td>14,983</td>
<td>30,503</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-3-0 (liquid manure handling)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,768</td>
<td>10,945</td>
<td>416</td>
</tr>
<tr>
<td>N-6733-4-0 (solid manure handling)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>699</td>
<td>4,091</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-5-0 (feed storage/handling)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18,835</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-6-0 (emergency IC engine)</td>
<td>1,213</td>
<td>1</td>
<td>58</td>
<td>369</td>
<td>138</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1,213</td>
<td>1</td>
<td>2,910</td>
<td>369</td>
<td>38,903</td>
<td>45,703</td>
<td>416</td>
</tr>
</tbody>
</table>

7 Emissions from project N-1150211
4. Post Project Stationary Source Potential to Emit (SSPE2)

Pursuant to District Rule 2201, the SSPE2 is the PE from all units with valid ATCs or PTOs at the Stationary Source and the quantity of ERCs which have been banked since September 19, 1991 for AER that have occurred at the source, and which have not been used on-site.

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6733-1-1 (milking parlor)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,100</td>
<td>376</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-2-1 (cow housing)</td>
<td>0</td>
<td>0</td>
<td>2,201</td>
<td>0</td>
<td>36,026</td>
<td>74,092</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-3-2 (liquid manure handling)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,562</td>
<td>17,171</td>
<td>416</td>
</tr>
<tr>
<td>N-6733-4-1 (solid manure handling)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,296</td>
<td>9,936</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-5-1 (feed storage/handling)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43,586</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N-6733-6-0 (emergency IC engine)</td>
<td>1,213</td>
<td>1</td>
<td>58</td>
<td>369</td>
<td>138</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1,213</td>
<td>1</td>
<td>2,259</td>
<td>369</td>
<td>87,708</td>
<td>101,575</td>
<td>416</td>
</tr>
</tbody>
</table>

5. Major Source Determination

Rule 2201 Major Source Determination:

Pursuant to District Rule 2201, a major source is a stationary source with an SSPE2 equal to or exceeding one or more of the major source thresholds shown in Table 3-3. For the purposes of determining major source status the following shall not be included:

- Any ERCs associated with the stationary source
- Emissions from non-road engines (i.e. engines at a particular site at the facility for less than 12 months)
- Fugitive emissions, except for the source categories specified in 40 CFR 51.165

Agricultural operations do not belong to any of the source categories specified in 40 CFR 51.165. Since the proposed facility is an agricultural operation, fugitive emissions shall not be included in determining whether it will be a major stationary source.

40 CFR 71.2 defines fugitive emissions as “those emissions which could not reasonably pass through a stack, chimney, vent, or other functionally-equivalent opening.” In 2005, the California Air Pollution Control Officers Association (CAPCOA) issued guidance for estimating VOC emissions from dairy farms. This guidance determined that VOC emissions from the milking centers, cow housing areas, corrals, common manure storage areas, and land application of manure are considered fugitive since they are not physically contained and could not reasonably pass through a stack, chimney, vent, or other functionally-equivalent opening. The guidance also determined that VOC emissions from liquid manure lagoons and storage ponds are not considered fugitive because emission...
collection technologies for liquid manure systems exist. The District has researched this issue and concurs with the CAPCOA determinations, as discussed in more detail below:

Milking Parlor

The mechanical ventilation system could arguably be utilized to capture emissions from the milking parlor. In order achieve and maintain the negative pressure required for this purpose, the adjoining holding area would also need to be completely enclosed. However, enclosing the holding area is not practical due to the continuous movement of cows in and out of the barn throughout the day. In addition, the capital outlay required to enclose this large area would be prohibitive. The District therefore determines that emissions from the milking parlor cannot reasonably be captured, and are to be considered fugitive.

Cow Housing

Although there are smaller dairy farms that have enclosed housing barns, such barns are usually not fully enclosed and do not include any systems for the collection of emissions. In addition, the airflow requirements for dairy cows are extremely high, primarily for herd health reasons. Airflow requirements are expected to be even higher in places such as the San Joaquin Valley, where daytime temperatures can exceed 110 degrees Fahrenheit for prolonged periods during the summer months. Given the high air flow rates that will be involved, collection and control of the exhaust from housing barns is not only impractical but also cost prohibitive. The District therefore determines that emissions from housing barns cannot reasonably be captured, and are to be considered fugitive.

Manure Storage Areas

Solid manure is typically stored in the housing areas, as mounds or piles in individual corrals or pens. Some manure may also be stored in piles outside the housing areas while awaiting land application, shipment offsite, or other uses. Thus, manure storage areas are widely distributed over the dairy site, making it impractical to capture emissions from any significant proportion of the solid manure. The District therefore determines that emissions from manure storage areas cannot reasonably be captured, and are to be considered fugitive.

Land Application

Since manure has to be applied over large expanses of cropland (hundreds or even thousands of acres), there is no practical method that can be used to capture the associated emissions. The District therefore determines that emissions from land application of manure cannot reasonably be captured, and are to be considered fugitive.
Feed Storage and Handling

Silage and total mixed rations (TMR) are the primary sources of emissions from feed storage and handling.

Silage is stored in silage piles. Only two piles will be actively used at any given time and the remainder of the piles will remain covered. One end/face of the silage pile that is actively being used to prepare feed rations must remain open to allow extraction of the silage. A front-end loader is used to extract silage from the open face of the pile throughout the day as the feed rations for the various groups or categories of cows are prepared. A significant proportion of silage pile emissions are associated with this open face, which is exposed to the atmosphere and frequently disturbed during silage extraction. Due to the need to access the pile’s open face throughout the day, it is not practical to enclose it or equip it with any kind of device or system that could be used to capture of emissions.

TMR is prepared by mixing silage with various additives such as seeds, grains, and molasses. Because the quality of silage degrades fairly rapidly upon exposure to air, TMR is prepared only when needed and promptly distributed to the feed lanes for consumption. Most of the TMR emissions are thus emitted from the feed lanes, which are located inside the housing barns, where the TMR will remain exposed to the air for at least several hours as the cows feed. As previously discussed, collection and control of emissions from housing barns is not only impractical but also cost prohibitive.

The District therefore determines that emissions from feed handling and storage cannot be reasonably be captured, and are to be considered fugitive.

Therefore, the VOC emissions from these sources are considered fugitive. The District has determined that control technology to capture emissions from lagoons (biogas collection systems, for instance) is in use and these emissions can be reasonably collected and are not fugitive. Therefore, only emissions from the lagoons/storage ponds, and emergency IC engine will be used to determine if this facility is a major source.

Pre-Project Major Source Determination:

Pre-Project lagoon emissions for this project are included in Appendix D.

<table>
<thead>
<tr>
<th>Pre-Project Major Source Determination (lb/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
</tr>
<tr>
<td>N-6733-3-0</td>
</tr>
<tr>
<td>(liquid manure handling – Lagoon(s)/storage pond(s))</td>
</tr>
<tr>
<td>N-6733-6-0</td>
</tr>
<tr>
<td>(emergency IC engine)</td>
</tr>
<tr>
<td>Non-Fugitive SSPE1</td>
</tr>
<tr>
<td>Major Source Threshold</td>
</tr>
</tbody>
</table>

Note: PM2.5 assumed to be equal to PM10
Post-Project Major Source Determination:

Post-Project lagoon emissions for this project are included in Appendix D.

<table>
<thead>
<tr>
<th>Post-Project Major Source Determination (lb/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>N-6733-3-2 (liquid manure handling – Lagoon(s)/storage pond(s))</td>
</tr>
<tr>
<td>N-6733-6-0 (emergency IC engine)</td>
</tr>
<tr>
<td>Non-Fugitive SSPE2</td>
</tr>
<tr>
<td>Major Source Threshold</td>
</tr>
</tbody>
</table>

Note: PM2.5 assumed to be equal to PM10

As seen in the table above, the facility is not an existing Major Source and is not becoming a Major Source as a result of this project.

Rule 2410 Major Source Determination:

In determining if a stationary source is a PSD major source, the following sources of emissions shall not be included:

- Emissions from non-road engines (i.e. engines at a particular site at the facility for less than 12 months)
- Fugitive emissions, except for the source categories specified in 40 CFR 52.21(b)(1)(iii)

Agricultural operations do not belong to any of the source categories specified in specified in 40 CFR 52.21(b)(1)(i). Since the proposed facility is an agricultural operation, fugitive emissions shall not be included in determining whether it will be a PSD major source; and the PSD major source threshold is 250 tons/yr (tpy) for any regulated NSR pollutant.

The non-fugitive stationary source emissions from the preceding section have been converted into tons. The PSD major source determination is summarized in the following table:

<table>
<thead>
<tr>
<th>PSD Major Source Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
</tr>
<tr>
<td>Estimated facility PE before project increase (tpy)</td>
</tr>
<tr>
<td>PSD major source threshold (tpy)</td>
</tr>
<tr>
<td>PSD major source? (Y/N)</td>
</tr>
</tbody>
</table>

As shown above, the facility is not an existing major source for PSD for at least one pollutant. Therefore the facility is not an existing major source for PSD.
6. Baseline Emissions (BE)

The BE calculation (in lb/year) is performed pollutant-by-pollutant for each unit within the project to calculate the QNEC, and if applicable, to determine the amount of offsets required.

Pursuant to District Rule 2201, BE = PE1 for:
- Any unit located at a non-Major Source,
- Any Highly-Utilized Emissions Unit, located at a Major Source,
- Any Fully-Offset Emissions Unit, located at a Major Source, or
- Any Clean Emissions Unit, located at a Major Source.

Otherwise,

BE = Historic Actual Emissions (HAE), calculated pursuant to District Rule 2201.

As shown in Section VII.C.5 above, the facility is not a Major Source for any pollutant.

Therefore BE = PE1.

7. SB 288 Major Modification

SB 288 Major Modification is defined in 40 CFR Part 51.165 as "any physical change in or change in the method of operation of a major stationary source that would result in a significant net emissions increase of any pollutant subject to regulation under the Act."

Since this facility is not a major source for any of the pollutants addressed in this project, this project does not constitute an SB 288 major modification.

8. Federal Major Modification

District Rule 2201 states that a Federal Major Modification is the same as a “Major Modification” as defined in 40 CFR 51.165 and part D of Title I of the CAA.

Since this facility is not a Major Source for any pollutants, this project does not constitute a Federal Major Modification.

9. Rule 2410 – Prevention of Significant Deterioration (PSD) Applicability Determination

Rule 2410 applies to any pollutant regulated under the Clean Air Act, except those for which the District has been classified nonattainment. The pollutants which must be addressed in the PSD applicability determination for sources located in the SJV and which are emitted in this project are: (See 52.21 (b) (23) definition of significant)

- PM
• PM$_{10}$
• Hydrogen sulfide (H$_2$S)
• Total reduced sulfur (including H$_2$S)

Project Emissions Increase - New Major Source Determination

The post-project potentials to emit (PE) from all new and modified units are compared to the PSD major source thresholds to determine if the project constitutes a new major source subject to PSD requirements.

Agricultural operations do not belong to any of the source categories specified in specified in 40 CFR 52.21(b)(1)(i). Since the proposed facility is an agricultural operation, fugitive emissions shall not be included in determining whether it will be a PSD major source; and the PSD major source threshold is 250 tons/yr (tpy) for any regulated NSR pollutant.

The non-fugitive stationary source emissions from Section VII.C.5 have been converted into tons. The PSD applicability determination is summarized in the following table:

<table>
<thead>
<tr>
<th>PSD Applicability Determination - New Major Source</th>
<th>Category</th>
<th>PM</th>
<th>PM$_{10}$</th>
<th>H$_2$S</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PE from new and modified units (tpy)</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>PSD major source threshold (tpy)</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>New PSD major source? (Y/N)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

As shown in the table above, the PE for the proposed project, by itself, does not exceed any PSD major source threshold. Rule 2410 is therefore not applicable and no further analysis is required.

10. Quarterly Net Emissions Change (QNEC)

The QNEC is calculated solely to establish emissions that are used to complete the District’s PAS emissions profile screen. Detailed QNEC calculations are included in Appendix J.

VIII. Compliance Determination

Rule 2201 New and Modified Stationary Source Review Rule

A. Best Available Control Technology (BACT)

1. BACT Applicability

Pursuant to District Rule 2201, Section 4.1, BACT requirements are triggered on a pollutant-by-pollutant basis and on an emissions unit-by-emissions unit basis. Unless specifically exempted by Rule 2201, BACT shall be required for the following actions*:

a. Any new emissions unit with a potential to emit exceeding two pounds per day,
b. The relocation from one Stationary Source to another of an existing emissions unit with a potential to emit exceeding two pounds per day,
c. Modifications to an existing emissions unit with a valid Permit to Operate resulting in an Adjusted Increase in Permitted Emissions (AIPE) exceeding two pounds per day, and/or
d. Any new or modified emissions unit, in a stationary source project, which results in an SB 288 Major Modification or a Federal Major Modification, as defined by the rule.

*Except for CO emissions from a new or modified emissions unit at a Stationary Source with an SSPE2 of less than 200,000 pounds per year of CO.

a. New emissions units – PE > 2 lb/day

The applicant is proposing to expand the herd size and adding new cow housing. As shown in Appendix E, BACT calculations the following new emissions units will have increases of more than 2.0 lb/day for each respective pollutant and triggers Best Available Control Technology (BACT) requirements.

Cow Housing:

VOC: New Freestall Barn Area # 3, 4, & 5 and Heifer/calf Hutch area
NH3: New Freestall Barn Area # 3, 4 & 5 and Heifer/calf Hutch area
PM10: New Freestall Barn Area # 3, 4 & 5

b. Relocation of emissions units – PE > 2 lb/day

As discussed in Section I above, there are no emissions units being relocated from one stationary source to another; therefore BACT is not triggered.

c. Modification of emissions units – AIPE > 2 lb/day

\[
AIPE = PE2 - HAPE
\]

Where,

- **AIPE** = Adjusted Increase in Permitted Emissions, (lb/day)
- **PE2** = Post-Project Potential to Emit, (lb/day)
- **HAPE** = Historically Adjusted Potential to Emit, (lb/day)

\[
HAPE = PE1 \times (EF2/EF1)
\]

Where,

- **PE1** = The emissions unit’s PE prior to modification or relocation, (lb/day)
- **EF2** = The emissions unit’s permitted emission factor for the pollutant after modification or relocation. If EF2 is greater than EF1 then EF2/EF1 shall be set to 1
- **EF1** = The emissions unit’s permitted emission factor for the pollutant before the modification or relocation
AIPE = PE2 – (PE1 * (EF2 / EF1))

The applicant is proposing to expand the herd size and adding new cow housing. As shown in Appendix E, BACT for the following modified emissions units will have increases of more than 2.0 lb/day for each respective pollutant and triggers Best Available Control Technology (BACT) requirements.

N-6733-2-1: Cow Housing:

VOC: Freestall Barn Area # 1 (dry cow area) & shade barn #1
NH3: Freestall Barn Area # 1 (dry cow area) & shade barn #1
PM10: Freestall Barn Area #1 (dry cow area)

N-6733-3-1: Liquid Manure Handling

Lagoon/Storage Ponds – VOC & NH3
Liquid Manure Land Application – VOC & NH3

N-6733-4-1: Solid Manure Handling

Solid Manure Storage – NH3
Solid Manure Land Application – NH3

N-6733-5-1: Feed Storage and Handling

Dairy Feed Storage and Handling System & Total Mix Ration (TMR) - VOC

d. SB 288/Federal Major Modification

As discussed in Sections VII.C.7 and VII.C.8 above, this project does not constitute an SB 288 and/or Federal Major Modification for any pollutant. Therefore BACT is not triggered for any pollutant.

2. BACT Guideline

The following BACT Guidelines applies to various dairy emission units stated above:

- BACT Guideline 5.8.2, applies to the cow housing – freestalls
- BACT Guideline 5.8.4, applies to the cow housing – loafing barns
- BACT Guideline 5.8.6, applies to the liquid manure handling – lagoon/storage ponds
- BACT Guideline 5.8.7 applies to the liquid manure handling – land application
- BACT Guideline 5.8.8 applies to the solid manure handling – storage
- BACT Guideline 5.8.9 applies to the solid manure handling – land application
- BACT Guideline 5.8.11 applies to the feed storage and handling – total mixed ration (TMR)
The above-mentioned BACT Guidelines are included in the Appendix F.

3. Top-Down BACT Analysis

Per Permit Services policies and procedures for BACT, a top-down BACT analysis shall be performed as a part of the application review for each application subject to the BACT requirements pursuant to the District’s NSR rule.

Pursuant to the attached top-down BACT analysis (Appendix G), BACT has been satisfied with the following:

N-6733-2-1: Cow Housing

A. Freestall Barns & Shade Loafing Barn

VOC: New Freestall Barns #3, 4, & 5, Existing Freestall Barn #1 (dry cow area), and Shade Barn #1

- Concrete feed lanes and walkways;
- Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;
- Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;
- Properly sloping exercise pens/corrals (minimum of 3% slope where the available space for each animal is 400 square feet or less and minimum of 1.5% where the available space for each animal is more than 400 square feet per animal) or managing exercise pens/corrals to ensure proper drainage;
- Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions; and
- Rule 4570 measures.

NH₃: New Freestall Barns #3, 4, & 5, Existing Freestall Barn #1 (dry cow area), and Shade Barn #1

- Concrete feed lanes and walkways;
- Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;
- Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;
- Properly sloping exercise pens/corrals (minimum of 3% slope where the available space for each animal is 400 square feet or less and minimum of 1.5% where the available space for each animal is more than 400 square feet per animal) or managing exercise pens/corrals to ensure proper drainage; and

- Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions.

PM10: New Freestall Barns #3, 4, & 5, and Existing Freestall Barn #1 (dry cow area)

- Concrete feed lanes and walkways;

- Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions.

ATC Conditions:

Following conditions on the ATC enforces BACT requirements stated above:

- Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201, 4102 & 4570] N

- Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201, 4102, & 4570] N

- Permittee shall pave feedlanes, where present, for a width of at least 8 feet along the corral side of the feedlane fence for milk and dry cows and at least 6 feet along the corral side of the feedlane for heifers. [District Rules 2201, 4102, & 4570] N

- For the Freestall Barns #1 (dry cow area), #3, #4, #5, and Shade Barn #1 the feedlanes and walkways shall be constructed of concrete. [District Rules 2201, 4102 & 4570] N

- For the Freestall Barns #1 (dry cow area), #3, #4, #5, and Shade Barn #1 permittee shall flush the feed lanes and walkways for the mature cows (milk and dry cows) at least four times per day and flushing lanes and walkways for the remaining animals once per day. [District Rule 2201, 4102 & 4570] N

- For the Freestall Barns #1 (dry cow area), #3, #4, #5, and Shade Barn #1 permittee shall maintain records sufficient to demonstrate that lanes are flushed at least four times per day for the mature cows and at least once per day for the support stock. [District Rules 2201, 4102, & 4570] N

- Permittee shall implement at least one of the following corral mitigation measures: 1)
slope the surface of the corrals at least 3% where the available space for each animal is 400 square feet or less and shall slope the surface of the corrals at least 1.5% where the available space for each animal is more than 400 square feet per animal; 2) maintain corrals to ensure proper drainage preventing water from standing more than forty-eight hours; or 3) harrow, rake, or scrape pens sufficiently to maintain a dry surface except during periods of rainy weather. [District Rules 2201, 4102 & 4570] N

- Permittee shall scrape exercise pen/corral surfaces every two weeks using a pull-type scraper during morning hours, except when prevented by wet conditions. [District Rules 2201 and 4102] N

- Permittee shall maintain sufficient records to demonstrate that exercise pen/corral surfaces are scraped every two weeks using a pull-type scraper during morning hours, except when prevented by wet conditions. [District Rules 2201 and 4102] N

B. Cow Housing Area for Baby Calves

VOC & NH₃: Baby Calves Housing

- Flushing or scraping to remove manure from the cow housing area from the baby calves at least once per week;

- Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;

ATC Conditions:

Following conditions on the ATC enforces BACT requirements stated above:

- Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201, 4102 & 4570] N

- Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201, 4102, & 4570] N

- For baby calves housing permittee shall flush or scrape to remove manure at least once per week. [District Rule 2201 & 4570] N

- For baby calves housing permittee shall maintain records sufficient to demonstrate that manure is removed at least once per week. [District Rules 2201 & 4570] N
N-6733-3-2: Liquid Manure Handling System

Lagoon/Storage Pond

VOC: 1) Anaerobic treatment lagoon designed according to NRCS guidelines, and solids separation/removal system (mechanical separator(s) or settling basin(s)/weeping wall(s)).

NH3: 1) All animals fed in accordance with National Research Council (NRC) or other District-approved guidelines utilizing routine nutritional analysis for rations.

Land Application

VOC: 1) Irrigation of crops using liquid/slurry manure from a secondary lagoon/holding/storage pond preceded by an uncovered anaerobic treatment lagoon designed to meet Natural Resources Conservation Service (NRCS) standards.

NH3: 1) All animals fed in accordance with National Research Council (NRC) or other District-approved guidelines utilizing routine nutritional analysis for rations.

ATC Conditions:

Following conditions on the ATC enforces BACT requirements stated above:

- Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201 and 4102] N

- All liquid manure shall be treated in an anaerobic treatment lagoon/waste liquid storage system that is designed and operated according to the Natural Resources Conservation Service (NRCS) Field Office Technical Guide No. 359. [District Rules 2201 and 4102] N

- Permittee shall maintain design specifications and calculations, including minimum treatment volume (MTV) and hydraulic retention time (HRT) calculations, demonstrating that the anaerobic treatment lagoon system meets the requirements listed in the NRCS Field Office Technical Guide No. 359. [District Rules 2201 and 4102] N

- Any liquid manure applied to land shall have been treated in an anaerobic treatment lagoon/waste liquid storage system that is designed and operated according to the NRCS Field Office Technical Guide No. 359. [District Rules 2201 and 4102] N

N-6733-4-1: Solid Manure Handling Operation

Storage Piles

NH3: 1) All animals fed in accordance with National Research Council (NRC) or other
District-approved guidelines utilizing routine nutritional analysis for rations.

Land Application

NH₃: 1) Rapid incorporation of solid manure into the soil after land application, and all animals fed in accordance with NRC or other District-approved guidelines.

ATC Conditions:

Following conditions on the ATC enforces BACT requirements stated above:

- **Solid manure shall be incorporated into the soil within two hours of land application.** [District Rules 2201]

- **Permittee shall feed all animals according to National Research Council (NRC) guidelines.** [District Rule 2201 and Rule 4570]

N-6733-5-1: Feed Storage and Handling Operation

Silage:

VOC: 1) VOC mitigation measures required by District Rule 4570.

TMR:

VOC: 1) VOC mitigation measures required by District Rule 4570.

See detailed discussion under Rule 4570 compliance section for conditions that will be added to the ATC to enforce BACT. The Rule 2201 reference will be added in the applicable rule section at the end of the each condition to enforce BACT.

B. Offsets

1. **Offset Applicability**

Pursuant to District Rule 2201, Section 4.5, offset requirements shall be triggered on a pollutant by pollutant basis and shall be required if the SSPE2 equals or exceeds the offset threshold levels in Table 4-1 of Rule 2201.

The SSPE2 is compared to the offset thresholds in the following table.
Offset Determination (lb/year)

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>SOx</th>
<th>PM$_{10}$</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPE2</td>
<td>1,213</td>
<td>1</td>
<td>2,259</td>
<td>369</td>
<td>87,708</td>
</tr>
<tr>
<td>Offset Thresholds</td>
<td>20,000</td>
<td>54,750</td>
<td>29,200</td>
<td>200,000</td>
<td>20,000</td>
</tr>
</tbody>
</table>

Offsets triggered?
No | No | No | No | Yes

2. Quantity of Offsets Required

The SSPE for VOC emissions exceeds the VOC offset threshold level. However, per Section 4.6.9 of Rule 2201, offsets are not required for agricultural sources unless they are a major source. As determined in Section VII.C.5 of this evaluation, the proposed facility will not be a major source for any pollutants. Offsets are therefore not required.

C. Public Notification

1. Applicability

Pursuant to District Rule 2201, Section 5.4, public noticing is required for:

a. New Major Sources, Federal Major Modifications, and SB 288 Major Modifications,
b. Any new emissions unit with a Potential to Emit greater than 100 pounds during any one day for any one pollutant,
c. Any project which results in the offset thresholds being surpassed,
d. Any project with an SSIPE of greater than 20,000 lb/year for any pollutant, and/or
e. Any project which results in a Title V significant permit modification

a. **New Major Sources, Federal Major Modifications, and SB 288 Major Modifications**

New Major Sources are new facilities, which are also Major Sources. Since this is not a new facility, public noticing is not required for this project for New Major Source purposes.

As demonstrated in Sections VII.C.7 and VII.C.8, this project does not constitute an SB 288 or Federal Major Modification; therefore, public noticing for SB 288 or Federal Major Modification purposes is not required.

b. **PE > 100 lb/day**

Applications which include a new emissions unit with a PE greater than 100 pounds during any one day for any pollutant will trigger public noticing requirements. There are no new emissions units associated with this project. Therefore public noticing is not required for this project for PE > 100 lb/day.
c. Offset Threshold

Pursuant to District Rule 2201, Section 4.5.3, offset requirements shall be triggered on a pollutant-by-pollutant basis, unless exempted pursuant to Section 4.6, offsets shall be required if the post-project Stationary Source Potential to Emit (SSPE2) equals or exceeds specific threshold levels.

The SSPE1 and SSPE2 are compared to the offset thresholds in the following table.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE1 (lb/year)</th>
<th>SSPE2 (lb/year)</th>
<th>Offset Threshold</th>
<th>Public Notice Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>1,213</td>
<td>1,213</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>SO\textsubscript{x}</td>
<td>1</td>
<td>1</td>
<td>54,750 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>2,910</td>
<td>2,259</td>
<td>29,200 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>369</td>
<td>369</td>
<td>200,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>38,903</td>
<td>87,708</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
</tbody>
</table>

As detailed above, there were no thresholds surpassed with this project; therefore public noticing is not required for offset purposes.

d. SSIPE > 20,000 lb/year

Public notification is required for any permitting action that results in a SSIPE of more than 20,000 lb/year of any affected pollutant. According to District policy, the SSIPE = SSPE2 – SSPE1. The SSIPE is compared to the SSIPE Public Notice thresholds in the following table.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE2 (lb/year)</th>
<th>SSPE1 (lb/year)</th>
<th>SSIPE (lb/year)</th>
<th>SSIPE Public Notice Threshold</th>
<th>Public Notice Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>1,213</td>
<td>1,213</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>SO\textsubscript{x}</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>2,259</td>
<td>2,910</td>
<td>-651</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>369</td>
<td>369</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>87,708</td>
<td>38,903</td>
<td>48,805</td>
<td>20,000 lb/year</td>
<td>Yes</td>
</tr>
<tr>
<td>NH\textsubscript{3}</td>
<td>101,575</td>
<td>45,703</td>
<td>55,872</td>
<td>20,000 lb/year</td>
<td>Yes</td>
</tr>
<tr>
<td>H\textsubscript{2}S</td>
<td>416</td>
<td>416</td>
<td>0</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
</tbody>
</table>

As demonstrated above, the SSIPEs for VOC and NH\textsubscript{3} is greater than 20,000 lb/year; therefore public noticing for SSIPE purposes is required.
e. Title V Significant Permit Modification

Since this facility does not have a Title V operating permit, this change is not a Title V significant Modification, and therefore public noticing is not required.

2. Public Notice Action

As discussed above, public noticing is required for this project. Therefore, public notice documents will be submitted to the California Air Resources Board (CARB) and a public notice will be electronically published on the District’s website prior to the issuance of the ATC for this equipment.

D. Daily Emission Limits (DELs)

DELs and other enforceable conditions are required by Rule 2201 to restrict a unit’s maximum daily emissions, to a level at or below the emissions associated with the maximum design capacity. The DEL must be contained in the latest ATC and contained in or enforced by the latest PTO and enforceable, in a practicable manner, on a daily basis. DELs are also required to enforce the applicability of BACT.

For dairies, the DEL is based on the numbers and age categories of the cows in the permitted herd, as well as conditions enforcing BACT requirements. The following DEL conditions also enforce project design specifications proposed by the applicant for compliance with the ambient air quality standard for PM$_{10}$.

Proposed Rule 2201 (DEL) Conditions:

N-6733-1-1: Milking Operation

- {modified 4484} Permittee shall flush or hose down the milking parlor immediately prior to, immediately after, or during each milking. [District Rules 2201 and 4570]

N-6733-2-1: Cow Housing

- Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201, 4102 and 4570] N

- For Freestall Barns #1 (dry cow area), #3, #4, #5 and Shade Barn #1 the feedlanes and walkways shall be constructed of concrete. [District Rules 2201, 4102 and 4570] N

- For Freestall Barns #1 (dry cow area), #3, #4, #5 and Shade Barn #1 permittee shall flush the feed lanes and walkways for the mature cows (milk and dry cows) at least four times per day and flushing lanes and walkways for the remaining animals once per day . [District Rules 2201, 4102 and 4570] N

- Permittee shall scrape exercise pen and corral surfaces every two weeks using a pull-type scraper during morning hours, except when prevented by wet conditions. [District Rules 2201 and 4102] N
• For baby calves housing permittee shall flush or scrape to remove manure at least once per week. [District Rules 2201 and 4570] N

• Permittee shall pave feedlanes, where present, for a width of at least 8 feet along the corral side of the feedlane fence for milk and dry cows and at least 6 feet along the corral side of the feedlane for heifers. [District Rules 2201 4102 and 4570] N

• Permittee shall remove manure that is not dry from individual cow freestall beds or shall rake, harrow, scrape, or grade freestall bedding at least once every seven (7) days. [District Rules 2201 and 4570] N

• Permittee shall inspect water pipes and troughs and repair leaks at least once every seven (7) days. [District Rules 2201 and 4570] N

• Permittee shall clean manure from corrals at least four (4) times per year with at least sixty (60) days between each cleaning, or permittee shall clean corrals at least once between April and July and at least once between September and December. [District Rules 2201 and 4570] N

• Permittee shall implement at least one of the following corral mitigation measures: 1) slope the surface of the corrals at least 3% where the available space for each animal is 400 square feet or less and shall slope the surface of the corrals at least 1.5% where the available space for each animal is more than 400 square feet per animal; 2) maintain corrals to ensure proper drainage preventing water from standing more than forty-eight hours; or 3) harrow, rake, or scrape pens sufficiently to maintain a dry surface except during periods of rainy weather. [District Rules 2201, 4102 and 4570] N

• Permittee shall scrape, vacuum or flush concrete lanes in corrals at least once every day for mature cows and every seven (7) days for support stock. [District Rules 2201 and 4570] N

• Permittee shall knockdown fence line manure build-up prior to it exceeding a height of twelve (12) inches at any time or point. Manure depth may exceed 12 inches when corrals become inaccessible due to rain events. However, permittee must resume management of the manure depth of 12 inches or lower immediately upon the corral becoming accessible. [District Rules 2201 and 4570] N

N-6733-3-2: Liquid Manure Handling

• {modified 4454} Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rule 2201 and 4102]

• All liquid manure shall be treated in an anaerobic treatment lagoon system that is designed and operated according to the Natural Resources Conservation Service (NRCS) Field Office Technical Guide No. 359. [District Rule 2201 and 4102]

• {modified 4538} Permittee shall remove solids with a solids separation system prior to the
manure entering the lagoon. [District Rules 2201 and 4570]

- Any liquid manure applied to land shall have been treated in an anaerobic treatment lagoon system that is designed and operated according to the NRCS Field Office Technical Guide No. 359. [District Rule 2201 and 4102]

- {modified 4550} Permittee shall not allow liquid manure to stand in the fields for more than twenty-four (24) hours after irrigation. [District Rules 2201 and 4570]

N-6733-4-1: Solid Manure Handling

- {modified 4454} Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rule 2201]

- {modified 4529} Within seventy two (72) hours of removal of separated solids from the drying process, permittee shall either 1) remove separated solids from the facility, or 2) cover separated solids outside the housing with a weatherproof covering from October through May, except for times when wind events remove the covering, not to exceed twenty-four (24) hours per event. [District Rules 2201 and 4570] N

- {modified 4454} Solid manure shall be incorporated into the soil within two hours of land application. [District Rules 2201]

N-6733-5-1: Feed Storage and Handling

- {modified 4454} Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201 and 4570]

- {modified 4456} Permittee shall push feed so that it is within three feet of the feed lane fences within two hours of putting out the feed, or use feed troughs or other feeding structures designed to maintain feed within reach of the animals. [District Rules 2201 and 4570]

- {modified 4458} Permittee shall begin feeding total mixed rations within two hours of grinding and mixing rations. [District Rules 2201 and 4570]

- {modified 4460} Permittee shall store grain in a weatherproof storage structure or under a weatherproof covering from October through May. [District Rules 2201 and 4570]

- {modified 4462} Permittee shall feed steam-flaked, dry rolled, cracked or ground corn or other steam-flaked, dry rolled, cracked or ground cereal grains. [District Rules 2201 and 4570]

- {modified 4468} For bagged silage/feedstuff, permittee shall utilize a sealed feed storage system (e.g., ag bag). [District Rules 2201 and 4570]

- {modified 4469} Permittee shall cover all silage piles, except for the area where feed is being removed from the pile, with a plastic tarp that is at least five (5) mils (0.005 inches) thick.
multiple plastic tarps with a cumulative thickness of at least 5 mils (0.005 inches), or an oxygen barrier film covered with a UV resistant material. Silage piles shall be covered within seventy-two (72) hours of last delivery of material to the pile. Sheets of material used to cover silage shall overlap so that silage is not exposed where the sheets meet. [District Rules 2201 and 4570]

- {modified 4471} Permittee shall select and implement one of the following mitigation measures for building each silage pile at the facility: Option 1) build the silage pile such that the average bulk density is at least 44 lb/cu ft for corn silage and 40 lb/cu ft for other silage types, as measured in accordance with Section 7.11 of District Rule 4570; Option 2) Adjust filling parameters when creating the silage pile to achieve an average bulk density of at least 44 lb/cu ft for corn silage and at least 40 lb/cu ft for other silage types as determined using a District-approved spreadsheet; or Option 3) build silage piles using crops harvested with the applicable minimum moisture content, maximum Theoretical Length of Chop (TLC), and roller opening identified in District Rule 4570, Table 4.1, 1.d and manage silage material delivery such that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. Records of the option chosen as a mitigation measure for building each silage pile shall be maintained. [District Rules 2201 and 4570]

- {modified 4474} For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall harvest corn used for the pile at an average moisture content of at least 65% and harvest other silage crops for the pile at an average moisture content of at least 60%. [District Rules 2201 and 4570]

- {modified 4476} For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall adjust setting of equipment used to harvest crops for the pile to incorporate the following parameters for Theoretical Length of Chop (TLC) and roller opening, as applicable: 1) Corn with no processing: TLC not exceeding 1/2 inch, 2) Processed Corn: TLC not exceeding 3/4 inch and roller opening of 1-4 mm, 3) Alfalfa/Grass: TLC not exceeding 1.0 inch, 4) Other silage crops: TLC not exceeding 1/2 inch. [District Rules 2201 and 4570]

- {modified 4478} For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall manage silage material delivery such that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. [District Rules 2201 and 4570]

- {modified 4480} Permittee shall select and implement at least two of the following mitigation measures for management of silage piles at the facility: Option 1) manage silage piles such that only one silage pile has an uncovered face and the total exposed surface area is less than 2,150 square feet, or manage multiple uncovered silage piles such that the total exposed surface area of all uncovered silage piles is less than 4,300 square feet; Option 2) use a shaver/facer to remove silage from the silage pile, or shall use another method to maintain a smooth vertical surface on the working face of the silage pile; or Option 3) inoculate silage with homolactic lactic acid bacteria in accordance with manufacturer recommendations to achieve a concentration of at least 100,000 colony forming units per gram of wet forage, apply propionic acid, benzoic acid, sorbic acid, sodium benzoate, or
potassium sorbate at the rate specified by the manufacturer to reduce yeast counts when forming silage piles, or apply other additives at rates that have been demonstrated to reduce alcohol concentrations in silage and/or VOC emissions from silage and have been approved by the District and EPA. Records of the options chosen for managing each silage pile shall be maintained. [District Rules 2201 and 4570]

E. Compliance Assurance

1. Source Testing

Pursuant to District Policy APR 1705, source testing is not required to demonstrate compliance with Rule 2201.

2. Monitoring

No monitoring is required to demonstrate compliance with Rule 2201.

3. Recordkeeping

Recordkeeping is required to demonstrate compliance with the public notification and daily emission limit requirements of Rule 2201. In general, recordkeeping for the Milking Parlor (N-6733-1), the Liquid Manure Handling System (N-6733-3), and the Solid Manure Handling System (N-6733-4) and the Feed Storage and Handling System (N-6733-5) is satisfied with the records that must be kept to demonstrate compliance with the numbers and types of cows listed in the permit equipment description for the Cow Housing (N-6733-2). Conditions that will be placed on the ATC permits are listed below.

Additional recordkeeping conditions are included under the Rule 4570 compliance section.

Milking Parlor (N-6733-1)

The following conditions will be placed on the ATC:

- {modified 4485} Permittee shall provide verification that milk parlor is flushed or hosed down immediately prior to, immediately after, or during each milking. [District Rules 2201 and 4570]

- {modified 4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201 and 4570]

Cow Housing (N-6733-2)

The following conditions will appear on the ATC for the Cow Housing Permit:

- Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC)
guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201, 4102, and 4570]

- Permittee shall keep records or maintain an operating plan that requires freestall flush lanes to be flushed or scraped at least three times per day. [District Rules 2201 and 4570] N

- {modified 4488} For Freestall Barns #1 (dry cow area), #3, #4, #5 and Shade Barn #1 permittee shall maintain records sufficient to demonstrate that lanes are flushed at least four times per day or scraped four times per day. [District Rules 2201, 4102, and 4570]

- For baby calves housing permittee shall maintain records sufficient to demonstrate that manure is removed at least once per week. [District Rules 2201 and 4570] N

- {modified 4500} Permittee shall maintain records demonstrating that water pipes and troughs are inspected and leaks are repaired at least once every seven (7) days. [District Rules 2201 and 4570]

- Permittee shall measure and document the depth of manure on the concrete lanes at least once every ninety (90) days. [District Rule 2201 & 4570] N

- {modified 4502} Permittee shall demonstrate that manure from corrals are cleaned at least four (4) times per year with at least sixty (60) days between each cleaning or demonstrate that corrals are cleaned at least once between April and July and at least once between September and December. [District Rules 2201 and 4570]

- {modified 4555} Permittee shall either 1) maintain sufficient records to demonstrate that exercise pens/corrals are maintained to ensure proper drainage preventing water from standing for more than forty-eight hours; or 2) maintain records of dates when exercise pens/corrals are groomed (i.e., harrowed, raked, or scraped, etc.). [District Rules 2201, 4102, and 4570]

- Permittee shall maintain sufficient records to demonstrate that exercise pen and corral surfaces are scraped every two weeks using a pull-type scraper during morning hours, except when prevented by wet conditions. [District Rule 2201] N

- {modified 4449} Permittee shall maintain a record of the number of animals of each species and production group at the facility and shall maintain quarterly records of any changes to this information. [District Rules 2201, 4102, and 4570]

- {modified 4519} Permittee shall measure and document the depth of manure in the corrals at least once every ninety (90) days. [District Rules 2201, 4102, and 4570]

- {modified 4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201, 4102, and 4570]
Liquid Manure Handling System (N-6733-3)

To ensure that the lagoon system is designed and operating properly, the following conditions will be placed on the ATC for the Liquid Manure Handling System:

- Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201 and 4102]

- Permittee shall maintain design specifications and calculations, including minimum treatment volume (MTV) and hydraulic retention time (HRT) calculations, demonstrating that the anaerobic treatment lagoon system meets the requirements listed in the NRCS Field Office Technical Guide No. 359. [District Rules 2201 and 4102]

- Permittee shall maintain records to demonstrate that liquid manure applied to land has been treated in an anaerobic treatment lagoon system that is designed and operated according to the NRCS Field Office Technical Guide No. 359. [District Rule 2201]

- {modified 4551} Permittee shall maintain records to demonstrate liquid manure did not stand in the fields for more than twenty-four (24) hours after irrigation. [District Rules 2201 and 4570]

- {modified 4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201, 4102, and 4570]

Solid Manure Handling System (N-6733-4)

The following conditions will be placed on the ATC:

- Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rule 2201]

- {modified 4527} Permittee shall keep records of dates when manure is removed from the dairy or permittee shall maintain records to demonstrate that dry manure piles outside the pens are covered with a weatherproof covering from October through May. [District Rules 2201 and 4570]

- {modified 4528} If weatherproof coverings are used, permittee shall maintain records, such as manufacturer warranties or other documentation, demonstrating that the weatherproof covering over dry manure are installed, used, and maintained in accordance with manufacturer recommendations and applicable standards listed in
NRCS Field Office Technical Guide Code 313 or 367, or any other applicable standard approved by the APCO, ARB, and EPA. [District Rules 2201 and 4570]

- {modified 4542} Permittee shall maintain records to demonstrate that solid manure has been incorporated into the soil within two hours of land application. [District Rules 2201]

- {modified 4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201 and 4570]

Feed Storage and Handling System (N-6733-5)

The following conditions will be placed on the ATC:

- {modified 4455} Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201 and 4570]

- {modified 4457} Permittee shall maintain an operating plan/record that requires feed to be pushed within three feet of feedlane fence within two hours of putting out the feed, or use of a feed trough or other structure designed to maintain feed within reach of the animals. [District Rules 2201 and 4570]

- {modified 4459} Permittee shall maintain an operating plan/record of when feeding of total mixed rations began within two hours of grinding and mixing rations. [District Rules 2201 and 4570]

- {modified 4461} Permittee shall maintain records demonstrating grain is/was stored in a weatherproof storage structure or under a weatherproof covering from October through May. [District Rules 2201 and 4570]

- {modified 4463} Permittee shall maintain records to demonstrate animals are fed steam-flaked, dry rolled, cracked or ground corn or other steam-flaked, dry rolled, cracked or ground cereal grains. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201 and 4570]

- {modified 4470} Permittee shall maintain records of the thickness and type of cover used to cover each silage pile. Permittee shall also maintain records of the date of the last delivery of material to each silage pile and the date each pile is covered. [District Rule 2201 & 4570]

- {modified 4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201 and 4570]
The permit units are also subject to the recordkeeping requirements of District Rule 4570, *Confined Animal Facilities*, which will be discussed under the Rule 4570 section below.

4. Reporting

No reporting is required to demonstrate compliance with Rule 2201.

F. Ambient Air Quality Analysis (AAQA)

Section 4.14 of District Rule 2201 requires that an AAQA be conducted for the purpose of determining whether a new or modified Stationary Source will cause or make worse a violation of an air quality standard. The District’s Technical Services Division conducted the required analysis. Refer to Appendix H of this document for the AAQA summary sheet.

The proposed location is in an attainment area for NO$_X$, CO, and SO$_X$. As shown by the AAQA summary sheet the proposed equipment will not cause a violation of an air quality standard for NO$_X$, CO, or SO$_X$.

The proposed location is in a non-attainment area for the state’s PM$_{10}$ as well as federal and state PM$_{2.5}$ thresholds. As shown by the AAQA summary sheet the proposed equipment will not cause a violation of an air quality standard for PM$_{10}$ and PM$_{2.5}$.

Rule 2410 Prevention of Significant Deterioration

As shown in Section VII.C.9 above, this project does not result in a new PSD major source or PSD major modification. No further discussion is required.

Rule 2520 Federally Mandated Operating Permits

Since this facility’s potential emissions do not exceed any major source thresholds of Rule 2201, this facility is not a major source, and Rule 2520 does not apply.

Rule 2550 Federally Mandated Preconstruction Review for Major Sources of Air Toxics

The provisions of this rule only apply to applications to construct or reconstruct a major air toxics source with Authority to Construct issued on or after June 28, 1998.

Newly constructed facilities or reconstructed units or sources at existing facilities are subject to preconstruction review requirements if they have the potential to emit hazardous air pollutants (air toxics) in "major" amounts (10 tons or more of an individual pollutant or 25 tons or more of a combination of pollutants) and the new units are not already subject to a standard promulgated under Section 112(d), 112(j), or 112(h) of the Clean Air Act." Facilities or sources subject to Rule 2550 would be subject to stringent air pollution control requirements, referred to as Maximum Achievable Control Technology (MACT).

The federal Clean Air Act (Section 112(b)(1)) lists 189 substances as potential hazardous air pollutants (HAPs). The following table outlines the HAPs expected to be emitted from dairies, and their estimated emission rates, based on the best data currently available:
Hazardous Air Pollutant Emissions from Dairies

<table>
<thead>
<tr>
<th>HAP</th>
<th>Emission Rate lb/milk cow-yr</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>1.35</td>
<td>UC Davis - VOC Emission from Dairy Cows and their Excreta, 2005</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>0.027</td>
<td>Dr. Schmidt - Dairy Emissions using Flux Chambers (Phase I & II), 2005</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>o-Xylene</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>0.011</td>
<td>Dr. Schmidt - Dairy Emissions using Flux Chambers (Phase I & II), 2005</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.005</td>
<td>California State University Fresno (CSUF) - Monitoring and Modeling of ROG at California Dairies, 2005</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>0.01</td>
<td>California State University Fresno (CSUF) - Monitoring and Modeling of ROG at California Dairies, 2005</td>
</tr>
<tr>
<td>Vinyl acetate(^8)</td>
<td>0.08</td>
<td>Dr. Schmidt - Dairy Emissions using Flux Chambers (Phase I & II) & California State University Fresno (CSUF) - Monitoring and Modeling of ROG at California Dairies, 2005</td>
</tr>
<tr>
<td>Toluene(^9)</td>
<td>0.162</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.009</td>
<td>Air Resources Board’s Profile No. 423, Livestock Operations Dust</td>
</tr>
<tr>
<td>Hexavalent Chromium</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.828</td>
<td></td>
</tr>
</tbody>
</table>

Since the proposed dairy is subject to Best Available Control Technology (BACT) emissions control requirements and Rule 4570 mitigation measures, many of the pollutants listed above are expected to be controlled significantly. However, in order to ensure that this evaluation is based on the worst-case scenario, no controls will be factored into the HAPs emissions estimates. Please note that a conclusion that MACT requirements are triggered would necessarily involve consideration of controlled emissions levels. Based on the total emission rate shown in the preceding table, the HAPs emissions calculations for the proposed dairy are summarized in the table below:

\(^8\) 0.01 + 0.07 = 0.08 lbs/hd-yr.

\(^9\) 0.012 + 0.15 = 0.162 lbs/hd-yr.
HAPs Emissions Calculations

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of cows</th>
<th>Emission Rate lb/cow-yr(^{10})</th>
<th>Emissions lb/yr</th>
<th>tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milking Cows</td>
<td>2,750</td>
<td>1.828</td>
<td>5,027</td>
<td>2.5</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>560</td>
<td>1.123</td>
<td>629</td>
<td>0.3</td>
</tr>
<tr>
<td>Support Stock</td>
<td>2,056</td>
<td>0.786</td>
<td>1,616</td>
<td>0.8</td>
</tr>
<tr>
<td>Calves (0 - 3 mon)</td>
<td>0</td>
<td>0.584</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total =</td>
<td></td>
<td></td>
<td>7,272</td>
<td>3.6</td>
</tr>
</tbody>
</table>

As shown above total HAPs emissions are expected to be less than 10 tons per year. The proposed facility will therefore not be a major air toxics source and the provisions of Rule 2550 are not applicable.

Rule 4101 Visible Emissions

Pursuant to Section 4.12, the requirements of this rule do not apply to emissions subject to or specifically exempt from Regulation VIII (Fugitive PM10 Prohibitions).

Pursuant to Rule 8011, Section 4.4, on-field agricultural sources are exempt from the requirements of Regulation VIII.

The proposed project involves only on-field agricultural sources and is therefore exempt from the requirements of Rule 4101.

Rule 4102 Nuisance

Rule 4102 prohibits discharge of air contaminants which could cause injury, detriment, nuisance or annoyance to the public. Public nuisance conditions are not expected as a result of these operations, provided the equipment is well maintained. Therefore, compliance with this rule is expected.

California Health & Safety Code 41700 (Health Risk Assessment)

District Policy APR 1905 – *Risk Management Policy for Permitting New and Modified Sources* specifies that for an increase in emissions associated with a proposed new source or modification, the District perform an analysis to determine the possible impact to the nearest resident or worksite.

An HRA is not required for a project with a total facility prioritization score of less than one. According to the Technical Services Memo for this project (*Appendix H*), the total facility prioritization score including this project was greater than one. Therefore, an HRA was required to determine the short-term acute and long-term chronic exposure from this project.

The cancer risk for this project is shown below:

\(^{10}\) The emission rate total has been adjusted for each cow category using ratios based on manure production rates.
Discussion of T-BACT

BACT for toxic emission control (T-BACT) is required if the cancer risk exceeds one in one million. As demonstrated above, T-BACT is required for emissions units listed below because the HRA indicates that the risk is above the District’s thresholds for triggering T-BACT requirements.

- Cow Housing – New Freestall barns #4 and #5
- Manure Liquid Storage

For this project T-BACT is triggered for VOC. T-BACT is satisfied with BACT for VOC (see Appendix G); therefore, compliance with the District’s Risk Management Policy is expected.

Rule 4550 Conservation Management Practices (CMP)

This rule applies to agricultural operation sites located within the San Joaquin Valley air basin. The purpose of the rule is to limit fugitive dust emissions from agricultural operation sites. Pursuant to Section 5.1, effective on and after July 1, 2004, an owner/operator shall implement the applicable CMPs selected pursuant to Section 6.2 for each agricultural operation site.

Pursuant to Section 5.2, an owner/operator shall prepare and submit a CMP application for each agricultural operation site to the APCO for approval.

This facility received District approval for its current CMP plan in 2005. The proposed project does not involve any changes or modifications to the previously approved CMP plan. Continued compliance with the requirements of this rule is therefore expected.

Rule 4570 Confined Animal Facilities (CAF)

This rule applies to Confined Animal Facilities (CAF) located within the San Joaquin Valley Air Basin. The purpose of this rule is to limit emissions of Volatile Organic Compounds (VOC) through the implementation of various mitigation measures for each emissions unit.

The facility was issued ATC permits to implement the requirements of this rule under project N-1104464. All previously selected mitigation measures will be carried over in the Authority to Construct permits issued under this project.
General Condition on all ATCs

- {4452} If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the permittee shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

- {modified 4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201, 4102, and 4570]

A. Milking Parlor (N-6733-1)

Flush or hose down the milking parlor immediately prior to, immediately after, or during each milking.

- {modified 4484} Permittee shall flush or hose down the milking parlor immediately prior to, immediately after, or during each milking. [District Rules 2201 and 4570]

- {modified 4485} Permittee shall provide verification that the milking parlor is flushed or hosed down immediately prior to, immediately after, or during each milking. [District Rules 2201 and 4570]

- {modified 4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201, 4102, and 4570]

B. Cow Housing (N-6733-2)

The following general condition will be included on the cow housing permit.

- {modified 4449} Permittee shall maintain a record of the number of animals of each species and production group at the facility and shall maintain quarterly records of any changes to this information. [District Rules 2201 & 4570]

Freestall Barn Mitigation Measures:

- {modified 4486} Permittee shall pave feedlanes for a width of at least 8 feet along the housing side of the feedlane fence for mature cows and at least 6 feet along the housing side of the feedlane fence for heifers. [District Rules 2201, 4102, and 4570]

- {modified 4489} Permittee shall flush or scrape freestall flush lanes at least three (3) times per day. [District Rules 2201 and 4570]
• {modified} Permittee shall keep records or maintain an operating plan that requires freestall flush lanes to be flushed or scraped at least three times per day. [Districts Rules 2201 and 4570]

• {modified 4492} Permittee shall remove manure that is not dry from individual cow freestall beds or rake, harrow, scrape, or grade freestall bedding at least once every seven (7) days. [District Rules 2201, 4102, and 4570]

• {modified 4493} Permittee shall record either of the following: 1) the dates when manure that is not dry is removed from individual cow freestall beds or 2) the dates when the freestall bedding is raked, harrowed, scraped, or graded. [District Rules 2201, 4102, and 4570]

Corral Mitigation Measures

• {modified 4486} Permittee shall pave feedlanes, where present, for a width of at least 8 feet along the corral side of the feedlane fence for milk and dry cows and at least 6 feet along the corral side of the feedlane for heifers. [District Rule 2201, 4102 and 4570]

• {modified 4499} Permittee shall inspect water pipes and troughs and repair leaks at least once every seven (7) days. [District Rules 2201 and 4570]

• {modified 4500} Permittee shall maintain records demonstrating that water pipes and troughs are inspected and leaks are repaired at least once every seven (7) days. [District Rules 2201 and 4570]

• {modified 4501} Permittee shall clean manure from corrals at least four (4) times per year with at least sixty (60) days between each cleaning, or permittee shall clean corrals at least once between April and July and at least once between September and December. [District Rules 2201 and 4570]

• {modified 4502} Permittee shall demonstrate that manure from corrals are cleaned at least four (4) times per year with at least sixty (60) days between each cleaning or demonstrate that corrals are cleaned at least once between April and July and at least once between September and December. [District Rules 2201 and 4570]

• Permittee shall implement at least one of the following mitigation measures: 1) slope the surfaces of exercise pens/corrals at least 3% where the available space for each animal is 400 square feet or less and at least 1.5% where the available space for each animal is more than 400 square feet per animal; 2) maintain exercise pens/corrals to ensure proper drainage preventing water from standing more than forty-eight hours; or 3) harrow, rake, or scrape exercise pens/corrals sufficiently to maintain a dry surface except during periods of rainy weather.

• {modified 4511} Shade structures shall be installed in any of the following ways: 1) constructed with a light permeable roofing material; 2) uphill of any slope in the corral; 3) installed so that the structure has a North/South orientation. OR Permittee shall clean manure from under corral shades at least once every fourteen (14) days, when weather permits access into the corral.
[District Rules 2201 and 4570] N

- {modified 4555} Permittee shall either 1) maintain sufficient records to demonstrate that exercise pens/corrals are maintained to ensure proper drainage preventing water from standing for more than forty-eight hours; or 2) maintain records of dates when exercise pens/corrals are groomed (i.e., harrowed, raked, or scraped, etc.). [District Rules 2201, 4102, and 4570]

- {modified 4508} Permittee shall scrape, vacuum or flush concrete lanes in corrals at least once every day for mature cows and every seven (7) days for support stock. [District Rules 2201 and 4570]

- {modified 4556} Permittee shall maintain records demonstrating that concrete lanes in corrals are scraped, vacuumed, or flushed at least once every day for mature cows and at least once every seven (7) days for support stock. [District Rules 2201 and 4570]

- {modified 4520} Permittee shall knockdown fence line manure build-up prior to it exceeding a height of twelve (12) inches at any time or point. Manure depth may exceed 12 inches when corrals become inaccessible due to rain events. However, permittee must resume management of the manure depth of 12 inches or lower immediately upon the corral becoming accessible. [District Rules 2201 and 4570] N

- Permittee shall measure and document the depth of manure at the fence line at least once every ninety (90) days. [District Rules 2201, 4102, and 4570]

- {modified 4449} Permittee shall maintain a record of the number of animals of each species and production group at the facility and shall maintain quarterly records of any changes to this information. [District Rules 2201, 4102, and 4570]

- {modified 4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201, 4102, and 4570]

C. Liquid Manure Handling System (N-6733-3)

- {modified 4538} Permittee shall remove solids with a solid separator system, prior to the manure entering the lagoon. [District Rules 2201, 4102, and 4570]

- {modified 4550} Permittee shall not allow liquid manure to stand in the fields for more than twenty-four (24) hours after irrigation. [District Rules 2201 and 4570]

- {modified 4551} Permittee shall maintain records to demonstrate liquid manure did not stand in the fields for more than twenty-four (24) hours after irrigation. [District Rules 2201 and 4570]

- {modified 4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201, 4102, and 4570]
D. Solid Manure Handling System (N-6733-4)

- {modified 4529} Within seventy two (72) hours of removal of separated solids from the drying process, permittee shall either 1) remove separated solids from the facility, or 2) cover separated solids outside the housing with a weatherproof covering from October through May, except for times when wind events remove the covering, not to exceed twenty-four (24) hours per event. [District Rules 2201 and 4570] N

- {modified 4527} Permittee shall keep records of dates when manure is removed from the dairy or permittee shall maintain records to demonstrate that dry manure piles outside the pens are covered with a weatherproof covering from October through May. [District Rules 2201 and 4570]

- {modified 4528} If weatherproof coverings are used, permittee shall maintain records, such as manufacturer warranties or other documentation, demonstrating that the weatherproof covering over dry manure are installed, used, and maintained in accordance with manufacturer recommendations and applicable standards listed in NRCS Field Office Technical Guide Code 313 or 367, or any other applicable standard approved by the APCO, ARB, and EPA. [District Rules 2201 and 4570]

- Permittee shall not apply solid manure with a moisture content of more than 50%. [District Rules 2201 and 4570] N

- Permittee shall maintain records of the moisture content of the solid manure each time solid manure is land applied. [District Rules 2201 and 4570] N

E. Feed Storage and Handling System (N-6733-5)

- {modified 4454} Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201 & 4570]

- {modified 4455} Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201 & 4570]

- {modified 4456} Permittee shall push feed so that it is within three feet of feedlane fence within two hours of putting out the feed or use a feed trough or other feeding structure designed to maintain feed within reach of the animals. [District Rules 2201 & 4570]

- {modified 4457} Permittee shall maintain an operating plan or record that requires feed to be pushed within three feet of feedlane fence within two hours of putting out the feed, or use of a feed trough or other structure designed to maintain feed within reach of the animals. [District Rules 2201 & 4570]

- {modified 4458} Permittee shall begin feeding total mixed rations within two hours of grinding and mixing rations. [District Rules 2201 & 4570]
• {modified 4459} Permittee shall maintain an operating plan or record of when feeding of total mixed rations began within two hours of grinding and mixing rations. [District Rules 2201 & 4570]

• {modified 4460} Permittee shall store grain in a weatherproof storage structure or under a weatherproof covering from October through May. [District Rules 2201 & 4570]

• {modified 4461} Permittee shall maintain records demonstrating grain is/was stored in a weatherproof storage structure or under a weatherproof covering from October through May. [District Rules 2201 & 4570]

• {modified 4462} Permittee shall feed steam-flaked, dry rolled, cracked or ground corn or other steam-flaked, dry rolled, cracked or ground cereal grains. [District Rules 2201 and 4570]

• {modified 4463} Permittee shall maintain records to demonstrate animals are fed steam-flaked, dry rolled, cracked or ground corn or other steam-flaked, dry rolled, cracked or ground cereal grains. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201 and 4570]

Silage

• {modified 4469} Permittee shall cover all silage piles, except for the area where feed is being removed from the pile, with a plastic tarp that is at least five (5) mils (0.005 inches) thick, multiple plastic tarps with a cumulative thickness of at least 5 mils (0.005 inches), or an oxygen barrier film covered with a UV resistant material. Silage piles shall be covered within seventy-two (72) hours of last delivery of material to the pile. Sheets of material used to cover silage shall overlap so that silage is not exposed where the sheets meet. [District Rules 2201 & 4570]

• {modified 4470} Permittee shall maintain records of the thickness and type of cover used to cover each silage pile. Permittee shall also maintain records of the date of the last delivery of material to each silage pile and the date each pile is covered. [District Rules 2201 & 4570]

• {modified 4471} Permittee shall select and implement one of the following mitigation measures for building each silage pile at the facility: Option 1) build the silage pile such that the average bulk density is at least 44 lb/cu ft for corn silage and 40 lb/cu ft for other silage types, as measured in accordance with Section 7.11 of District Rule 4570; Option 2) Adjust filling parameters when creating the silage pile to achieve an average bulk density of at least 44 lb/cu ft for corn silage and at least 40 lb/cu ft for other silage types as determined using a District-approved spreadsheet; or Option 3) build silage piles using crops harvested with the applicable minimum moisture content, maximum Theoretical Length of Chop (TLC), and roller opening identified in District Rule 4570, Table 4.1, 1.d and manage silage material delivery such that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. Records of the option chosen as a mitigation measure for building each silage pile shall be maintained. [District Rules 2201 & 4570]
• {modified 4472} For each silage pile that Option 1 (Measured Bulk Density) is chosen as a mitigation measure for building the pile, records of the measured bulk density shall be maintained. [District Rules 2201 & 4570]

• {modified 4473} For each silage pile that Option 2 (Bulk Density Determined by Spreadsheet) is chosen as a mitigation measure for building the pile, records of the filling parameters entered into the District-approved spreadsheet to determine the bulk density shall be maintained. [District Rules 2201 & 4570]

• {modified 4474} For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall harvest corn used for the pile at an average moisture content of at least 65% and harvest other silage crops for the pile at an average moisture content of at least 60%. [District Rules 2201 & 4570]

• {modified 4475} For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, records of the average percent moisture of crops harvested for silage shall be maintained. [District Rules 2201 & 4570]

• {modified 4476} For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall adjust setting of equipment used to harvest crops for the pile to incorporate the following parameters for Theoretical Length of Chop (TLC) and roller opening, as applicable: 1) Corn with no processing: TLC not exceeding 1/2 inch, 2) Processed Corn: TLC not exceeding 3/4 inch and roller opening of 1-4 mm, 3) Alfalfa/Grass: TLC not exceeding 1.0 inch, 4) Other silage crops: TLC not exceeding 1/2 inch. [District Rules 2201 & 4570]

• {modified 4477} For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, records that equipment used to harvest crops for the pile was set to the required TLC and roller opening for the type of crop harvested shall be maintained. [District Rules 2201 & 4570]

• {modified 4478} For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall manage silage material delivery such that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. [District Rules 2201 & 4570]

• {modified 4479} For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall maintain a plan or record that requires that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. [District Rules 2201 & 4570]

• {modified 4480} Permittee shall select and implement at least two of the following mitigation measures for management of silage piles at the facility: Option 1) manage silage piles such that only one silage pile has an uncovered face and the total exposed surface area is less than 2,150 square feet, or manage multiple uncovered silage piles such that the total exposed surface area of all uncovered silage piles is less than 4,300 square feet; Option 2) use a
shaver/facer to remove silage from the silage pile, or shall use another method to maintain a smooth vertical surface on the working face of the silage pile; or Option 3) inoculate silage with homolactic lactic acid bacteria in accordance with manufacturer recommendations to achieve a concentration of at least 100,000 colony forming units per gram of wet forage, apply propionic acid, benzoic acid, sorbic acid, sodium benzoate, or potassium sorbate at the rate specified by the manufacturer to reduce yeast counts when forming silage piles, or apply other additives at rates that have been demonstrated to reduce alcohol concentrations in silage and/or VOC emissions from silage and have been approved by the District and EPA. Records of the options chosen for managing each silage pile shall be maintained. [District Rules 2201 & 4570]

- {modified 4481} If Option 1 (Limiting Exposed Area of Silage) is chosen as a mitigation measure for managing silage piles, the permittee shall calculate and record the maximum (largest part of pile) total exposed area of each silage pile. Records of the maximum calculated area shall be maintained. [District Rules 2201 & 4570]

- {modified 4482} For each silage pile that Option 2 (Shaver/Facer or Smooth Face) is chosen as a mitigation measure for building the pile, the permittee shall maintain records that a shaver/facer was used to remove silage from the pile or shall visually inspect the pile at least daily to verify that the working face was smooth and maintain records of the visual inspections. [District Rules 2201 & 4570]

- {modified 4483} For each silage pile that Option 3 (Silage Additives) is chosen as a mitigation measure for building the pile, records shall be maintained of the type additive (e.g. inoculants, preservative, other District & EPA-approved additive), the quantity of the additive applied to the pile, and a copy of the manufacturer’s instructions for application of the additive. [District Rules 2201 & 4570]

According to the District’s inspection records, this facility has been operating in compliance with Rule 4570 requirements. Since the proposed modifications do not fundamentally alter the nature of the facility’s operations, continued compliance with the requirements of this rule is expected.

California Health & Safety Code 42301.6 (School Notice)

The District has verified that this site is not located within 1,000 feet of a school. Therefore, pursuant to California Health and Safety Code 42301.6, a school notice is not required.

California Environmental Quality Act (CEQA)

The County of Merced (County) is the public agency having principal responsibility for approving the Project. As such, the County served as the Lead Agency for the project. On July 25, 2019 the County certified the Environmental Impact Report (EIR), finding that mobile emissions would have a significant, unavoidable impact on air quality. The County approved the project and adopted a Statement of Overriding Consideration (SOC).

The District is a Responsible Agency for the project because of its discretionary approval power over the project via its Permits Rule (Rule 2010) and New Source Review Rule (Rule 2201), (CEQA Guidelines §15381). As a Responsible Agency the District complies with CEQA by
considering the EIR prepared by the Lead Agency, and by reaching its own conclusion on whether and how to approve the project involved (CEQA Guidelines §15096). The District has considered the Final EIR certified by the County.

The District’s engineering evaluation of the project (this document) demonstrates that the District would impose permit conditions requiring the applicant to meet BACT. Thus, the District concludes that through a combination of project design elements and permit conditions, project specific stationary source emissions will be reduced and mitigated to less than significant levels.

The County concluded that emissions from mobile sources would have a significant impact on air quality. The District finds that impacts from mobile source emissions are within the jurisdiction of the California Air Resources Board. The District has no statutory authority over mobile source emissions and cannot impose additional mitigation measures to reduce emissions from those sources.

As a Responsible Agency the District is required to issue findings for significant air quality impacts detailed in the Lead Agency’s EIR and adopt an SOC. The District has required all feasible mitigation measures to lessen stationary source emissions impacts to air quality from this project. As a single purpose agency, the District lacks the Lead Agency’s broader scope of authority over the project and does not believe that it should overrule the decisions made by the Lead Agency. Accordingly, after considering the Lead Agency’s EIR, the SOC, and the substantial evidence the Lead Agency relied on in adopting the SOC, the District finds that it had no basis on which to disagree with the SOC and evidence relied on therein. The District therefore adopts the Lead Agency’s SOC by reference as its own.

Indemnification Agreement/Letter of Credit Determination

The criteria pollutant emissions and toxic air contaminant emissions associated with the proposed project are not significant, and there is minimal potential for public concern for this particular operation. Therefore, an Indemnification Agreement and/or a Letter of Credit will not be required for this project in the absence of expressed public concern.

IX. Recommendation

Compliance with all applicable rules and regulations is expected. Pending a successful NSR Public Noticing period, issue ATCs N-6733-1-1, -2-1, -3-2, -4-1 & -5-1 subject to the permit conditions on the attached draft ATCs in Appendix A.

X. Billing Information

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Fee Schedule</th>
<th>Fee Description</th>
<th>Annual Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6733-1-1</td>
<td>3020-06</td>
<td>Milking Operation</td>
<td>$128</td>
</tr>
<tr>
<td>N-6733-2-1</td>
<td>3020-06</td>
<td>Cow Housing</td>
<td>$128</td>
</tr>
<tr>
<td>N-6733-3-2</td>
<td>3020-06</td>
<td>Liquid Manure Handling System</td>
<td>$128</td>
</tr>
<tr>
<td>N-6733-4-1</td>
<td>3020-06</td>
<td>Solid Manure Handling Operation</td>
<td>$128</td>
</tr>
<tr>
<td>N-6733-5-1</td>
<td>3020-06</td>
<td>Feed Storage and Handling Operation</td>
<td>$128</td>
</tr>
</tbody>
</table>
Appendixes

A: Draft ATC Permits
B: Current Permits to Operate N-6733-1-0, -2-0, -3-0, -4-0 & -5-0
C: Project Site Plan
D: Emissions Calculations
E: BACT Calculations
F: BACT Guidelines
G: BACT Analysis
H: RMR and AAQA Summary
I: Anaerobic Lagoon Design Check Spreadsheets
J: QNEC
Appendix A

Draft Authority to Construct Permits
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: N-6733-1-1

LEGAL OWNER OR OPERATOR: BLUE SKY DAIRY
MAILING ADDRESS: 2395 SIERRA SPRING CT
ATWATER, CA 95301

LOCATION: 4390 N FOX RD
MERCED, CA 95348

EQUIPMENT DESCRIPTION:
MODIFICATION OF 1,200 COW MILKING OPERATION WITH ONE DOUBLE 12 HERRINGBONE (24 STALLS) MILKING PARLOR: INCREASE MILK COWS FROM 1,200 TO 2,750 MILK COWS AND ADD A NEW 80 STALL ROTARY PARLOR. THE EXISTING DOUBLE 12 HERRINGBONE (24 STALLS) WILL REMAIN AND CONVERTED TO DOUBLE 24 PARALLEL (48 STALLS) MILK BARN

CONDITIONS

1. This Authority to Construct (ATC) shall be implemented concurrently with ATC N-6733-2-1. [District Rule 2201]

2. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee’s premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

3. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

4. This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Samir Sheikh, Executive Director / APCO

Arnaud Marjollet, Director of Permit Services

Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95356-8718 • (209) 557-6400 • Fax (209) 557-6475
5. {4452} If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

6. Permittee shall flush or hose milk parlor immediately prior to, immediately after, or during each milking. [District Rules 2201 & 4570]

7. Permittee shall provide verification that milk parlors are flushed or hosed prior to, immediately after, or during each milking. [District Rules 2201 & 4570]

8. {4453} Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rule 4570]
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: N-6733-2-1

LEGAL OWNER OR OPERATOR: BLUE SKY DAIRY
MAILING ADDRESS: 2395 SIERRA SPRING CT
 ATWATER, CA 95301

LOCATION: 4390 N FOX RD
 MERCEDE, CA 95348

EQUIPMENT DESCRIPTION:
MODIFICATION OF COW HOUSING - 1,200 MILK COWS NOT TO EXCEED A COMBINED TOTAL OF 1,350 MATURE COWS (MILK AND DRY COWS); 640 SUPPORT STOCK (HEIFERS, CALVES, AND BULLS); AND 2 FRESTALLS WITH A FLUSH SYSTEM: INCREASE HERD SIZE FROM 1,200 MILK COWS AND 1,350 MATURE COWS (MILK AND DRY) TO 2,750 MILK COWS AND 3,310 MATURE COWS (MILK AND DRY), INCREASE SUPPORT STOCK FROM 640 TO 2,056, ADD THREE NEW FREESTALL BARN AND HEIFER/CALF HUTCH AREA

CONDITIONS

1. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee's premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

2. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

3. This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Samir Sheikh, Executive Director / APCO

Arnaud Marjollet, Director of Permit Services

Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95356-8718 • (209) 557-6400 • Fax (209) 557-6475
4. If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

5. Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201, 4102 and 4570]

6. Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201, 4102 and 4570]

7. For Freestall Barns #1 (dry cow area), #3, #4, #5, and Shade Barn #1 the feedlanes and walkways shall be constructed of concrete. [District Rules 2201, 4102 and 4570]

8. For Freestall Barns #1 (dry cow area), #3, #4, #5, and Shade Barn #1 permittee shall flush the feed lanes and walkways for the mature cows (milk and dry cows) at least four times per day and flushing lanes and walkways for the remaining animals once per day. [District Rules 2201, 4102 and 4570]

9. For Freestall Barns #1 (dry cow area), #3, #4, #5, and Shade Barn #1 shall maintain records sufficient to demonstrate that lanes are flushed at least four times per day for the mature cows and at least once per day for the support stock. [District Rules 2201, 4102 and 4570]

10. Permittee shall scrape exercise pen and corral surfaces every two weeks using a pull-type scraper during morning hours, except when prevented by wet conditions. [District Rules 2201 and 4102]

11. Permittee shall maintain sufficient records to demonstrate that exercise pen and corral surfaces are scraped every two weeks using a pull-type scraper during morning hours, except when prevented by wet conditions. [District Rules 2201 and 4102]

12. For baby calves housing permittee shall flush or scrape to remove manure at least once per week. [District Rules 2201 and 4570]

13. For baby calves housing permittee shall maintain records sufficient to demonstrate that manure is removed at least once per week. [District Rules 2201 and 4570]

14. Permittee shall pave feedlanes, where present, for a width of at least 8 feet along the corral side of the feedlane fence for milk and dry cows and at least 6 feet along the corral side of the feedlane for heifers. [District Rules 2201, 4102 and 4570]

15. Permittee shall flush or scrape freestall flush lanes at least three (3) times per day. [District Rules 2201 and 4570]

16. Permittee shall keep records or maintain an operating plan that requires freestall flush lanes to be flushed or scraped at least three times per day. [District Rules 2201 and 4570]

17. Permittee shall remove manure that is not dry from individual cow freestall beds or shall rake, harrow, scrape, or grade freestall bedding at least once every seven (7) days. [District Rules 2201 and 4570]

18. Permittee shall record either of the following: 1) the dates when manure that is not dry is removed from individual cow freestall beds or 2) the dates when the freestall bedding is raked, harrowed, scraped, or graded. [District Rules 2201 and 4570]

19. Permittee shall inspect water pipes and troughs and repair leaks at least once every seven (7) days. [District Rules 2201 and 4570]

20. Permittee shall maintain records demonstrating that water pipes and troughs are inspected and leaks are repaired at least once every seven (7) days. [District Rules 2201 and 4570]

21. Permittee shall clean manure from corrals at least four (4) times per year with at least sixty (60) days between each cleaning, or permittee shall clean corrals at least once between April and July and at least once between September and December. [District Rules 2201 and 4570]
22. Permittee shall demonstrate that manure from corrals are cleaned at least four (4) times per year with at least sixty (60) days between each cleaning or demonstrate that corrals are cleaned at least once between April and July and at least once between September and December. [District Rules 2201 and 4570]

23. Permittee shall implement at least one of the following corral mitigation measures: 1) slope the surface of the corrals at least 3% where the available space for each animal is 400 square feet or less and shall slope the surface of the corrals at least 1.5% where the available space for each animal is more than 400 square feet per animal; 2) maintain corrals to ensure proper drainage preventing water from standing more than forty-eight hours; or 3) harrow, rake, or scrape pens sufficiently to maintain a dry surface except during periods of rainy weather. [District Rules 2201, 4102 and 4570]

24. Permittee shall either 1) maintain sufficient records to demonstrate that corrals are maintained to ensure proper drainage preventing water from standing for more than forty-eight hours or 2) maintain records of dates pens are groomed (i.e., harrowed, raked, or scraped, etc.). [District Rules 2201 and 4570]

25. Permittee shall clean concreted lanes such that the depth of manure does not exceed twelve (12) inches at any point or time. [District Rules 2201 and 4570]

26. Permittee shall measure and document the depth of manure on the concrete lanes at least once every ninety (90) days. [District Rules 2201 and 4570]

27. Shade structures shall be installed in any of the following ways: 1) constructed with a light permeable roofing material; 2) uphill of any slope in the corral; 3) installed so that the structure has a North/South orientation. OR Permittee shall clean manure from under corral shades at least once every fourteen (14) days, when weather permits access into the corral. [District Rules 2201 and 4570]

28. If permittee has selected to comply using shades constructed with a light permeable roofing material, then permittee shall maintain records, such as design specifications, demonstrating that the shade structures are equipped with such roofing material or if permittee has selected to comply by cleaning the manure from under the corral shades, then permittee shall maintain records demonstrating that manure is cleaned from under the shades at least once every fourteen (14) days, as long as weather permits access to corrals. [District Rules 2201 and 4570]

29. Permittee shall knockdown fence line manure build-up prior to it exceeding a height of twelve (12) inches at any time or point. Manure depth may exceed 12 inches when corrals become inaccessible due to rain events. However, permittee must resume management of the manure depth of 12 inches or lower immediately upon the corral becoming accessible. [District Rules 2201 and 4570]

30. Permittee shall measure and document the depth of manure at the fence line at least once every ninety (90) days. [District Rules 2201 and 4570]

31. Permittee shall maintain a record of the number of animals of each species and production group at the facility and shall maintain quarterly records of any changes to this information. [District Rules 2201 and 4570]

32. Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rule 4570]
AUTHORITY TO CONSTRUCT

PERMIT NO: N-6733-3-2
LEGAL OWNER OR OPERATOR: BLUE SKY DAIRY
MAILING ADDRESS: 2395 SIERRA SPRING CT
ATWATER, CA 95301
LOCATION: 4390 N FOX RD
MERCED, CA 95348

EQUIPMENT DESCRIPTION:
MODIFICATION OF LIQUID MANURE HANDLING SYSTEM CONSISTING OF ONE SETTLING BASIN; TWO LAGOONS; MANURE LAND APPLIED THROUGH FLOOD IRRIGATION AND FURROW IRRIGATION; INCREASE IN LIQUID MANURE DUE TO INCREASE HERD PROFILE AS AUTHORIZED BY ATC N-6733-2-1, ADD MECHANICAL SEPARATOR(S) AND PROCESSING PIT, AND OPERATE LIQUID MANURE STORAGE IN AN ANAEROBIC TREATMENT SYSTEM AS PER ANAEROBIC TREATMENT SPECIFICATION

CONDITIONS

1. This Authority to Construct (ATC) shall be implemented concurrently with ATC N-6733-2-1. [District Rule 2201]

2. {3215} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee's premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

3. {3216} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

4. {3658} This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Samir Sheikh, Executive Director / APCO

Arnaud Marjollet, Director of Permit Services

Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95356-8718 • (209) 557-6400 • Fax (209) 557-6475
5. If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

6. Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201 and 4102]

7. Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201 and 4102]

8. All liquid manure shall be treated in an anaerobic treatment lagoon/waste liquid storage system that is designed and operated according to the Natural Resources Conservation Service (NRCS) Field Office Technical Guide No. 359. [District Rules 2201 and 4102]

9. Permittee shall maintain design specifications and calculations, including minimum treatment volume (MTV) and hydraulic retention time (HRT) calculations, demonstrating that the anaerobic treatment lagoon system meets the requirements listed in the NRCS Field Office Technical Guide No. 359. [District Rules 2201 and 4102]

10. Permittee shall remove solids with a solid separator system, prior to the manure entering the lagoon/storage ponds. [District Rules 2201 and 4570]

11. Any liquid manure applied to land shall have been treated in an anaerobic treatment lagoon/waste liquid storage system that is designed and operated according to the NRCS Field Office Technical Guide No. 359. [District Rules 2201 and 4102]

12. Permittee shall maintain records to demonstrate that liquid manure applied to land has been treated in an anaerobic treatment system that is designed and operated according to the NRCS Field Office Technical Guide No. 359. [District Rule 2201]

13. Permittee shall not allow liquid manure to stand in the fields for more than twenty-four (24) hours after irrigation. [District Rules 2201 and 4570]

14. Permittee shall maintain records to demonstrate liquid manure did not stand in the fields for more than twenty-four (24) hours after irrigation. [District Rules 2201 and 4570]

15. Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201, 4102, and 4570]
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: N-6733-4-1

LEGAL OWNER OR OPERATOR: BLUE SKY DAIRY
MAILING ADDRESS: 2395 SIERRA SPRING CT
ATWATER, CA 95301

LOCATION: 4390 N FOX RD
MERCED, CA 95348

EQUIPMENT DESCRIPTION:
MODIFICATION OF SOLID MANURE HANDLING CONSISTING OF MANURE STOCK PILES; SOLID MANURE APPLICATION TO LAND: INCREASE IN SOLID MANURE DUE TO INCREASE IN HERD PROFILE AS AUTHORIZED BY ATC N-6733-2-1

CONDITIONS

1. This Authority to Construct (ATC) shall be implemented concurrently with ATC N-6733-2-1. [District Rule 2201]

2. {3215} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee's premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

3. {3216} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

4. {3658} This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]
5. If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

6. Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201 and 4570]

7. Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201 and 4570]

8. Solid manure shall be incorporated into the soil within two hours of land application. [District Rules 2201]

9. Permittee shall maintain records to demonstrate that solid manure has been incorporated into the soil within two hours of land application. [District Rules 2201]

10. Within seventy two (72) hours of removal of separated solids from the drying process, permittee shall either 1) remove separated solids from the facility, or 2) cover separated solids outside the housing with a weatherproof covering from October through May, except for times when wind events remove the covering, not to exceed twenty-four (24) hours per event. [District Rules 2201 and 4570]

11. Permittee shall keep records of dates when separated solids are removed from the facility or permittee shall maintain records to demonstrate that separated solids piles outside the pens are covered with a weatherproof covering from October through May. [District Rules 2201 and 4570]

12. Permittee shall maintain records, such as manufacturer warranties or other documentation, demonstrating that the weatherproof covering over separated solids are installed, used, and maintained in accordance with manufacturer recommendations and applicable standards listed in NRCS Field Office Technical Guide Code 313 or 367, or any other applicable standard approved by the APCO, ARB, and EPA. [District Rules 2201 and 4570]

13. Permittee shall not apply solid manure with a moisture content of more than 50%. [District Rules 2201 and 4570]

14. Permittee shall maintain records of the moisture content of the solid manure each time solid manure is land applied. [District Rules 2201 and 4570]

15. Moisture content shall be determined using test Methods for the examination of compost and Composting (TMECC) Method 3.09 or any other alternative test method approved by the APCO, ARB, and EPA. [District Rules 2201 and 4570]

16. Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rule 4570]
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: N-6733-5-1

LEGAL OWNER OR OPERATOR: BLUE SKY DAIRY
MAILING ADDRESS: 2395 SIERRA SPRING CT
 ATWATER, CA 95301

LOCATION: 4390 N FOX RD
 MERCED, CA 95348

EQUIPMENT DESCRIPTION:
MODIFICATION OF FEED STORAGE AND HANDLING CONSISTING OF COVERED FEED STORAGE OR COMMODITY BARN(S), SILAGE PILE(S) AND DRY GRAIN TANKS: INCREASE IN TOTAL MIX RATION DUE TO INCREASE IN HERD PROFILE AS AUTHORIZED BY ATC N-6733-2-1

CONDITIONS

1. This Authority to Construct (ATC) shall be implemented concurrently with ATC N-6733-2-1. [District Rule 2201]

2. {3215} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee's premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

3. {3216} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

4. {3658} This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Samir Sheikh, Executive Director / APCO

Arnaud Marjollet, Director of Permit Services

Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95356-8718 • (209) 557-6400 • Fax (209) 557-6475
5. {4452} If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

6. Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rules 2201 and 4570]

7. Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201 and 4570]

8. Permittee shall push feed so that it is within three feet of feedlane fence within two hours of putting out the feed or use a feed trough or other feeding structure designed to maintain feed within reach of the animals. [District Rules 2201 and 4570]

9. Permittee shall maintain an operating plan or record that requires feed to be pushed within three feet of feedlane fence within two hours of putting out the feed, or use of a feed trough or other structure designed to maintain feed within reach of the animals. [District Rules 2201 and 4570]

10. Permittee shall begin feeding total mixed rations within two hours of grinding and mixing rations. [District Rules 2201 and 4570]

11. Permittee shall maintain an operating plan or record of when feeding of total mixed rations began within two hours of grinding and mixing rations. [District Rules 2201 and 4570]

12. Permittee shall store grain in a weatherproof storage structure or under a weatherproof covering from October through May. [District Rules 2201 and 4570]

13. Permittee shall maintain records demonstrating grain is/was stored in a weatherproof storage structure or under a weatherproof covering from October through May. [District Rules 2201 and 4570]

14. Permittee shall feed steam-flaked, dry rolled, cracked or ground corn or other steam-flaked, dry rolled, cracked or ground cereal grains. [District Rules 2201 & 4570]

15. Permittee shall maintain records to demonstrate animals are fed steam-flaked, dry rolled, cracked or ground corn or other steam-flaked, dry rolled, cracked or ground cereal grains. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rules 2201 & 4570]

16. For bagged silage/feedstuff, permittee shall utilize a sealed feed storage system (e.g., ag bag). [District Rules 2201 and 4570]

17. Permittee shall cover all silage piles, except for the area where feed is being removed from the pile, with a plastic tarp that is at least five (5) mils (0.005 inches) thick, multiple plastic tarps with a cumulative thickness of at least 5 mils (0.005 inches), or an oxygen barrier film covered with a UV resistant material. Silage piles shall be covered within seventy-two (72) hours of last delivery of material to the pile. Sheets of material used to cover silage shall overlap so that silage is not exposed where the sheets meet. [District Rules 2201 and 4570]

18. Permittee shall maintain records of the thickness and type of cover used to cover each silage pile. Permittee shall also maintain records of the date of the last delivery of material to each silage pile and the date each pile is covered. [District Rules 2201 and 4570]
Permittee shall select and implement one of the following mitigation measures for building each silage pile at the facility: Option 1) build the silage pile such that the average bulk density is at least 44 lb/cu ft for corn silage and 40 lb/cu ft for other silage types, as measured in accordance with Section 7.11 of District Rule 4570; Option 2) Adjust filling parameters when creating the silage pile to achieve an average bulk density of at least 44 lb/cu ft for corn silage and at least 40 lb/cu ft for other silage types as determined using a District-approved spreadsheet; or Option 3) build silage piles using crops harvested with the applicable minimum moisture content, maximum Theoretical Length of Chop (TLC), and roller opening identified in District Rule 4570, Table 4.1, 1.d and manage silage material delivery such that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. Records of the option chosen as a mitigation measure for building each silage pile shall be maintained. [District Rules 2201 and 4570]

For each silage pile that Option 2 (Bulk Density Determined by Spreadsheet) is chosen as a mitigation measure for building the pile, the permittee shall harvest corn used for the pile at an average moisture content of at least 65% and harvest other silage crops for the pile at an average moisture content of at least 60%. [District Rules 2201 and 4570]

For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall harvest corn used for the pile at an average moisture content of at least 65% and harvest other silage crops for the pile at an average moisture content of at least 60%. [District Rules 2201 and 4570]

For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, records of the average percent moisture of crops harvested for silage shall be maintained. [District Rules 2201 and 4570]

For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall adjust setting of equipment used to harvest crops for the pile to incorporate the following parameters for Theoretical Length of Chop (TLC) and roller opening, as applicable: 1) Corn with no processing: TLC not exceeding 1/2 inch, 2) Processed Corn: TLC not exceeding 3/4 inch and roller opening of 1-4 mm, 3) Alfalfa/Grass: TLC not exceeding 1.0 inch, 4) Other silage crops: TLC not exceeding 1/2 inch. [District Rules 2201 and 4570]

For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, records that equipment used to harvest crops for the pile was set to the required TLC and roller opening for the type of crop harvested shall be maintained. [District Rules 2201 and 4570]

For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall manage silage material delivery such that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. [District Rules 2201 and 4570]

For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall harvest corn used for the pile at an average moisture content of at least 65% and harvest other silage crops for the pile at an average moisture content of at least 60%. [District Rules 2201 and 4570]

For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall maintain a plan that requires that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. [District Rules 2201 and 4570]

Permittee shall select and implement at least two of the following mitigation measures for management of silage piles at the facility: Option 1) manage silage piles such that only one silage pile has an uncovered face and the total exposed surface area is less than 2,150 square feet, or manage multiple uncovered silage piles such that the total exposed surface area of all uncovered silage piles is less than 4,300 square feet; Option 2) use a shaver/facer to remove silage from the silage pile, or shall use another method to maintain a smooth vertical surface on the working face of the silage pile; or Option 3) inoculate silage with homolactic lactic acid bacteria in accordance with manufacturer recommendations to achieve a concentration of at least 100,000 colony forming units per gram of wet forage, apply propionic acid, benzoic acid, sorbic acid, sodium benzoate, or potassium sorbate at the rate specified by the manufacturer to reduce yeast counts when forming silage piles, or apply other additives at rates that have been demonstrated to reduce alcohol concentrations in silage and/or VOC emissions from silage and have been approved by the District and EPA. Records of the options chosen for managing each silage pile shall be maintained. [District Rules 2201 and 4570]
29. If Option 1 (Limiting Exposed Area of Silage) is chosen as a mitigation measure for managing silage piles, the permittee shall calculate and record the maximum (largest part of pile) total exposed area of each silage pile. Records of the maximum calculated area shall be maintained. [District Rules 2201 and 4570]

30. For each silage pile that Option 2 (Shaver/Facer or Smooth Face) is chosen as a mitigation measure for managing the pile, the permittee shall maintain records that a shaver/facer was used to remove silage from the pile or shall visually inspect the pile at least daily to verify that the working face was smooth and maintain records of the visual inspections. [District Rules 2201 and 4570]

31. For each silage pile that Option 3 (Silage Additives) is chosen as a mitigation measure for managing the pile, records shall be maintained of the type additive (e.g. inoculants, preservative, other District & EPA-approved additive), the quantity of the additive applied to the pile, and a copy of the manufacturers instructions for application of the additive. [District Rules 2201 and 4570]

32. Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rules 2201 and 4570]
Appendix B

Current Permits to Operate
(N-6733-1-0, -2-0, -3-0, -4-0 & -5-0)
San Joaquin Valley
Air Pollution Control District

PERMIT UNIT: N-6733-1-0
EXPIRATION DATE: 12/31/2021

EQUIPMENT DESCRIPTION:
1,200 COW MILKING OPERATION WITH ONE DOUBLE 12 HERRINGBONE (24 STALLS) MILKING PARLOR

PERMIT UNIT REQUIREMENTS

1. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee’s premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

2. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

3. This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

4. If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

5. Permittee shall flush or hose milk parlor immediately prior to, immediately after, or during each milking. [District Rule 4570]

6. Permittee shall provide verification that milk parlors are flushed or hosed prior to, immediately after, or during each milking. [District Rule 4570]

7. Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rule 4570]

These terms and conditions are part of the Facility-wide Permit to Operate.
PERMIT UNIT REQUIREMENTS

1. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee's premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

2. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

3. This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

4. If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

5. Permittee shall pave feedlanes, where present, for a width of at least 8 feet along the corral side of the feedlane fence for milk and dry cows and at least 6 feet along the corral side of the feedlane for heifers. [District Rule 4570]

6. Permittee shall flush or scrape freestall flush lanes at least three (3) times per day. [District Rule 4570]

7. Permittee shall keep records or maintain an operating plan that requires freestall flush lanes to be flushed or scraped at least three times per day. [District Rule 4570]

8. Permittee shall remove manure that is not dry from individual cow freestall beds or shall rake, harrow, scrape, or grade freestall bedding at least once every seven (7) days. [District Rule 4570]

9. Permittee shall record either of the following: 1) the dates when manure that is not dry is removed from individual cow freestall beds or 2) the dates when the freestall bedding is raked, harrowed, scraped, or graded. [District Rule 4570]

10. Permittee shall inspect water pipes and troughs and repair leaks at least once every seven (7) days. [District Rule 4570]

11. Permittee shall maintain records demonstrating that water pipes and troughs are inspected and leaks are repaired at least once every seven (7) days. [District Rule 4570]

12. Permittee shall clean manure from corrals at least four (4) times per year with at least sixty (60) days between each cleaning, or permittee shall clean corrals at least once between April and July and at least once between September and December. [District Rule 4570]

These terms and conditions are part of the Facility-wide Permit to Operate.
13. Permittee shall demonstrate that manure from corrals are cleaned at least four (4) times per year with at least sixty (60) days between each cleaning or demonstrate that corrals are cleaned at least once between April and July and at least once between September and December. [District Rule 4570]

14. Permittee shall implement at least one of the following corral mitigation measures: 1) slope the surface of the corrals at least 3% where the available space for each animal is 400 square feet or less and shall slope the surface of the corrals at least 1.5% where the available space for each animal is more than 400 square feet per animal; 2) maintain corrals to ensure proper drainage preventing water from standing more than forty-eight hours; or 3) harrow, rake, or scrape pens sufficiently to maintain a dry surface except during periods of rainy weather. [District Rule 4570]

15. Permittee shall either 1) maintain sufficient records to demonstrate that corrals are maintained to ensure proper drainage preventing water from standing for more than forty-eight hours or 2) maintain records of dates pens are groomed (i.e., harrowed, raked, or scraped, etc.). [District Rule 4570]

16. Permittee shall clean concreted lanes such that the depth of manure does not exceed twelve (12) inches at any point or time. [District Rule 4570]

17. Permittee shall measure and document the depth of manure on the concrete lanes at least once every ninety (90) days. [District Rule 4570]

18. Permittee shall knockdown fence line manure build-up prior to it exceeding a height of twelve (12) inches at any time or point. Manure depth may exceed 12 inches when corrals become inaccessible due to rain events. However, permittee must resume management of the manure depth of 12 inches or lower immediately upon the corral becoming accessible. [District Rule 4570]

19. Permittee shall measure and document the depth of manure at the fence line at least once every ninety (90) days. [District Rule 4570]

20. Permittee shall maintain a record of the number of animals of each species and production group at the facility and shall maintain quarterly records of any changes to this information. [District Rule 4570]

21. Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rule 4570]
San Joaquin Valley
Air Pollution Control District

PERMIT UNIT: N-6733-3-0
EXPIRATION DATE: 12/31/2021

EQUIPMENT DESCRIPTION:
LIQUID MANURE HANDLING SYSTEM CONSISTING OF ONE SETTLING BASIN; TWO LAGOONS; MANURE LAND APPLIED THROUGH FLOOD IRRIGATION AND FURROW IRRIGATION

PERMIT UNIT REQUIREMENTS

1. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee's premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

2. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

3. This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

4. If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

5. Permitee shall remove solids with a solid separator system, prior to the manure entering the lagoon. [District Rule 4570]

6. Permitee shall not allow liquid manure to stand in the fields for more than twenty-four (24) hours after irrigation. [District Rule 4570]

7. Permitee shall maintain records to demonstrate liquid manure did not stand in the fields for more than twenty-four (24) hours after irrigation. [District Rule 4570]

8. Permitee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rule 4570]

These terms and conditions are part of the Facility-wide Permit to Operate.
San Joaquin Valley
Air Pollution Control District

PERMIT UNIT: N-6733-4-0
EXPIRATION DATE: 12/31/2021

EQUIPMENT DESCRIPTION:
SOLID MANURE HANDLING CONSISTING OF MANURE STOCK PILES; SOLID MANURE APPLICATION TO LAND

PERMIT UNIT REQUIREMENTS

1. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee’s premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

2. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

3. This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

4. If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

5. Within seventy two (72) hours of removal of separated solids from the drying process, permittee shall either 1) remove separated solids from the facility, or 2) cover separated solids outside the housing with a weatherproof covering from October through May, except for times when wind events remove the covering, not to exceed twenty-four (24) hours per event. [District Rule 4570]

6. Permittee shall keep records of dates when separated solids are removed from the facility or permittee shall maintain records to demonstrate that separated solids piles outside the pens are covered with a weatherproof covering from October through May. [District Rule 4570]

7. Permittee shall maintain records, such as manufacturer warranties or other documentation, demonstrating that the weatherproof covering over separated solids are installed, used, and maintained in accordance with manufacturer recommendations and applicable standards listed in NRCS Field Office Technical Guide Code 313 or 367, or any other applicable standard approved by the APCO, ARB, and EPA. [District Rule 4570]

8. Permittee shall not apply solid manure with a moisture content of more than 50%. [District Rule 4570]

9. Permittee shall maintain records of the moisture content of the solid manure each time solid manure is land applied. [District Rule 4570]

10. Moisture content shall be determined using test Methods for the examination of compost and Composting (TMECC) Method 3.09 or any other alternative test method approved by the APCO, ARB, and EPA. [District Rule 4570]

11. Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rule 4570]

These terms and conditions are part of the Facility-wide Permit to Operate.
San Joaquin Valley
Air Pollution Control District

PERMIT UNIT REQUIREMENTS

1. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee's premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

2. Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

3. This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

4. If a licensed veterinarian or a certified nutritionist determines that any VOC mitigation measure will be required to be suspended as a detriment to animal health or necessary for the animal to molt, the owners/operators must notify the District in writing within forty-eight (48) hours of the determination including the duration and the specific health condition requiring the mitigation measure to be suspended. If the situation is expected to exist longer than a thirty-day (30) period, the owner/operator shall submit a new emission mitigation plan designating a mitigation measure to be implemented in lieu of the suspended mitigation measure. [District Rule 4570]

5. Permittee shall feed all animals according to National Research Council (NRC) guidelines. [District Rule 4570]

6. Permittee shall maintain records of feed content, formulation, and quantity of feed additive utilized, to demonstrate compliance with National Research Council (NRC) guidelines. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rule 4570]

7. Permittee shall push feed so that it is within three feet of feedlane fence within two hours of putting out the feed or use a feed trough or other feeding structure designed to maintain feed within reach of the animals. [District Rule 4570]

8. Permittee shall maintain an operating plan or record that requires feed to be pushed within three feet of feedlane fence within two hours of putting out the feed, or use of a feed trough or other structure designed to maintain feed within reach of the animals. [District Rule 4570]

9. Permittee shall begin feeding total mixed rations within two hours of grinding and mixing rations. [District Rule 4570]

10. Permittee shall maintain an operating plan or record of when feeding of total mixed rations began within two hours of grinding and mixing rations. [District Rule 4570]

11. Permittee shall store grain in a weatherproof storage structure or under a weatherproof covering from October through May. [District Rule 4570]

12. Permittee shall maintain records demonstrating grain is/was stored in a weatherproof storage structure or under a weatherproof covering from October through May. [District Rule 4570]
13. Permitee shall feed steam-flaked, dry rolled, cracked or ground corn or other steam-flaked, dry rolled, cracked or ground cereal grains. [District Rule 4570]

14. Permitee shall maintain records to demonstrate animals are fed steam-flaked, dry rolled, cracked or ground corn or other steam-flaked, dry rolled, cracked or ground cereal grains. Records such as feed company guaranteed analyses (feed tags), ration sheets, or feed purchase records may be used to meet this requirement. [District Rule 4570]

15. For bagged silage/feedstuff, permittee shall utilize a sealed feed storage system (e.g., ag bag). [District Rule 4570]

16. Permittee shall cover all silage piles, except for the area where feed is being removed from the pile, with a plastic tarp that is at least five (5) mils (0.005 inches) thick, multiple plastic tarps with a cumulative thickness of at least 5 mils (0.005 inches), or an oxygen barrier film covered with a UV resistant material. Silage piles shall be covered within seventy-two (72) hours of last delivery of material to the pile. Sheets of material used to cover silage shall overlap so that silage is not exposed where the sheets meet. [District Rule 4570]

17. Permittee shall maintain records of the thickness and type of cover used to cover each silage pile. Permittee shall also maintain records of the date of the last delivery of material to each silage pile and the date each pile is covered. [District Rule 4570]

18. Permittee shall select and implement one of the following mitigation measures for building each silage pile at the facility: Option 1) build the silage pile such that the average bulk density is at least 44 lb/cu ft for corn silage and 40 lb/cu ft for other silage types, as measured in accordance with Section 7.11 of District Rule 4570; Option 2) Adjust filling parameters when creating the silage pile to achieve an average bulk density of at least 44 lb/cu ft for corn silage and at least 40 lb/cu ft for other silage types as determined using a District-approved spreadsheet; or Option 3) build silage piles using crops harvested with the applicable minimum moisture content, maximum Theoretical Length of Chop (TLC), and roller opening identified in District Rule 4570, Table 4.1, 1.d and manage silage material delivery such that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. Records of the option chosen as a mitigation measure for building each silage pile shall be maintained. [District Rule 4570]

19. For each silage pile that Option 1 (Measured Bulk Density) is chosen as a mitigation measure for building the pile, records of the measured bulk density shall be maintained. [District Rule 4570]

20. For each silage pile that Option 2 (Bulk Density Determined by Spreadsheet) is chosen as a mitigation measure for building the pile, records of the filling parameters entered into the District-approved spreadsheet to determine the bulk density shall be maintained. [District Rule 4570]

21. For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall harvest corn used for the pile at an average moisture content of at least 65% and harvest other silage crops for the pile at an average moisture content of at least 60%. [District Rule 4570]

22. For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, records of the average percent moisture of crops harvested for silage shall be maintained. [District Rule 4570]

23. For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall adjust setting of equipment used to harvest crops for the pile to incorporate the following parameters for Theoretical Length of Chop (TLC) and roller opening, as applicable: 1) Corn with no processing: TLC not exceeding 1/2 inch, 2) Processed Corn: TLC not exceeding 3/4 inch and roller opening of 1-4 mm, 3) Alfalfa/Grass: TLC not exceeding 1.0 inch, 4) Other silage crops: TLC not exceeding 1/2 inch. [District Rule 4570]

24. For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, records that equipment used to harvest crops for the pile was set to the required TLC and roller opening for the type of crop harvested shall be maintained. [District Rule 4570]

25. For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall manage silage material delivery such that the thickness of the layer of un-compacted material delivered on top of the pile is no more than six (6) inches. [District Rule 4570]
26. For each silage pile that Option 3 (Moisture, TLC, Roller Opening, & Material Delivery) is chosen as a mitigation measure for building the pile, the permittee shall maintain a plan that requires that the thickness of the layer of uncompacted material delivered on top of the pile is no more than six (6) inches. [District Rule 4570]

27. Permittee shall select and implement at least two of the following mitigation measures for management of silage piles at the facility: Option 1) manage silage piles such that only one silage pile has an uncovered face and the total exposed surface area is less than 2,150 square feet, or manage multiple uncovered silage piles such that the total exposed surface area of all uncovered silage piles is less than 4,300 square feet; Option 2) use a shaver/facer to remove silage from the silage pile, or shall use another method to maintain a smooth vertical surface on the working face of the silage pile; or Option 3) inoculate silage with homolactic lactic acid bacteria in accordance with manufacturer recommendations to achieve a concentration of at least 100,000 colony forming units per gram of wet forage, apply propionic acid, benzoic acid, sorbic acid, sodium benzoate, or potassium sorbate at the rate specified by the manufacturer to reduce yeast counts when forming silage piles, or apply other additives at rates that have been demonstrated to reduce alcohol concentrations in silage and/or VOC emissions from silage and have been approved by the District and EPA. Records of the options chosen for managing each silage pile shall be maintained. [District Rule 4570]

28. If Option 1 (Limiting Exposed Area of Silage) is chosen as a mitigation measure for managing silage piles, the permittee shall calculate and record the maximum (largest part of pile) total exposed area of each silage pile. Records of the maximum calculated area shall be maintained. [District Rule 4570]

29. For each silage pile that Option 2 (Shaver/Facer or Smooth Face) is chosen as a mitigation measure for managing the pile, the permittee shall maintain records that a shaver/facer was used to remove silage from the pile or shall visually inspect the pile at least daily to verify that the working face was smooth and maintain records of the visual inspections. [District Rule 4570]

30. For each silage pile that Option 3 (Silage Additives) is chosen as a mitigation measure for managing the pile, records shall be maintained of the type additive (e.g. inoculants, preservative, other District & EPA-approved additive), the quantity of the additive applied to the pile, and a copy of the manufacturers instructions for application of the additive. [District Rule 4570]

31. Permittee shall keep and maintain all records for a minimum of five (5) years and shall make records available to the APCO and EPA upon request. [District Rule 4570]
Appendix C

Project Site Plan
Appendix D

Emissions Calculations
1. Does this facility house Holstein or Jersey cows?
 Holstein
 Most facilities house Holstein cows unless explicitly stated on the PTO or application.

2. Does the facility have an anaerobic treatment lagoon?
 no

3. Does the facility land apply liquid manure?
 yes
 Answering "yes" assumes worst case.

4. Does the facility land apply solid manure?
 yes
 Answering "yes" assumes worst case.

5. Is any scraped manure sent to a lagoon/storage pond?
 no

 Answering "yes" assumes worst case.

Pre-Project Herd Size

<table>
<thead>
<tr>
<th>Herd</th>
<th>Flushed Freestalls</th>
<th>Scraped Freestalls</th>
<th>Flushed Corrals</th>
<th>Scraped Corrals</th>
<th>Total # of Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>1,200</td>
<td></td>
<td>1,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Cows</td>
<td>58</td>
<td>92</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support Staff (Heifers, Calves, and Bulls)</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Heifers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium Heifers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Heifers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calf Hutches

<table>
<thead>
<tr>
<th>Aboveground Flushed</th>
<th>Aboveground Scraped</th>
<th>On-Ground Flushed</th>
<th>On-Ground Scraped</th>
<th>Flushed</th>
<th>Scraped</th>
<th>Total # of Calves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Pre-Project Silage Information

<table>
<thead>
<tr>
<th>Feed Type</th>
<th>Max # Open Piles</th>
<th>Max Height (ft)</th>
<th>Max Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>1</td>
<td>11</td>
<td>68</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>1</td>
<td>11</td>
<td>68</td>
</tr>
<tr>
<td>Wheat</td>
<td>1</td>
<td>11</td>
<td>68</td>
</tr>
</tbody>
</table>

Post-Project Facility Information

1. Does this facility house Holstein or Jersey cows?
 Holstein
 Most facilities house Holstein cows unless explicitly stated on the PTO or application.

2. Does the facility have an anaerobic treatment lagoon?
 yes

3. Does the facility land apply liquid manure?
 yes
 Answering "yes" assumes worst case.

4. Does the facility land apply solid manure?
 yes
 Answering "yes" assumes worst case.

5. Is any scraped manure sent to a lagoon/storage pond?
 yes
 Answering "yes" assumes worst case.

6. Does this project result in an increase or relocation of uncovered surface area for any lagoon/storage pond?
 no

Post-Project Herd Size

<table>
<thead>
<tr>
<th>Herd</th>
<th>Flushed Freestalls</th>
<th>Scraped Freestalls</th>
<th>Flushed Corrals</th>
<th>Scraped Corrals</th>
<th>Total # of Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>2,750</td>
<td></td>
<td>2,750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Cows</td>
<td>68</td>
<td>300</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support Staff (Heifers, Calves, and Bulls)</td>
<td>1,756</td>
<td>300</td>
<td>1,756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Heifers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium Heifers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Heifers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calf Hutches

<table>
<thead>
<tr>
<th>Aboveground Flushed</th>
<th>Aboveground Scraped</th>
<th>On-Ground Flushed</th>
<th>On-Ground Scraped</th>
<th>Flushed</th>
<th>Scraped</th>
<th>Total # of Calves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>

Post-Project Silage Information

<table>
<thead>
<tr>
<th>Feed Type</th>
<th>Max # Open Piles</th>
<th>Max Height (ft)</th>
<th>Max Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>1</td>
<td>11</td>
<td>68</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>1</td>
<td>11</td>
<td>68</td>
</tr>
<tr>
<td>Wheat</td>
<td>1</td>
<td>11</td>
<td>68</td>
</tr>
</tbody>
</table>
VOC Mitigation Measures and Control Efficiencies

Milking Parlor

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td>Enteric Emissions Mitigations</td>
<td>(D) Feed according to NRC guidelines</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Total Control Efficiency</td>
<td>10%</td>
</tr>
</tbody>
</table>

- **Enteric Emissions Mitigations:**
 - (D) Feed according to NRC guidelines

Cow Housing

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td>Enteric Emissions Mitigations</td>
<td>Feed according to NRC guidelines</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Total Control Efficiency</td>
<td>10%</td>
</tr>
</tbody>
</table>

- **Enteric Emissions Mitigations:**
 - Feed according to NRC guidelines

Corrals/Pens Mitigations

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td>Corrals/Pens Mitigations</td>
<td>Inspect water pipes and troughs and repair leaks at least once every seven days. Note: If selected for dairies > 999 milk cows, CE is already included in EF.</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Total Control Efficiency</td>
<td>10%</td>
</tr>
</tbody>
</table>

- **Corrals/Pens Mitigations:**
 - Inspect water pipes and troughs and repair leaks at least once every seven days. Note: If selected for dairies > 999 milk cows, CE is already included in EF.

Milking Parlor Floor Mitigations

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td>Milking Parlor Floor Mitigations</td>
<td>(D) Flush or hose milk parlor immediately prior to, immediately after, or during each milking. Note: If selected for dairies > 999 milk cows, control efficiency is already included in EF.</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Total Control Efficiency</td>
<td>10%</td>
</tr>
</tbody>
</table>

- **Milking Parlor Floor Mitigations:**
 - (D) Flush or hose milk parlor immediately prior to, immediately after, or during each milking. Note: If selected for dairies > 999 milk cows, control efficiency is already included in EF.

Bedding Mitigations

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td>Bedding Mitigations</td>
<td>Apply thymol to the corral soil in accordance with the manufacturer's recommendation to minimize moisture in the corrals.</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Total Control Efficiency</td>
<td>27.10%</td>
</tr>
</tbody>
</table>

- **Bedding Mitigations:**
 - Apply thymol to the corral soil in accordance with the manufacturer's recommendation to minimize moisture in the corrals.
Mitigation Measure(s) per Emissions Point

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Use non-manure-based bedding and non-separated solids based bedding for at least 90% of the bedding material, by weight, for freestalls (e.g. rubber mats, almond shells, sand, or waterbeds).</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>For a large dairy (1,000 milk cows or larger) or a heifer/calf ranch - Remove manure that is not dry from individual cow freestall beds or rake, harrow, scrape, or grade freestall bedding at least once every 7 days.</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>(D) For a medium dairy only (500 to 999 milk cows) - Remove manure that is not dry from individual cow freestall beds or rake, harrow, scrape, or grade freestall bedding at least once every 14 days.</td>
<td>0%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 19.00% 19.00%

Lanes Mitigations

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Feed according to NRC guidelines</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Pave feedlanes, where present, for a width of at least 8 feet along the corral side of the feedlane fence for milk and dry cows and at least 6 feet along the corral side of the feedlane for heifers. Note: No control efficiency at this time.</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Dairies: Flush, scrape, or vacuum freestall flush lanes immediately prior to or after, or during each milking; or flush or scrape freestall flush lanes at least 3 times per day. Heifer/Calf Ranches: Vacuum, scrape, or flush freestalls at least once every seven days.</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>(D) Have no animals in exercise pens or corrals at any time.</td>
<td>0%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 19.00% 19.00%

Liquid Manure Handling

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Feed according to NRC guidelines</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Only apply liquid manure that has been treated with an anaerobic or aerobic treatment lagoon, aerobic lagoon, or digester system</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Allow liquid manure to stand in the fields for no more than 24 hours after irrigation. Note: If selected for dairies > 999 milk cows, control efficiency is already included in EF.</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Apply liquid/slurry manure via injection with drag hose or similar apparatus</td>
<td>0%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 10.00% 46.00%

Solid Manure Handling

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Feed according to NRC guidelines</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>LARGE CAFO ONLY: Within 72 hours of removal from housing, either a) remove dry manure from the facility, or b) cover dry manure outside the housing with a weatherproof covering from October through May, except for times when wind events remove the covering, not to exceed 24 hours per event.</td>
<td>0%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 10.00% 10.00%

Separated Solids Piles Mitigations

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Feed according to NRC guidelines</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>LARGE CAFO ONLY: Within 72 hours of removal from the drying process, either a) remove separated solids from the facility, or b) cover separated solids outside the housing with a weatherproof covering from October through May, except for times when wind events remove the covering, not to exceed 24 hours per event.</td>
<td>10%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 19.00% 19.00%

Solid Manure Land Application Mitigations

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Feed according to NRC guidelines</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Incorporate all solid manure within 72 hours of land application. Note: If selected for dairies > 999 milk cows, control efficiency is already included in EF. Note: No additional control given for rapid manure incorporation (e.g. BACT requirement).</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Only apply solid manure that has been treated with an anaerobic treatment lagoon, aerobic lagoon or digester system.</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Apply no solid manure with a moisture content of more than 50%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 19.00% 51.40%

Silage and TMR

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>VOC Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0%</td>
</tr>
</tbody>
</table>
Corn/Alfalfa/Wheat Silage Mitigations

1. Utilize a sealed feed storage system (e.g. Ag-Bag) for bagged silage, or

2. Cover the surface of silage piles, except for the area where feed is being removed from the pile, with a plastic tarp that is at least 5 mils thick (0.005 inches), multiple plastic tarps with a cumulative thickness of at least 5 mils (0.005 inches), or an oxygen barrier film covered with a UV resistant material within 72 hours of last delivery of material to the pile, and implement one of the following:
 - a) build silage piles such that the average bulk density is at least 44 lb/cu-ft for corn silage and 40 lb/cu-ft for other silage types, as measured in accordance with Section 7.10 of Rule 4570,
 - b) when creating a silage pile, adjust filling parameters to assure a calculated average bulk density of at least 44 lb/cu-ft for corn silage and at least 40 lb/cu-ft for other silage types, using a spreadsheet approved by the District,
 - c) harvest silage crop at > or = 65% moisture for corn; and >= 80% moisture for alfalfa/grass and other silage crops; manage silage material delivery such that no more than 6 inches of materials are uncompacted on top of the pile; and incorporate the applicable Theoretical Length of Chop (TLC) and roller opening for the crop being harvested.

 For dairies - implement two of the following:
 - For heifer/calf ranches - implement one of the following:

 Manage Exposed Silage
 - a) manage silage piles such that only one silage pile has an uncovered face and the uncovered face has a total exposed surface area of less than 2,150 sq. ft., or
 - b) manage multiple uncovered silage piles such that the total exposed surface area of all silage piles is less than 4,300 sq ft.

 Maintain Silage Working Face
 - a) use a shaver/facer to remove silage from the silage pile, or
 - b) maintain a smooth vertical surface on the working face of the silage pile

 Silage Additive
 - a) inoculate silage with homolactic acid bacteria in accordance with manufacturer recommendations to achieve a concentration of at least 100,000 colony forming units per gram of wet forage or apply propionic acid, benzoic acid, sorbic acid, sodium benzoate, or potassium sorbate at a rate specified by the manufacturer to reduce yeast counts when forming silage pile; or
 - b) apply other additives at specified rates that have been demonstrated to reduce alcohol concentrations in silage and/or VOC emissions from silage and have been approved by the District and EPA.

Total Control Efficiency*

*Assumes 25% control for density mitigation measures and 10% each for the two optional measures, resulting in an overall control of 39%. The same conservative control efficiency will be applied to the sealed feed storage system (Ag-Bag).

TMR Mitigations

<table>
<thead>
<tr>
<th>Mitigation</th>
<th>Notes</th>
<th>19.00%</th>
<th>39.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D) Push feed so that it is within 3 feet of feedline fence within 2 hrs of putting out the feed or use a feed trough or other feeding structure designed to maintain feed within reach of the cows.</td>
<td>10%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>(D) Begin feeding total mixed rations within 2 hrs of grinding and mixing rations. Note: If selected for dairies > 999 milk cows, control efficiency already included in EF.</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Feed steam-flaked, dry rolled, cracked or ground corn or other ground cereal grains.</td>
<td>10%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Remove uneaten wet feed from feed bunks within 24 hrs after end of a rain event.</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>(D) For total mixed rations that contain at least 30% by weight of silage, feed animals total mixed rations that contain at least 45% moisture.</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Feed according to NRC guidelines. Note: If selected for dairies, control efficiency already included in EF.</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Total Control Efficiency</td>
<td>19.00%</td>
<td>39.00%</td>
<td></td>
</tr>
</tbody>
</table>
Ammonia Mitigation Measures and Control Efficiencies

Milking Parlor

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>NH3 Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Milking Parlor Floor Mitigations</td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>Feed according to NRC guidelines</td>
<td>28%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 28% 28%

Cow Housing

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>NH3 Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Cow Housing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrals/Pens Mitigations</td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>Clean manure from corrals at least four times per year with at least 60 days between cleaning, or clean corrals at least once between April and July and at least once between September and December. OR Use lime or a similar absorbent material in the corral according to the manufacturer's recommendation to minimize moisture in the corrals. OR Apply thymol to the corral soil in accordance with the manufacturer's recommendation.</td>
<td>50%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 64% 64%

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>NH3 Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Bedding Mitigations</td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>Use non-manure-based bedding and non-separated solids based bedding for at least 90% of the bedding material, by weight, for freestalls (e.g. rubber mats, almond shells, sand, or waterbeds). OR For a large dairy only (1,000 milk cows or larger) - Remove manure that is not dry from individual cow freestall beds or rake, harrow, scrape, or grade freestall bedding at least once every 7 days. OR For a medium dairy only (500 to 999 milk cows) - Remove manure that is not dry from individual cow freestall beds or rake, harrow, scrape, or grade freestall bedding at least once every 14 days.</td>
<td>47.7%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 62.34% 62.34%

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>NH3 Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Lanes Mitigations</td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>Feed according to NRC guidelines</td>
<td>28%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 28% 28%

Liquid Manure Handling

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>NH3 Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Liquid Manure Handling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lagoons/Storage Ponds Mitigations</td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>Feed according to NRC guidelines</td>
<td>28%</td>
</tr>
<tr>
<td>☑</td>
<td>Use phototropic lagoon OR Remove solids from the waste system with a solid separator system, prior to the waste entering the lagoon.</td>
<td>80%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 85.6% 85.6%

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>NH3 Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Liquid Manure Land Application Mitigations</td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>Feed according to NRC guidelines</td>
<td>28%</td>
</tr>
<tr>
<td>☑</td>
<td>Only apply liquid manure that has been treated with an anaerobic treatment lagoon</td>
<td>0%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 28.00% 58.24%

Solid Manure Handling

<table>
<thead>
<tr>
<th>Measure Proposed?</th>
<th>Mitigation Measure(s) per Emissions Point</th>
<th>NH3 Control Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre-Project</td>
</tr>
<tr>
<td></td>
<td>Solid Manure Land Application Mitigations</td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>Feed according to NRC guidelines</td>
<td>28%</td>
</tr>
</tbody>
</table>

Total Control Efficiency: 28.00% 28.00%
Daily Emission Factors

Table 1: DHd-yr Dairy Emissions Factors for Holstein Cows

<table>
<thead>
<tr>
<th>Dairy Emissions</th>
<th>DHd-yr (milk/dairy)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.96</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>Wood/Grain</td>
<td>0.96</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>SILAGE</td>
<td>0.96</td>
<td>Based on a USDA/NC-IMS report quantifying dairy and feedlot emissions in Texas & Kern Counties (April '01)</td>
</tr>
</tbody>
</table>

Table 2: PM\textsubscript{2.5} Emission Factors (b/h/d-yr)

<table>
<thead>
<tr>
<th>Type of Emission</th>
<th>Dairy Emission Factor</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows in Freestalls</td>
<td>0.01</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>Milking in Loading Barns</td>
<td>0.01</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>Herd Failure (in Loading Barns)</td>
<td>0.01</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>Feeding in Loading Barns</td>
<td>0.01</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>Silage</td>
<td>0.01</td>
<td>Based on a USDA/NC-IMS report quantifying dairy and feedlot emissions in Texas & Kern Counties (April '01)</td>
</tr>
</tbody>
</table>

Assumptions: Each stage plan is completely covered except for the first face and 2 holsters are fed in 45 hay hours.

Table 3: Slage and TMR (Total Mixed Ration) Emissions (mg/m2-sec)

<table>
<thead>
<tr>
<th>Stage Type</th>
<th>Slage</th>
<th>TMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>bulls</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>calves</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>total</td>
<td>0.016</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Table 4: Feed Storage and Handling

<table>
<thead>
<tr>
<th>Type of Emission</th>
<th>Dairy Emission Factor</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows</td>
<td>0.016</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>Milking in Loading Barns</td>
<td>0.016</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>Herd Failure (in Loading Barns)</td>
<td>0.016</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>Feeding in Loading Barns</td>
<td>0.016</td>
<td>Based on a Summer 2003 study by Texas AM/ASAE at West Texas Dairy</td>
</tr>
<tr>
<td>Silage</td>
<td>0.016</td>
<td>Based on a USDA/NC-IMS report quantifying dairy and feedlot emissions in Texas & Kern Counties (April '01)</td>
</tr>
</tbody>
</table>

Table 5: Silage and TMR (Total Mixed Ration) Emissions (mg/m2-sec)

<table>
<thead>
<tr>
<th>Stage Type</th>
<th>Slage</th>
<th>TMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>bulls</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>calves</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>total</td>
<td>0.016</td>
<td>0.016</td>
</tr>
</tbody>
</table>
Daily Emission Factors

Type of Cow

<table>
<thead>
<tr>
<th>Type of Cow</th>
<th>Diary EF</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk/Drink in Udder</td>
<td>2.79</td>
<td>SVAPCD</td>
</tr>
<tr>
<td>Milk/Drink in Loading Bunk</td>
<td>2.96</td>
<td>SVAPCD</td>
</tr>
<tr>
<td>Halters/Bite in Loading Bunk</td>
<td>0.00</td>
<td>SVAPCD</td>
</tr>
<tr>
<td>Older Cows</td>
<td>5.60</td>
<td>SVAPCD</td>
</tr>
<tr>
<td>Calves in Cages</td>
<td>8.15</td>
<td>Based on a USDA/UIC Dairy report (April 2011)</td>
</tr>
</tbody>
</table>

Uncontrolled

<table>
<thead>
<tr>
<th>Cow</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.55</td>
<td>10.55</td>
<td>10.55</td>
<td>10.55</td>
</tr>
</tbody>
</table>

Controlled

<table>
<thead>
<tr>
<th>Cow</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.15</td>
<td>8.15</td>
<td>8.15</td>
<td>8.15</td>
</tr>
</tbody>
</table>

PM\(_x\) Emission Factors (b/d-hr-yr)

<table>
<thead>
<tr>
<th>Type of PM(_x)</th>
<th>Diary EF</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM(_{2.5}) in Feed</td>
<td>0.25</td>
<td>Based on a USDA study (April 2011)</td>
</tr>
<tr>
<td>PM(_{2.5}) in Milk</td>
<td>0.25</td>
<td>SVAPCD</td>
</tr>
<tr>
<td>PM(_{2.5}) in Feed</td>
<td>0.25</td>
<td>SVAPCD</td>
</tr>
<tr>
<td>PM(_{2.5}) in Milk</td>
<td>0.25</td>
<td>SVAPCD</td>
</tr>
</tbody>
</table>

Uncontrolled

<table>
<thead>
<tr>
<th>Cow</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Controlled

<table>
<thead>
<tr>
<th>Cow</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Milking Parlor

<table>
<thead>
<tr>
<th>Area</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.41</td>
<td>2.41</td>
<td>2.41</td>
<td>2.41</td>
</tr>
</tbody>
</table>

Cow Housing

<table>
<thead>
<tr>
<th>Area</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.94</td>
<td>1.94</td>
<td>1.94</td>
<td>1.94</td>
</tr>
</tbody>
</table>

Liquid Manure Handling

<table>
<thead>
<tr>
<th>Area</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22</td>
<td>1.22</td>
<td>1.22</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Solid Manure Handling

<table>
<thead>
<tr>
<th>Area</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Slag and TBR (Total Slag Return) Emissions (gag/m\(^2\)-m)

Type of Slag

<table>
<thead>
<tr>
<th>Type of Slag</th>
<th>Diary EF</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Slag</td>
<td>3.77</td>
<td>SVAPCD</td>
</tr>
<tr>
<td>Chips Slag</td>
<td>2.73</td>
<td>SVAPCD</td>
</tr>
<tr>
<td>Wheel Slag</td>
<td>2.64</td>
<td>SVAPCD</td>
</tr>
</tbody>
</table>

Uncontrolled

<table>
<thead>
<tr>
<th>Cow</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.95</td>
<td>13.95</td>
<td>13.95</td>
<td>13.95</td>
</tr>
</tbody>
</table>

Controlled

<table>
<thead>
<tr>
<th>Cow</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.95</td>
<td>13.95</td>
<td>13.95</td>
<td>13.95</td>
</tr>
</tbody>
</table>

Feed Storage and Handling

<table>
<thead>
<tr>
<th>Area</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Uncontrolled

<table>
<thead>
<tr>
<th>Cow</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.95</td>
<td>13.95</td>
<td>13.95</td>
<td>13.95</td>
</tr>
</tbody>
</table>

Controlled

<table>
<thead>
<tr>
<th>Cow</th>
<th>Total</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.95</td>
<td>13.95</td>
<td>13.95</td>
<td>13.95</td>
</tr>
</tbody>
</table>

Assumptions:
- Each stage plan is completely covered except for the first face and 2 pockets are cut out within 48 hours.
<table>
<thead>
<tr>
<th>Housing Name(s) or # (s)</th>
<th>Type of Housing</th>
<th>Type of Cow</th>
<th>Total # of cows in Each Housing Structure(s)</th>
<th>Maximum Design Capacity of Each Structure</th>
<th># of Combined Housing Structures in row</th>
<th>Shaded Corrals</th>
<th>Downwind Shelterbelts</th>
<th>Upwind Shelterbelts</th>
<th>No exercise pens, non-manure bedding</th>
<th>No exercise pens, manure bedding</th>
<th>Fibrous layer</th>
<th>Bi-weekly Scraping Corrals/Pens</th>
<th>Sprinkling Corrals/Pens</th>
<th>Feed Young Stock Near Dusk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freestall A</td>
<td>freestall</td>
<td>milk cows</td>
<td>1,200</td>
<td>1,200</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freestall B</td>
<td>freestall</td>
<td>dry cows</td>
<td>58</td>
<td>58</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freestall #2</td>
<td>freestall</td>
<td>support stock</td>
<td>640</td>
<td>640</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shade Barn A</td>
<td>loafing barn</td>
<td>dry cows</td>
<td>50</td>
<td>50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shade Barn B</td>
<td>loafing barn</td>
<td>dry cows</td>
<td>42</td>
<td>42</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-Project PM10 Mitigation Measures

Pre-Project Total # of Cows: 1,990
<table>
<thead>
<tr>
<th>Housing Name(s) or #(s)</th>
<th>Type of Housing</th>
<th>Type of Cow</th>
<th>Total # of cows in Each Housing Structure(s)</th>
<th>Maximum Design Capacity of Each Structure</th>
<th>Uncontrolled EF (lb/ht-yr)</th>
<th>Shaded Corrals</th>
<th>Downwind Shelterbelts</th>
<th>Upwind Shelterbelts</th>
<th>No exercise pens, non-manure bedding</th>
<th>No exercise pens, manure bedding</th>
<th>Fibrous layer</th>
<th>Bi-weekly scraping Corrals/Pens</th>
<th>Sprinkling Corrals/Pens</th>
<th>Feed Young Stock Near Dusk</th>
<th>Controlled EF (lb/ht-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freestall #1-A</td>
<td>freestall</td>
<td>milk cows</td>
<td>1,200</td>
<td>1,200</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.37</td>
</tr>
<tr>
<td>Freestall #1-B</td>
<td>freestall</td>
<td>dry cows</td>
<td>58</td>
<td>58</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.37</td>
</tr>
<tr>
<td>Freestall #2</td>
<td>freestall</td>
<td>support stock</td>
<td>640</td>
<td>640</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.37</td>
</tr>
<tr>
<td>Shade Barn #1</td>
<td>loafing barn</td>
<td>dry cows</td>
<td>50</td>
<td>50</td>
<td>2.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.73</td>
</tr>
<tr>
<td>Shade Barn #2</td>
<td>loafing barn</td>
<td>dry cows</td>
<td>42</td>
<td>42</td>
<td>2.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.73</td>
</tr>
</tbody>
</table>

Pre-Project Total # of Cows: 1,990
Post-Project PM10 Mitigation Measures

<table>
<thead>
<tr>
<th>Housing Name(s) or #(s)</th>
<th>Type of Housing</th>
<th>Type of cow</th>
<th>Total # of cows in Each Housing Structure(s)</th>
<th>Maximum Design Capacity of Each Structure</th>
<th># of Combined Housing Structures in row</th>
<th>Shaded Corrals</th>
<th>Downwind Shelterbelts</th>
<th>Upwind Shelterbelts</th>
<th>No exercise pens, non-manure bedding</th>
<th>No exercise pens, manure bedding</th>
<th>Fibrous layer</th>
<th>Bi-weekly scraping Corrals/Pens</th>
<th>Sprinkling Corrals/Pens</th>
<th>Feed Young Stock Near Dusk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freestall Barn #3</td>
<td>freestall</td>
<td>support stock</td>
<td>800</td>
<td>800</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freestall Barn #4</td>
<td>freestall</td>
<td>support stock</td>
<td>650</td>
<td>650</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shade Barn #1</td>
<td>loafing barn</td>
<td>support stock</td>
<td>180</td>
<td>180</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freestall Barn #2</td>
<td>freestall</td>
<td>support stock</td>
<td>560</td>
<td>560</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post-Project PM10 Mitigation Measures for New Housing Units at an Expanding Dairy

<table>
<thead>
<tr>
<th>Housing Name(s) or #(s)</th>
<th>Type of Housing</th>
<th>Type of cow</th>
<th>Total # of cows in Each Housing Structure(s)</th>
<th>Maximum Design Capacity of Each Structure</th>
<th># of Combined Housing Structures in row</th>
<th>Shaded Corrals</th>
<th>Downwind Shelterbelts</th>
<th>Upwind Shelterbelts</th>
<th>No exercise pens, non-manure bedding</th>
<th>No exercise pens, manure bedding</th>
<th>Fibrous layer</th>
<th>Bi-weekly scraping Corrals/Pens</th>
<th>Sprinkling Corrals/Pens</th>
<th>Feed Young Stock Near Dusk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freestall Barn #3</td>
<td>freestall</td>
<td>milk cows</td>
<td>920</td>
<td>920</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freestall Barn #4</td>
<td>freestall</td>
<td>milk cows</td>
<td>910</td>
<td>910</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freestall Barn #5</td>
<td>freestall</td>
<td>support stock</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heifer Hutsches</td>
<td>aboveground flushed hutsches</td>
<td>support stock</td>
<td>120</td>
<td>120</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heifer Hutsches</td>
<td>aboveground flushed hutsches</td>
<td>calves</td>
<td>300</td>
<td>300</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post-Project Total # of Cows: 5,966
(The post-project total includes dairy cows already onsite and new cows from the expansion.)
<table>
<thead>
<tr>
<th>Housing Name(s) or #</th>
<th>Type of Housing</th>
<th>Type of Cow</th>
<th>Total # of cows in Each Housing Structure(s)</th>
<th>Maximum Design Capacity of Each Structure</th>
<th>Uncontrolled EF (lb/hd-yr)</th>
<th>Shaded Downwind Shelterbelts</th>
<th>Upwind Shelterbelts</th>
<th>No exercise pens, non-manure bedding</th>
<th>Controlled EF (lb/hd-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Freestall #1-A</td>
<td>freestall support stock</td>
<td>800</td>
<td>800</td>
<td>1.370</td>
<td>15%</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Freestall #1-B</td>
<td>freestall dry cows</td>
<td>560</td>
<td>560</td>
<td>1.370</td>
<td>80%</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Freestall #2</td>
<td>freestall support stock</td>
<td>650</td>
<td>650</td>
<td>1.370</td>
<td>80%</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Shade Barn #1</td>
<td>loafing barn support stock</td>
<td>180</td>
<td>180</td>
<td>5.280</td>
<td>80%</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Freestall Barn #3</td>
<td>freestall milk cows</td>
<td>920</td>
<td>920</td>
<td>1.370</td>
<td>80%</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Freestall Barn #4-A</td>
<td>freestall milk cows</td>
<td>920</td>
<td>920</td>
<td>1.370</td>
<td>80%</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Freestall Barn #4-B</td>
<td>freestall support stock</td>
<td>6</td>
<td>6</td>
<td>1.370</td>
<td>80%</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Freestall Barn #5</td>
<td>freestall milk cows</td>
<td>910</td>
<td>910</td>
<td>1.370</td>
<td>80%</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Heifer Hutches</td>
<td>aboveground flushed hutch</td>
<td>120</td>
<td>120</td>
<td>1.370</td>
<td>15%</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Calf Hutches</td>
<td>aboveground flushed hutch</td>
<td>300</td>
<td>300</td>
<td>0.069</td>
<td>80%</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pre-Project Potential to Emit - Cow Housing

<table>
<thead>
<tr>
<th>Housing Name(s) or K(s)</th>
<th>Type of Cow</th>
<th># of Cows</th>
<th>Controlled VOC EF (lb/hd-yr)</th>
<th>Controlled NH3 EF (lb/hd-yr)</th>
<th>Controlled PM10 EF (lb/hd-yr)</th>
<th>VOC (lb/day)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Freestall #1-A milk cows</td>
<td>1,200</td>
<td>0.59</td>
<td>21.13</td>
<td>1.37</td>
<td>38.5</td>
<td>11,508</td>
<td>89.5</td>
<td>25,354</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>Freestall #1-B dry cows</td>
<td>58</td>
<td>5.42</td>
<td>10.71</td>
<td>1.37</td>
<td>0.9</td>
<td>314</td>
<td>1.7</td>
<td>621</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>Freestall #2 support stock</td>
<td>640</td>
<td>4.16</td>
<td>5.54</td>
<td>1.37</td>
<td>7.3</td>
<td>2,662</td>
<td>9.7</td>
<td>3,543</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>Shade Barn #1 dry cows</td>
<td>50</td>
<td>5.42</td>
<td>10.71</td>
<td>2.73</td>
<td>0.7</td>
<td>271</td>
<td>1.5</td>
<td>535</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>Shade Barn #2 dry cows</td>
<td>42</td>
<td>5.42</td>
<td>10.71</td>
<td>2.73</td>
<td>0.6</td>
<td>129</td>
<td>1.2</td>
<td>450</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Pre-Project Total # of Cows

- Total # of Cows: 1,990
- Calculations:
 - Annual PE for each pollutant (lb/yr) = Controlled EF (lb/hd-yr) x # of cows (hd)
 - Daily PE for each pollutant (lb/day) = (Controlled EF (lb/hd-yr) x # of cows (hd)) ÷ 365 (day/yr)

Pre-Project Totals

<table>
<thead>
<tr>
<th>Total # of Cows</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,990</td>
<td>41.0</td>
<td>14,983</td>
<td>83.6</td>
<td>30,503</td>
<td>7.8</td>
<td>2,852</td>
</tr>
</tbody>
</table>

Multiple emissions units (freestalls, corrals, calf hutch areas, etc.) are combined in these rows.
Post-Project Potential to Emit - Cow Housing

<table>
<thead>
<tr>
<th>Housing Name(s) or #(s)</th>
<th>Type of Cow</th>
<th># of Cows</th>
<th>Controlled VOC EF (lb/hd-yr)</th>
<th>Controlled NH3 EF (lb/hd-yr)</th>
<th>Controlled PM10 EF (lb/hd-yr)</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Freestall #1-A</td>
<td>support stock</td>
<td>800</td>
<td>4.06</td>
<td>5.54</td>
<td>1.17</td>
<td>8.9</td>
<td>3,248</td>
<td>12.1</td>
<td>4,429</td>
<td>2.6</td>
<td>932</td>
</tr>
<tr>
<td>2 Freestall #1-B</td>
<td>dry cows</td>
<td>560</td>
<td>5.29</td>
<td>10.71</td>
<td>0.23</td>
<td>8.1</td>
<td>2,962</td>
<td>16.4</td>
<td>5,997</td>
<td>0.4</td>
<td>130</td>
</tr>
<tr>
<td>3 Freestall #2</td>
<td>support stock</td>
<td>650</td>
<td>4.06</td>
<td>5.54</td>
<td>0.23</td>
<td>7.2</td>
<td>2,639</td>
<td>9.9</td>
<td>3,598</td>
<td>0.4</td>
<td>151</td>
</tr>
<tr>
<td>4 Shade Barn #1</td>
<td>support stock</td>
<td>180</td>
<td>4.06</td>
<td>5.54</td>
<td>0.90</td>
<td>2.0</td>
<td>731</td>
<td>2.7</td>
<td>997</td>
<td>0.4</td>
<td>162</td>
</tr>
</tbody>
</table>

Post-Project # of Cows (non-expansion): 2,190

<table>
<thead>
<tr>
<th>Total # of Cows From Expansion</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,176</td>
<td>72.5</td>
<td>26,446</td>
<td>161.9</td>
<td>59,071</td>
<td>2.3</td>
<td>826</td>
</tr>
</tbody>
</table>

*Multiple emissions units (freestalls, corrals, calf hutch areas, etc.) are combined in these rows.

Post-Project Potential to Emit - Cow Housing: New Housing Units at an Expanding Dairy

<table>
<thead>
<tr>
<th>Housing Name(s) or #(s)</th>
<th>Type of Cow</th>
<th># of Cows</th>
<th>Controlled VOC EF (lb/hd-yr)</th>
<th>Controlled NH3 EF (lb/hd-yr)</th>
<th>Controlled PM10 EF (lb/hd-yr)</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Freestall Barn #3</td>
<td>milk cows</td>
<td>920</td>
<td>0.35</td>
<td>21.13</td>
<td>0.23</td>
<td>23.6</td>
<td>8,602</td>
<td>53.3</td>
<td>19,438</td>
<td>0.6</td>
<td>214</td>
</tr>
<tr>
<td>2 Freestall Barn #4-A</td>
<td>milk cows</td>
<td>920</td>
<td>0.35</td>
<td>21.13</td>
<td>0.23</td>
<td>23.6</td>
<td>8,602</td>
<td>53.3</td>
<td>19,438</td>
<td>0.6</td>
<td>214</td>
</tr>
<tr>
<td>3 Freestall Barn #4-B</td>
<td>support stock</td>
<td>6</td>
<td>4.06</td>
<td>5.54</td>
<td>0.23</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>4 Freestall Barn #5</td>
<td>milk cows</td>
<td>910</td>
<td>0.35</td>
<td>21.13</td>
<td>0.23</td>
<td>23.3</td>
<td>8,009</td>
<td>52.7</td>
<td>19,227</td>
<td>0.6</td>
<td>212</td>
</tr>
<tr>
<td>5 Heifer Hutchses</td>
<td>support stock</td>
<td>120</td>
<td>4.06</td>
<td>5.54</td>
<td>1.37</td>
<td>1.5</td>
<td>407</td>
<td>1.8</td>
<td>684</td>
<td>0.4</td>
<td>164</td>
</tr>
<tr>
<td>6 Calf Hutchses</td>
<td>calves</td>
<td>300</td>
<td>0.34</td>
<td>0.90</td>
<td>0.07</td>
<td>0.8</td>
<td>222</td>
<td>0.7</td>
<td>271</td>
<td>0.1</td>
<td>21</td>
</tr>
</tbody>
</table>

Total # of Cows From Expansion: 3,176

*Multiple emissions units (freestalls, corrals, calf hutch areas, etc.) are combined in these rows.

Post-Project Totals

<table>
<thead>
<tr>
<th>Total # of Cows</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,366</td>
<td>98.7</td>
<td>36,029</td>
<td>203.0</td>
<td>76,002</td>
<td>6.1</td>
<td>2,205</td>
</tr>
</tbody>
</table>

Calculations:
- Annual PE 2 for each pollutant (lb/yr) = Controlled EF (lb/hd-yr) x # of cows (hd)
- Daily PE2 for each pollutant (lb/day) = [Controlled EF (lb/hd-yr) x # of cows (hd)] ÷ 365 (day/yr)
Pre-Project Worst Case BACT Calculations - Cow Housing

This table uses the worst case emission factor for each cow type and the maximum design capacity of the housing unit. This should only be used for BACT calculation purposes.

<table>
<thead>
<tr>
<th>Housing Name(s) or # (s)</th>
<th>Type of Cow</th>
<th>Capacity per housing unit</th>
<th>Controlled VOC EF (lb/hd-yr)</th>
<th>Controlled NH3 EF (lb/hd-yr)</th>
<th>Controlled PM10 EF (lb/hd-yr)</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Freestall #1-A</td>
<td>milk cows</td>
<td>1,200</td>
<td>9.59</td>
<td>21.13</td>
<td>10.55</td>
<td>31.5</td>
<td>11,508</td>
<td>69.5</td>
<td>25,354</td>
<td>34.7</td>
</tr>
<tr>
<td>2</td>
<td>Freestall #1-B</td>
<td>dry cows</td>
<td>58</td>
<td>9.59</td>
<td>21.13</td>
<td>10.55</td>
<td>1.5</td>
<td>556</td>
<td>3.4</td>
<td>1,235</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>Freestall #2</td>
<td>support stock</td>
<td>640</td>
<td>9.59</td>
<td>21.13</td>
<td>10.55</td>
<td>16.8</td>
<td>6,138</td>
<td>37.0</td>
<td>13,522</td>
<td>18.5</td>
</tr>
<tr>
<td>4</td>
<td>Shade Barn #1</td>
<td>dry cows</td>
<td>50</td>
<td>9.59</td>
<td>21.13</td>
<td>9.67</td>
<td>1.3</td>
<td>480</td>
<td>2.9</td>
<td>1,056</td>
<td>1.3</td>
</tr>
<tr>
<td>5</td>
<td>Shade Barn #2</td>
<td>dry cows</td>
<td>42</td>
<td>9.59</td>
<td>21.13</td>
<td>9.67</td>
<td>1.1</td>
<td>403</td>
<td>2.4</td>
<td>887</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Multiple emissions units (freestalls, corrals, calf hutch areas, etc.) are combined in these rows. BACT applicability has been calculated for EACH emissions unit in this row.

Pre-Project Totals

<table>
<thead>
<tr>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.2</td>
<td>19,085</td>
<td>115.2</td>
<td>42,044</td>
<td>57.3</td>
<td>20,914</td>
</tr>
</tbody>
</table>

Calculations:

- Annual PE 1 for each pollutant (lb/yr) = Controlled EF (lb/hd-yr) x # of cows (hd)
- Daily PE1 for each pollutant (lb/day) = [Controlled EF (lb/hd-yr) x # of cows (hd)] / 365 (day/yr)
Post-Project Worst Case BACT Calculations - Existing Cow Housing

This table uses the worst case emission factor for each cow type and the maximum design capacity of the housing unit. This should only be used for BACT calculation purposes.

<table>
<thead>
<tr>
<th>Housing Name(s) or #(s)</th>
<th>Type of Cow</th>
<th>Capacity per housing unit</th>
<th>Controlled VOC EF (lb/hd-yr)</th>
<th>Controlled NH3 EF (lb/hd-yr)</th>
<th>Controlled PM10 EF (lb/hd-yr)</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
<th>VOC AIPE</th>
<th>NH3 AIPE</th>
<th>PM10 AIPE</th>
<th>BACT Triggered for VOC?</th>
<th>BACT Triggered for NH3?</th>
<th>BACT Triggered for PM10?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Freestall #1-A</td>
<td>support stock 800</td>
<td>9.35</td>
<td>21.13</td>
<td>8.97</td>
<td>20.5</td>
<td>7,480</td>
<td>46.3</td>
<td>16,903</td>
<td>19.7</td>
<td>7,174</td>
<td>-10.2</td>
<td>23.2</td>
<td>-9.8</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Freestall #1-B</td>
<td>dry cows 560</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>14.3</td>
<td>5,236</td>
<td>32.4</td>
<td>11,832</td>
<td>2.8</td>
<td>1,005</td>
<td>12.8</td>
<td>29.0</td>
<td>2.5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Freestall #2</td>
<td>support stock 650</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>16.7</td>
<td>6,078</td>
<td>37.6</td>
<td>13,713</td>
<td>3.2</td>
<td>1,166</td>
<td>0.3</td>
<td>0.6</td>
<td>0.1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Shade Barn #1</td>
<td>support stock 180</td>
<td>9.35</td>
<td>21.13</td>
<td>1.65</td>
<td>4.6</td>
<td>1,683</td>
<td>10.4</td>
<td>3,803</td>
<td>0.8</td>
<td>296</td>
<td>3.3</td>
<td>7.5</td>
<td>0.6</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Post-Project Worst Case BACT Calculations - New Cow Housing

This table uses the worst case emission factor for each cow type and the maximum design capacity of the housing unit. This should only be used for BACT calculation purposes.

<table>
<thead>
<tr>
<th>Housing Name(s) or #s</th>
<th>Type of Cow</th>
<th>Capacity per housing unit</th>
<th>Controlled VOC EF (lb/hd-yr)</th>
<th>Controlled NH3 EF (lb/hd-yr)</th>
<th>Controlled PM10 EF (lb/hd-yr)</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
<th>BACT Triggered for VOC?</th>
<th>BACT Triggered for NH3?</th>
<th>BACT Triggered for PM10?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Freestall Barn #3</td>
<td>milk cows</td>
<td>920</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>23.6</td>
<td>8,602</td>
<td>53.3</td>
<td>19,438</td>
<td>4.5</td>
<td>1,650</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Freestall Barn #4-A</td>
<td>milk cows</td>
<td>920</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>23.6</td>
<td>8,602</td>
<td>53.3</td>
<td>19,438</td>
<td>4.5</td>
<td>1,650</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Freestall Barn #4-B</td>
<td>support stock</td>
<td>6</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>0.2</td>
<td>56</td>
<td>0.3</td>
<td>127</td>
<td>0.0</td>
<td>11</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Freestall Barn #5</td>
<td>milk cows</td>
<td>910</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>23.3</td>
<td>8,509</td>
<td>52.7</td>
<td>19,227</td>
<td>4.5</td>
<td>1,633</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Heifer Huches</td>
<td>support stock</td>
<td>120</td>
<td>9.35</td>
<td>21.13</td>
<td>#VALUE!</td>
<td>3.1</td>
<td>1,122</td>
<td>6.9</td>
<td>2,535</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Calf Hutches</td>
<td>calves</td>
<td>300</td>
<td>9.35</td>
<td>21.13</td>
<td>#VALUE!</td>
<td>7.7</td>
<td>2,805</td>
<td>17.4</td>
<td>6,338</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Multiple emissions units (freestalls, corrals, calf hutch areas, etc.) are combined in these rows. BACT applicability has been calculated for EACH emissions unit in this row.

Post-Project Totals

<table>
<thead>
<tr>
<th></th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual PE 2 for each pollutant (lb/yr) = Controlled EF (lb/hd-yr) x # of cows (hd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily PE2 for each pollutant (lb/day) = [Controlled EF (lb/hd-yr) x # of cows (hd)] + 365 (day/yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.6</td>
<td>50,173</td>
<td>310.6</td>
<td>113,374</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td></td>
</tr>
</tbody>
</table>
BACT Applicability

Liquid Manure Handling

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>1.4</td>
<td>0.9</td>
<td>0.29</td>
<td>0.49</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.29</td>
<td>0.49</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.05</td>
<td>0.19</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.18</td>
<td>0.30</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

NH3 Emissions - Liquid Manure Application

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.06</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.18</td>
<td>0.30</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

VOC Emissions - Liquid Manure Application

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>1.5</td>
<td>0.9</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.06</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.18</td>
<td>0.30</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

NH3 Emissions - Lagoon/Storage Ponds

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.06</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.18</td>
<td>0.30</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

VOC Emissions - Lagoon/Storage Ponds

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>1.5</td>
<td>0.9</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.06</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.18</td>
<td>0.30</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

VOC Emissions - Solid Manure Storage/Separated Solids Piles

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.06</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.18</td>
<td>0.30</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

VOC Emissions - TMR

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.06</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.18</td>
<td>0.30</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

VOC Emissions - Alfa Silage

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
<td>0.53</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.06</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.18</td>
<td>0.30</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Solid Manure Handling

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>0.2</td>
<td>0.1</td>
<td>0.05</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.03</td>
<td>0.06</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.04</td>
<td>0.08</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

NH3 Emissions - Solid Manure Storage/Separated Solids Piles

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.05</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.03</td>
<td>0.06</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.04</td>
<td>0.08</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

H2S Emissions - Lagoon/Storage Ponds

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.05</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.03</td>
<td>0.06</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.04</td>
<td>0.08</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Cow Housing

See detailed cow housing AIPE calculations on the BACT Calcs page.

Feed Storage and Handling

<table>
<thead>
<tr>
<th>Category</th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.05</td>
<td>0.10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Small Hefiers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.03</td>
<td>0.06</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.04</td>
<td>0.08</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
Pre-Project Potential to Emit (PE1)

<table>
<thead>
<tr>
<th>Pre-Project Herd Size</th>
<th>Flushed Freestalls</th>
<th>Scraped Freestalls</th>
<th>Flushed Corrals</th>
<th>Scraped Corrals</th>
<th>Total # of Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>1,200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,200</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>58</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Support Stock (Heifers, Calves, and Bulls)</td>
<td>640</td>
<td>0</td>
<td>0</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>Large Heifers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Medium Heifers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Small Heifers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cows</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calves</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Silage Information

<table>
<thead>
<tr>
<th>Feed Type</th>
<th>Maximum # Open Piles</th>
<th>Maximum Height (ft)</th>
<th>Maximum Width (ft)</th>
<th>Open Face Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feed Type</th>
<th>Maximum # Open Piles</th>
<th>Maximum Height (ft)</th>
<th>Maximum Width (ft)</th>
<th>Open Face Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Manure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Manure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feed Handling and Storage

<table>
<thead>
<tr>
<th>Feed Type</th>
<th>Daily PE (lb-VOC/day)</th>
<th>Annual PE (lb-VOC/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>3.4</td>
<td>1,240</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Wheat</td>
<td>4.3</td>
<td>1,516</td>
</tr>
<tr>
<td>TMR</td>
<td>41.9</td>
<td>10,012</td>
</tr>
<tr>
<td>Total</td>
<td>51.6</td>
<td>14,855</td>
</tr>
</tbody>
</table>

Total Daily Pre-Project Potential to Emit (lb/day)

<table>
<thead>
<tr>
<th>Permit</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Parlor</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>0.4</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Cow Housing</td>
<td>0.0</td>
<td>0.0</td>
<td>7.8</td>
<td>41.0</td>
<td>83.6</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Liquid Manure</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.3</td>
<td>30.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Solid Manure</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.9</td>
<td>11.2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Feed Handling</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>51.6</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>0.0</td>
<td>7.8</td>
<td>106.1</td>
<td>125.3</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

Total Annual Pre-Project Potential to Emit (lb/yr)

<table>
<thead>
<tr>
<th>Permit</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Parlor</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>482</td>
<td>184</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cow Housing</td>
<td>0.0</td>
<td>0.0</td>
<td>2,892</td>
<td>74,985</td>
<td>36,503</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Liquid Manure</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3,768</td>
<td>10,945</td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>Solid Manure</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>699</td>
<td>4,091</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Feed Handling</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8,835</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>0.0</td>
<td>2,892</td>
<td>74,985</td>
<td>36,503</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Calculations for milking parlor:

Annual PE = (# milk cows) x (EF1 lb-pollutant/hd-yr)

Daily PE = (Annual PE lb/yr) ÷ (365 day/yr)

Calculations for cow housing:

See detailed calculations under Cow Housing Calculations worksheet.

Calculations for liquid manure and solid manure handling:

Annual PE = [(# milk cows) x (EF1 lb-pollutant/hd-yr)] + [(# dry cows) x (EF1 lb-pollutant/hd-yr)] + [(# large heifers) x (EF1 lb-pollutant/hd-yr)] + [(# medium heifers) x (EF1 lb-pollutant/hd-yr)] + [(# small heifers) x (EF1 lb-pollutant/hd-yr)] + [(# calves) x (EF1 lb-pollutant/hd-yr)] + [(# bulls) x (EF1 lb-pollutant/hd-yr)]

Daily PE = (Annual PE lb/yr) ÷ (365 day/yr)

Calculations for silage emissions:

Annual PE = (EF1) x (area ft²) x (0.0129 m²/ft²) x (8,760 hr/yr) x (60 min/hr) x (2.20E-9 lb/µg)

Daily PE = (Annual PE lb/yr) ÷ (365 day/yr)

Calculations for TMR emissions:

Annual PE = (# cows) x (EF1) x (0.658 m²) x (525,600 min/yr) x (2.20E-9 lb/µg)

Daily PE = (Annual PE lb/yr) ÷ (365 day/yr)

Calculations for TMR emissions (cont.):

Calculations for TMR emissions do not include the TMR maintenance tank area.

Notes:

- Since there will be no change to the lagoons/storage ponds surface area, no change in H2S emissions is expected. Therefore, it will be assumed that PE1 for H2S emissions is equal to PE2 for H2S emissions.
Post-Project Potential to Emit (PE2)

Post-Project Herd Size

<table>
<thead>
<tr>
<th>Herd</th>
<th>Flushed Freestalls</th>
<th>Scraped Freestalls</th>
<th>Flushed Corrals</th>
<th>Scraped Corrals</th>
<th>Total # of Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>2,750</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,750</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>1,546</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>1,746</td>
</tr>
<tr>
<td>Support Stock (Heifers, Cows, and Bulls)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Large Heifers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Medium Heifers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Small Heifers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bulls</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Silage Information

<table>
<thead>
<tr>
<th>Feed Type</th>
<th>Maximum # Open Piles</th>
<th>Maximum Height (ft)</th>
<th>Maximum Width (ft)</th>
<th>Open Face Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wheat</td>
<td>1</td>
<td>11</td>
<td>68</td>
<td>549</td>
</tr>
</tbody>
</table>

Milk Parlor

<table>
<thead>
<tr>
<th>Cow</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/day</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cow Housing

<table>
<thead>
<tr>
<th>Cow</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/day</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liquid Manure Handling

<table>
<thead>
<tr>
<th>Cow</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/day</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solid Manure Handling

<table>
<thead>
<tr>
<th>Cow</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/day</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feed Handling and Storage

<table>
<thead>
<tr>
<th>Cow</th>
<th>Daily PE (lb-VOC/day)</th>
<th>Annual PE (lb-VOC/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Daily Post-Project Potential to Emit (lb/day)

<table>
<thead>
<tr>
<th>Permit</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Parlor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cow Housing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>283.0</td>
<td>239.9</td>
<td>278.3</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Liquid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.2</td>
<td>17.1</td>
<td>17.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Solid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Feed Handling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>239.9</td>
<td>278.3</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Total Annual Post-Project Potential to Emit (lb/yr)

<table>
<thead>
<tr>
<th>Permit</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Parlor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,100</td>
<td>378</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cow Housing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36,026</td>
<td>74,092</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Liquid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,962</td>
<td>17,171</td>
<td>416</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Solid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,296</td>
<td>9,936</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Feed Handling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43,586</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36,026</td>
<td>74,092</td>
<td>416</td>
<td>0.0</td>
<td>2,663</td>
</tr>
</tbody>
</table>

Major Source Emissions (lb/yr)

<table>
<thead>
<tr>
<th>Permit</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Parlor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,100</td>
<td>378</td>
</tr>
<tr>
<td>Cow Housing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36,026</td>
<td>74,092</td>
</tr>
<tr>
<td>Liquid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,962</td>
<td>17,171</td>
</tr>
<tr>
<td>Solid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,296</td>
<td>9,936</td>
</tr>
<tr>
<td>Feed Handling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43,586</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36,026</td>
<td>74,092</td>
</tr>
</tbody>
</table>

Calculations for milking parlor:

\[
\text{Annual PE} = (\text{# milk cows}) \times (\text{EF1 lb-pollutant/hd-yr})
\]

\[
\text{Daily PE} = \left(\frac{\text{Annual PE lb/yr}}{365 \text{ day/yr}}\right)
\]

Calculations for cow housing:

See detailed calculations under Cow Housing Calculations worksheet.

Calculations for liquid manure and solid manure handling:

\[
\text{Annual PE} = \left(\left[\text{# milk cows} \times (\text{EF1 lb-pollutant/hd-yr})\right] + \left[\text{# dry cows} \times (\text{EF2 lb-pollutant/hd-yr})\right] + \left[\text{# large heifers} \times (\text{EF2 lb-pollutant/hd-yr})\right] + \left[\text{# medium heifers} \times (\text{EF2 lb-pollutant/hd-yr})\right] + \left[\text{# small heifers} \times (\text{EF2 lb-pollutant/hd-yr})\right] + \left[\text{# calves} \times (\text{EF2 lb-pollutant/hd-yr})\right] + \left[\text{# bulls} \times (\text{EF2 lb-pollutant/hd-yr})\right]\right)
\]

\[
\text{Daily PE} = \left(\frac{\text{Annual PE lb/yr}}{365 \text{ day/yr}}\right)
\]

The H2S emission factor is assumed to be 20% of the NH3 lagoon/storage pond(s) emission factor, for each respective herd size.

Calculations for silage emissions:

\[
\text{Annual PE} = (\text{EF2}) \times (\text{area ft}²) \times (0.0929 \text{ m}²/\text{ft}²) \times (8,760 \text{ hr/yr}) \times (60 \text{ min/hr}) \times 2.20\times10^{-9} \text{ lb/µg}
\]

\[
\text{Daily PE} = \left(\frac{\text{Annual PE lb/yr}}{365 \text{ day/yr}}\right)
\]

Calculation for TMR emissions:

\[
\text{Annual PE} = (\text{EF2}) \times (\text{area ft}²) \times (0.658 \text{ m}²) \times (535,600 \text{ min/yr}) \times (2.20\times9 \text{ lb/µg})
\]

\[
\text{Daily PE} = \left(\frac{\text{Annual PE lb/yr}}{365 \text{ day/yr}}\right)
\]

Calves are not included in TMR calculation.
Increase in Emissions

SSIPE (lb/yr)

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milking Parlor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>620</td>
<td>212</td>
<td>0</td>
</tr>
<tr>
<td>Cow Housing</td>
<td>0</td>
<td>0</td>
<td>-651</td>
<td>0</td>
<td>21,043</td>
<td>43,589</td>
<td>0</td>
</tr>
<tr>
<td>Liquid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,793</td>
<td>6,227</td>
<td>0</td>
</tr>
<tr>
<td>Solid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>597</td>
<td>5,846</td>
<td>0</td>
</tr>
<tr>
<td>Feed Handling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24,751</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>-651</td>
<td>0</td>
<td>48,804</td>
<td>55,874</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Daily Change in Emissions (lb/day)

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milking Parlor</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Cow Housing</td>
<td>0.0</td>
<td>0.0</td>
<td>-1.7</td>
<td>0.0</td>
<td>57.7</td>
<td>119.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Liquid Manure</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.9</td>
<td>17.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Solid Manure</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
<td>16.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Feed Handling</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>67.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>0.0</td>
<td>-1.7</td>
<td>0.0</td>
<td>133.8</td>
<td>153.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Total Annual Change in Non-Fugitive Emissions (Major Source Emissions) (lb/yr)

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milking Parlor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cow Housing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Liquid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>849</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solid Manure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Feed Handling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>849</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix E

BACT Calculations
Pre-Project Worst Case BACT Calculations - Cow Housing

This table uses the worst case emission factor for each cow type and the maximum design capacity of the housing unit. This should only be used for BACT calculation purposes.

Pre-Project Totals

<table>
<thead>
<tr>
<th>Housing Name(s) or #s</th>
<th>Type of Cow</th>
<th>Capacity per housing unit</th>
<th>Controlled VOC EF (lb/hd-yr)</th>
<th>Controlled NH3 EF (lb/hd-yr)</th>
<th>Controlled PM10 EF (lb/hd-yr)</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Freestall #1-A</td>
<td>milk cows 1,200</td>
<td>9.59</td>
<td>21.13</td>
<td>10.55</td>
<td>31.5</td>
<td>11,508</td>
<td>69.5</td>
<td>25,354</td>
<td>34.7</td>
<td>12,660</td>
</tr>
<tr>
<td>2</td>
<td>Freestall #1-B</td>
<td>dry cows 58</td>
<td>9.59</td>
<td>21.13</td>
<td>10.55</td>
<td>1.5</td>
<td>556</td>
<td>3.4</td>
<td>1,225</td>
<td>1.7</td>
<td>612</td>
</tr>
<tr>
<td>3</td>
<td>Freestall #2</td>
<td>support stock 640</td>
<td>9.59</td>
<td>21.13</td>
<td>10.55</td>
<td>16.8</td>
<td>6,138</td>
<td>37.0</td>
<td>13,522</td>
<td>18.5</td>
<td>6,752</td>
</tr>
<tr>
<td>4</td>
<td>Shade Barn #1</td>
<td>dry cows 50</td>
<td>9.59</td>
<td>21.13</td>
<td>9.67</td>
<td>1.3</td>
<td>480</td>
<td>2.9</td>
<td>1,056</td>
<td>1.3</td>
<td>484</td>
</tr>
<tr>
<td>5</td>
<td>Shade Barn #2</td>
<td>dry cows 42</td>
<td>9.59</td>
<td>21.13</td>
<td>9.67</td>
<td>1.1</td>
<td>403</td>
<td>2.4</td>
<td>887</td>
<td>1.1</td>
<td>406</td>
</tr>
</tbody>
</table>

*Multiple emissions units (freestalls, corrals, calf hutch areas, etc.) are combined in these rows. BACT applicability has been calculated for EACH emissions unit in this row.

Pre-Project Totals

<table>
<thead>
<tr>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.2</td>
<td>19,085</td>
<td>115.2</td>
<td>42,044</td>
<td>57.3</td>
<td>20,914</td>
</tr>
</tbody>
</table>

Calculations:

- Annual PE 1 for each pollutant (lb/yr) = Controlled EF (lb/hd-yr) x # of cows (hd)
- Daily PE 1 for each pollutant (lb/day) = [Controlled EF (lb/hd-yr) x # of cows (hd)] ÷ 365 (day/yr)
Post-Project Worst Case BACT Calculations - Existing Cow Housing

This table uses the worst case emission factor for each cow type and the maximum design capacity of the housing unit. This should only be used for BACT calculation purposes.

<table>
<thead>
<tr>
<th>Housing Name(s) or (#s)</th>
<th>Type of Cow</th>
<th>Capacity per housing unit</th>
<th>Controlled VOC EF (lb/hd-yr)</th>
<th>Controlled NH3 EF (lb/hd-yr)</th>
<th>Controlled PM10 EF (lb/hd-yr)</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
<th>VOC AIPE</th>
<th>NH3 AIPE</th>
<th>PM10 AIPE</th>
<th>BACT Triggered for VOC?</th>
<th>BACT Triggered for NH3?</th>
<th>BACT Triggered for PM10?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Freestall #1-A</td>
<td>support stock</td>
<td>800</td>
<td>9.35</td>
<td>21.13</td>
<td>8.97</td>
<td>20.5</td>
<td>7,480</td>
<td>46.3</td>
<td>16,903</td>
<td>19.7</td>
<td>7,174</td>
<td>-10.2</td>
<td>-23.2</td>
<td>-9.8</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Freestall #1-B</td>
<td>dry cows</td>
<td>560</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>14.3</td>
<td>5,236</td>
<td>32.4</td>
<td>11,832</td>
<td>2.8</td>
<td>1,005</td>
<td>12.8</td>
<td>29.0</td>
<td>2.5</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Freestall #2</td>
<td>support stock</td>
<td>650</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>16.7</td>
<td>6,078</td>
<td>37.6</td>
<td>13,713</td>
<td>3.2</td>
<td>1,166</td>
<td>0.3</td>
<td>0.6</td>
<td>0.1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Shade Barn #1</td>
<td>support stock</td>
<td>180</td>
<td>9.35</td>
<td>21.13</td>
<td>1.65</td>
<td>4.6</td>
<td>1,683</td>
<td>10.4</td>
<td>3,803</td>
<td>0.8</td>
<td>296</td>
<td>3.3</td>
<td>7.5</td>
<td>0.6</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

56.1 20,477 126.7 46,271 26.5 9,641

Multiple emissions units (freestalls, corrals, calf hutch areas, etc.) are combined in these rows. BACT applicability has been calculated for EACH emissions unit in this row.

Calculations:

Annual PE 2 for each pollutant (lb/yr) = Controlled EF (lb/hd-yr) x # of cows (hd)

Daily PE2 for each pollutant (lb/day) = (Controlled EF (lb/hd-yr) x # of cows (hd)) / 365 (day/yr)
Post-Project Worst Case BACT Calculations - New Cow Housing

This table uses the worst case emission factor for each cow type and the maximum design capacity of the housing unit. This should only be used for BACT calculation purposes.

<table>
<thead>
<tr>
<th>Housing Name(s) or #(s)</th>
<th>Type of Cow</th>
<th>Capacity per housing unit</th>
<th>Controlled VOC EF (lb/hd-yr)</th>
<th>Controlled NH3 EF (lb/hd-yr)</th>
<th>Controlled PM10 EF (lb/hd-yr)</th>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
<th>BACT Triggered for VOC?</th>
<th>BACT Triggered for NH3?</th>
<th>BACT Triggered for PM10?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Freestall Barn #3</td>
<td>milk cows</td>
<td>920</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>23.6</td>
<td>8,602</td>
<td>53.3</td>
<td>19,438</td>
<td>4.5</td>
<td>1,650</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Freestall Barn #4-A</td>
<td>milk cows</td>
<td>920</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>23.6</td>
<td>8,602</td>
<td>53.3</td>
<td>19,438</td>
<td>4.5</td>
<td>1,650</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Freestall Barn #4-B</td>
<td>support stock</td>
<td>6</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>0.2</td>
<td>56</td>
<td>0.3</td>
<td>127</td>
<td>0.0</td>
<td>11</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Freestall Barn #5</td>
<td>milk cows</td>
<td>910</td>
<td>9.35</td>
<td>21.13</td>
<td>1.79</td>
<td>23.3</td>
<td>8,509</td>
<td>52.7</td>
<td>19,227</td>
<td>4.5</td>
<td>1,633</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Heifer Huches</td>
<td>support stock</td>
<td>120</td>
<td>9.35</td>
<td>21.13</td>
<td>#VALUE!</td>
<td>3.1</td>
<td>1,122</td>
<td>6.9</td>
<td>2,535</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Calf Hutches</td>
<td>calves</td>
<td>300</td>
<td>9.35</td>
<td>21.13</td>
<td>#VALUE!</td>
<td>7.7</td>
<td>2,805</td>
<td>17.4</td>
<td>6,338</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Post-Project Totals

<table>
<thead>
<tr>
<th>VOC (lb/day)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/day)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/day)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>137.6</td>
<td>50,173</td>
<td>310.6</td>
<td>113,374</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
</tr>
</tbody>
</table>

Calculations:

- Annual PE 2 for each pollutant (lb/yr) = Controlled EF (lb/hd-yr) x # of cows (hd)
- Daily PE2 for each pollutant (lb/day) = [Controlled EF (lb/hd-yr) x # of cows (hd)] ÷ 365 (day/yr)

Multiple emissions units (freestalls, corrals, calf hutch areas, etc.) are combined in these rows. BACT applicability has been calculated for EACH emissions unit in this row.
BACT Applicability

Liquid Manure Handling

<table>
<thead>
<tr>
<th></th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>5.3</td>
<td>3.8</td>
<td>0.7</td>
<td>1.17</td>
<td>3.0</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>1.9</td>
<td>1.9</td>
<td>0.4</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Medium Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Small Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BACT triggered for VOC for Lagoon/Storage Ponds

Total: 4.3

NH3 Emissions - Lagoon/Storage Ponds

<table>
<thead>
<tr>
<th></th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>1.9</td>
<td>1.9</td>
<td>0.4</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Medium Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Small Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BACT triggered for VOC for Lagoon/Storage Ponds

Total: 4.6

NH3 Emissions - Liquid Manure Land Application

<table>
<thead>
<tr>
<th></th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Medium Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Small Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BACT triggered for NH3 for Liquid Manure Land Application

Total: 0.6

VOC Emissions - Liquid Manure Land Application

<table>
<thead>
<tr>
<th></th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>5.7</td>
<td>4.1</td>
<td>0.7</td>
<td>1.26</td>
<td>3.2</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.69</td>
<td>0.4</td>
</tr>
<tr>
<td>Support Stock</td>
<td>1.5</td>
<td>0.9</td>
<td>0.3</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Medium Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Small Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BACT triggered for VOC for Liquid Manure Land Application

Total: 4.3

VOC Emissions - Milking Parlor

<table>
<thead>
<tr>
<th></th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>28.0</td>
<td>21.1</td>
<td>3.2</td>
<td>6.41</td>
<td>15.8</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>2.9</td>
<td>1.3</td>
<td>1.88</td>
<td>3.24</td>
<td>2.1</td>
</tr>
<tr>
<td>Support Stock</td>
<td>4.6</td>
<td>2.9</td>
<td>0.96</td>
<td>1.66</td>
<td>2.9</td>
</tr>
<tr>
<td>Large Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Medium Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Small Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Calves</td>
<td>0.1</td>
<td>0.0</td>
<td>0.15</td>
<td>0.27</td>
<td>0.1</td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>1.35</td>
<td>2.33</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BACT triggered for VOC for Solid Manure Storage/Separated Solids Piles

Total: 20.9

VOC Emissions - Solid Manure Handling

<table>
<thead>
<tr>
<th></th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>1.0</td>
<td>0.9</td>
<td>0.6</td>
<td>0.18</td>
<td>0.9</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>0.2</td>
<td>0.1</td>
<td>0.10</td>
<td>0.19</td>
<td>0.2</td>
</tr>
<tr>
<td>Support Stock</td>
<td>0.4</td>
<td>0.1</td>
<td>0.10</td>
<td>0.08</td>
<td>0.3</td>
</tr>
<tr>
<td>Large Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.06</td>
<td>0.08</td>
<td>0.0</td>
</tr>
<tr>
<td>Medium Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.05</td>
<td>0.09</td>
<td>0.0</td>
</tr>
<tr>
<td>Small Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.03</td>
<td>0.03</td>
<td>0.0</td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.01</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.05</td>
<td>0.05</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BACT triggered for VOC for Solid Manure Storage/Separated Solids Piles

Total: 1.3

NH3 Emissions - Solid Manure Storage/Separated Solids Piles

<table>
<thead>
<tr>
<th></th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td>11.3</td>
<td>4.9</td>
<td>5.0</td>
<td>1.50</td>
<td>6.6</td>
</tr>
<tr>
<td>Dry Cows</td>
<td>1.2</td>
<td>0.3</td>
<td>0.76</td>
<td>0.79</td>
<td>0.9</td>
</tr>
<tr>
<td>Support Stock</td>
<td>1.9</td>
<td>0.7</td>
<td>0.40</td>
<td>0.40</td>
<td>1.2</td>
</tr>
<tr>
<td>Large Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.04</td>
<td>0.04</td>
<td>0.0</td>
</tr>
<tr>
<td>Medium Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.28</td>
<td>0.28</td>
<td>0.0</td>
</tr>
<tr>
<td>Small Heifers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.22</td>
<td>0.22</td>
<td>0.0</td>
</tr>
<tr>
<td>Calves</td>
<td>0.0</td>
<td>0.0</td>
<td>0.06</td>
<td>0.06</td>
<td>0.1</td>
</tr>
<tr>
<td>Bulls</td>
<td>0.0</td>
<td>0.0</td>
<td>0.55</td>
<td>0.55</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BACT triggered for NH3 for Solid Manure Land Application

Total: 6.8

Feed Storage and Handling

<table>
<thead>
<tr>
<th></th>
<th>PE2 (lb/day)</th>
<th>PE1 (lb/day)</th>
<th>EF2</th>
<th>EF1</th>
<th>AIPE (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Silage</td>
<td>3.4</td>
<td>3.4</td>
<td>21.15</td>
<td>21.15</td>
<td>0.0</td>
</tr>
<tr>
<td>Alfalfa Silage</td>
<td>0.0</td>
<td>0.0</td>
<td>10.849</td>
<td>10.849</td>
<td>0.0</td>
</tr>
<tr>
<td>Wheat Silage</td>
<td>4.3</td>
<td>4.3</td>
<td>26.745</td>
<td>26.745</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BACT triggered for VOC for TMR

Total: 67.8

Cow Housing

See detailed cow housing AIPE calculations on the BACT Calcs page.
Appendix F

BACT Guidelines
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1) Concrete feed lanes and walkways;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Flushing the lanes and walkways for the mature cows (milk and dry cows) four times per day and flushing lanes and walkways for the remaining animals once per day (or for dairies that cannot use a flush system, Scraping lanes and walkways for mature cows with an automatic scraper (or equivalent) four times per day and cleaning lanes and walkways for support stock (heifers) at least once per day);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Properly sloping exercise pens (minimum of 3% slope where the available space for each animal is 400 square feet or less and minimum of 1.5% where the available space for each animal is more than 400 square feet per animal) or managing corrals to maintain a dry surface;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) Scraping exercise pens every two weeks using pull-type scraper in the morning hours except when prevented by wet conditions; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) Rule 4570 Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>1) Concrete feed lanes and walkways;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Scraping exercise pens every two weeks using pull-type scraper in the morning hours except when prevented by wet conditions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1) Concrete feed lanes and walkways;

2) Flushing the lanes and walkways for the mature cows (milk and dry cows) four times per day and flushing lanes and walkways for the remaining animals once per day (or for dairies that cannot use a flush system, Scraping lanes and walkways for mature cows with an automatic scraper (or equivalent) four times per day and cleaning lanes and walkways for support stock (heifers) at least once per day);

3) Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;

4) Properly sloping exercise pens (minimum of 3% slope where the available space for each animal is 400 square feet or less and minimum of 1.5% where the available space for each animal is more than 400 square feet per animal) or managing corrals to maintain a dry surface; and

5) Scraping exercise pens every two weeks using pull-type scraper in the morning hours except when prevented by wet conditions;

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.3*
Last Update: 3/17/2015

Cow Housing - Open Corrals

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1) Concrete feed lanes and walkways;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Flushing the lanes and walkways for the mature cows (milk and dry cows) four times per day and flushing lanes and walkways for the remaining animals once per day (or for dairies that cannot use a flush system, Scraper lanes and walkways for mature cows with an automatic scraper (or equivalent) four times per day and cleaning lanes and walkways for support stock (heifers) at least once per day);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Properly sloping corrals (minimum of 3% slope where the available space for each animal is 400 square feet or less and minimum of 1.5% where the available space for each animal is more than 400 square feet per animal) or managing corrals to maintain a dry surface;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) Scraper corrals and exercise pens every two weeks using pull-type scraper in the morning hours except when prevented by wet conditions; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) Rule 4570 Measures (only for facilities subject to Rule 4570)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PM10

1) Concrete feed lanes and walkways;

2) Scraping of open corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions;

3) Shade structures in open corrals;

4) Feeding heifers in corrals near dusk (within 1 hour of dusk); and

5) Windbreaks controlling dust from corrals (when feasible, supported by soil conditions, and there is adequate space at existing facilities); or

6) An alternative measure with equivalent PM control (e.g. sprinkling/water application over at least 25% of the corral surface or average corral surface moisture content (water-based) ≥ 16%) may be applied as a replacement for the previous measures
1) Concrete feed lanes and walkways;

2) Flushing the lanes and walkways for the mature cows (milk and dry cows) four times per day and flushing lanes and walkways for the remaining animals once per day (or for dairies that cannot use a flush system, Scraping lanes and walkways for mature cows with an automatic scraper (or equivalent) four times per day and cleaning lanes and walkways for support stock (heifers) at least once per day);

3) Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;

4) Properly sloping corrals (minimum of 3% slope where the available space for each animal is 400 square feet or less and minimum of 1.5% where the available space for each animal is more than 400 square feet per animal) or managing corrals to maintain a dry surface; and

5) Scraping corrals and exercise pens every two weeks using pull-type scraper in the morning hours except when prevented by wet conditions;

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Cow Housing - Loafing Barns

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1) Concrete feed lanes and walkways;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Flushing the lanes and walkways for the mature cows (milk and dry cows) four times per day and flushing lanes and walkways for the remaining animals once per day (or for dairies that cannot use a flush system, Scraping lanes and walkways for mature cows with an automatic scraper (or equivalent) four times per day and cleaning lanes and walkways for support stock (heifers) at least once per day);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Properly sloping corrals (minimum of 3% slope where the available space for each animal is 400 square feet or less and minimum of 1.5% where the available space for each animal is more than 400 square feet per animal) or managing corrals to maintain a dry surface;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) Scraping pens every two weeks using pull-type scraper in the morning hours except when prevented by wet conditions; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) Rule 4570 Measures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PM10

1) Concrete feed lanes and walkways;

2) Scraping exercise pens every two weeks using pull-type scraper in the morning hours except when prevented by wet conditions;

3) Windbreaks controlling dust from corrals (when feasible, supported by soil conditions, and there is adequate space at existing facilities); or

4) An alternative measure with equivalent PM control (e.g. sprinkling/water application over at least 25% of the corral surface or average corral surface moisture content (water-based) ≥ 16%) may be applied as a replacement for the previous measures.
1) Concrete feed lanes and walkways;

2) Flushing the lanes and walkways for the mature cows (milk and dry cows) four times per day and flushing lanes and walkways for the remaining animals once per day (or for dairies that cannot use a flush system, Scraping lanes and walkways for mature cows with an automatic scraper (or equivalent) four times per day and cleaning lanes and walkways for support stock (heifers) at least once per day);

3) Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;

4) Properly sloping corrals (minimum of 3% slope where the available space for each animal is 400 square feet or less and minimum of 1.5% where the available space for each animal is more than 400 square feet per animal) or managing corrals to maintain a dry surface;

5) Scraping pens every two weeks using pull-type scraper in the morning hours except when prevented by wet conditions.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Cow Housing - Area for Baby Calves (0-3 months)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1) Flushing or scraping to remove manure from the cow housing areas for the baby calves at least once per week; and 2) Feeding baby dairy calves in accordance with National Research Council (NRC) or other District-approved guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Calf Hutches (≥ 75% Control)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH3</td>
<td>1) Flushing or scraping to remove manure from the cow housing areas for the baby calves at least once per week; and 2) Feeding baby dairy calves in accordance with National Research Council (NRC) or other District-approved guidelines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.6*
Last Update: 12/18/2013

Liquid Manure Handling - Lagoon/Storage Pond

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Anaerobic treatment lagoon designed according to NRCS Guideline, and solids removal/separation system (mechanical separator(s) or settling basin(s)/weeping wall(s))</td>
<td>1) Aerobic treatment lagoon or mechanically aerated lagoon; 2) Covered lagoon digester vented to a control device with minimum 95% control</td>
<td></td>
</tr>
<tr>
<td>NH3</td>
<td>All animals fed in accordance with NRCS or other District-approved guidelines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Liquid Manure Handling - Liquid/Slurry Land Application

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Irrigation of crops using liquid/slurry manure from the secondary lagoon/holding/storage pond preceded by an uncovered anaerobic treatment lagoon designed to meet Natural Resources Conservation Service (NRCS) standards</td>
<td>1) Irrigation of crops using liquid manure from an aerobic treatment lagoon or mechanically aerated lagoon (95% VOC control efficiency)</td>
<td>2) Irrigation of crops using liquid manure from a holding/storage pond after being treated in a covered lagoon/digester (80% VOC control efficiency)</td>
</tr>
<tr>
<td>NH3</td>
<td>All animals fed in accordance with NRCS or other District-approved guidelines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.8*
Last Update: 12/18/2013

Solid Manure Handling - Storage/Separated Solids Piles

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH3</td>
<td>All animals fed in accordance with NRCS or other District-approved guidelines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.9*

Last Update: 12/18/2013

Solid Manure Handling - Land Application

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Rapid incorporation of solid manure into the soil after land application</td>
<td>1a) Land Application of Solid Manure Processed by Either an Open or Enclosed Negatively-Aerated Static Pile (ASP) Vented to a biofilter (or equivalent) ≥ 80% destruction efficiency With Rapid Incorporation of the Manure Into the Soil After Land Application;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1b) Land Application of Solid Manure Processed by In-Vessel/Enclosed Negatively-Aerated Static Piles vented to biofilter ≥ 80% destruction efficiency;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Land Application of Solid Manure Processed by Open Negatively-Aerated Static Piles vented to biofilter ≥ 80% destruction efficiency;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Land Application of Solid Manure Processed by an Open Negatively-Aerated Static Piles (ASP) (With Thick Layer of Bulking Agent or Equivalent) With Rapid Incorporation of the Manure Into the Soil After Land Application</td>
<td></td>
</tr>
<tr>
<td>NH3</td>
<td>Rapid incorporation of solid manure into the soil after land application, and all animals fed in accordance with NRCS or other District-approved guidelines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.10*
Last Update: 12/18/2013

Feed Storage and Handling - Silage Piles

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>District Rule 4570 Measures for Silage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.8.11*

Last Update: 12/18/2013

Feed Storage and Handling - Feed/TMR

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>District Rule 4570 Measures for Feed/TMR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Appendix G

BACT Analysis
I. Top-Down BACT Analysis for the Cow Housing

VOC: New Freestall Barns #3, 4, & 5, Existing Freestall Barn #1 (dry cow area), and Shade Barn #1

NH3: New Freestall Barns #3, 4, & 5, Existing Freestall Barn #1 (dry cow area), and Shade Barn #1

PM10: New Freestall Barns #3, 4, & 5, and Existing Freestall Barn #1 (dry cow area)

1. VOC Emissions

a. Step 1 - Identify all control technologies

The following options have been identified as possible controls for VOC emissions from cow housing freestall barns and shade barn using flush cleaning:

1) Feed and Manure Management Practices
 - Concrete feed lanes and walkways;
 - Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;
 - Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;
 - Properly sloping exercise pens/corrals (minimum slope of 3% where the available space for each animal is 400 square feet or less and 1.5% where the available space for each animal is more than 400 square feet) or managing exercise pens/corrals to maintain a dry surface;
 - Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions; and
 - Rule 4570 measures.

Description of Control Technologies

Concrete feed lanes and walkways

Dairy cows spend a large proportion of time on the feed lanes and walkways. A significant proportion of manure is consequently deposited in these areas. The concrete lanes and walkways are necessary for an effective flush system, which in turn is a key component of management practices used for the control of VOC and ammonia emissions (see below).

Increased flushing of feed lanes and walkways

Many dairy operations use a flush system to remove manure from the feed lanes and walkways. The flush system introduces a large volume of water at the head of the paved area, and the cascading water carries the manure downslope. The required volume of flush water varies with the size and slope of the area to be flushed.
In addition to cleaning the feed lanes and walkways, the flush system also serves as an emissions control method. Many of the VOCs emitted from fresh cow manure, such as alcohols (ethanol and methanol) and many Volatile Fatty Acids (VFAs), are highly soluble in water. Therefore, a large proportion of these compounds will dissolve in the flush water instead of being emitted directly from the housing areas. The flush water then carries the manure and the dissolved volatile compounds into an anaerobic treatment system where they are digested and converted into less polluting byproducts by microbial activity.

Feed lanes and walkways are typically flushed once or twice per day in the mature cow housing areas; and as infrequently as once a week in the support stock housing areas. Flushing the lanes four times per day for mature cows and once per day for support stock will increase the frequency with which manure is removed from the housing areas, which should result in a higher percentage of soluble volatile compounds being captured in the flush water, and therefore higher control efficiency. Although the control efficiency may actually be much higher, increasing the cleaning frequency of the lanes will be conservatively assumed to have a control efficiency of 10% for VOCs emitted from manure in cow housing areas, until better data becomes available.

Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines

Nutritional management of dairy feed is routinely practiced to improve milk production and herd health. The potential for VOC emissions can be reduced by reducing the quantity of undigested nutrients in the manure. Many of the VOCs emitted from Confined Animal Facilities, including dairies, originate from the decomposition of undigested protein in animal waste.\(^{11}\) This undigested protein also produces ammonia emissions. The level of microbial action in the manure corresponds to the level of organic nitrogen content in the manure; the lower the level of nitrogen the lower the level of microbial action and the lower the production of ammonia and VOCs.

A diet that is formulated to feed proper amounts of ruminantly degradable protein will result in improved nitrogen utilization by the animal and corresponding reduction in urea and organic nitrogen content of the manure, which will reduce the production of VOCs and ammonia. The latest National Research Council (NRC) guidelines for the selection of an optimal bovine diet should be followed to the maximum extent possible. The diet recommendations made in this publication seek to achieve the maximum uptake of protein by the animal and the minimum carryover of nutrients into the manure.

Based on very limited data (Klaunser, 1998, *J Prod Agric*), diet manipulation decreased nitrogen excretion by 34% while improving milk production. Up to 70% of excess nitrogen is lost off of the farm through volatilization, denitrification and leaching. Because of limited research, feeding cows in accordance with National Research Council (NRC) or other District-approved guidelines will be conservatively assumed to have a control efficiency of only 5-10% for both enteric\(^{12}\) and manure VOC emissions.

\(^{12}\) Enteric emissions are those emitted directly from the animal (primarily via belching and flatulence), due to feed digestion processes.
Properly sloping exercise pens/corral:

Accumulation of water on exercise pen/corral surfaces, due to rain or on-farm activities, could result in anaerobic conditions and thereby increase emissions. Keeping exercise pen/corral surfaces dry and properly aerated, on the other hand, promotes the aerobic conditions that reduce emissions. Proper slope design is therefore required to ensure that drainage of any water deposited on the exercise pen surfaces will be as rapid as possible.

Scrapping of exercise pens/corral with a pull-type scraper

Frequent scrubbing of the corrals will reduce the amount of manure on the pen/corral surfaces, which will reduce VOC and ammonia emissions resulting from decomposition of this manure. This practice will also provide a uniform surface that promotes aerobic conditions on the pen/corral surface, which will reduce gaseous pollutants from this area.

b. Step 2 - Eliminate technologically infeasible options

All the options identified in step 1 are technologically feasible.

c. Step 3 - Rank remaining options by control effectiveness

All the options identified in step 1 are assumed to each have the same control effectiveness:

1) Feed and Manure Management Practices
 - Concrete feed lanes and walkways;
 - Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;
 - Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;
 - Properly sloping exercise pens/corral (minimum slope of 3% where the available space for each animal is 400 square feet or less and 1.5% where the available space for each animal is more than 400 square feet) or managing exercise pens/corral to maintain a dry surface;
 - Scrapping exercise pens/corral every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions; and
 - Rule 4570 measures.

D. Step 4 - Cost Effectiveness Analysis

Feed and Manure Management Practices
 - Concrete feed lanes and walkways;
 - Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;
• Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;
• Properly sloping exercise pens/corralrs (minimum slope of 3% where the available space for each animal is 400 square feet or less and 1.5% where the available space for each animal is more than 400 square feet) or managing exercise pens/corralrs to maintain a dry surface;
• Scraping exercise pens/corralrs every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions; and
• Rule 4570 measures.

The applicant has proposed these options. In addition, these options are achieved in practice. A cost effectiveness analysis is therefore not required.

e. Step 5 - Select BACT

The applicant has proposed the following feed and manure management practices:
• Concrete feed lanes and walkways;
• Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;
• Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;
• Properly sloping exercise pens/corralrs (minimum slope of 3% where the available space for each animal is 400 square feet or less and 1.5% where the available space for each animal is more than 400 square feet) or managing exercise pens/corralrs to maintain a dry surface;
• Scraping exercise pens/corralrs every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions; and
• Rule 4570 measures.

The proposal satisfies BACT for this category.

2. Ammonia (NH₃) Emissions

a. Step 1 - Identify all control technologies

The following options have been identified as possible controls for ammonia emissions from cow housing freestall barns and shade barn using flush cleaning:

1) Feed and Manure Management Practices
• Concrete feed lanes and walkways;
• Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;
• Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;

• Properly sloping exercise pens/corrals (minimum slope of 3% where the available space for each animal is 400 square feet or less and 1.5% where the available space for each animal is more than 400 square feet) or managing exercise pens/corrals to maintain a dry surface; and

• Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions

Description of Control Technologies

Concrete feed lanes and walkways

Dairy cows spend a large proportion of time on the feed lanes and walkways. A significant proportion of manure is consequently deposited in these areas. The concrete lanes and walkways are necessary for an effective flush system, which in turn is a key component of management practices used for the control of VOC and ammonia emissions (see below).

Increased Flushing for feed lanes and walkways

Many dairy operations use a flush system to remove manure from the feed lanes and walkways. The flush system introduces a large volume of water at the head of the paved area, and the cascading water carries the manure downslope. The required volume of flush water varies with the size and slope of the area to be flushed.

In addition to cleaning the feed lanes and walkways, the flush system also serves as an emissions control method. Ammonia is highly soluble in water. Therefore, a large proportion of ammonia in manure will dissolve in the flush water instead of being emitted directly from the housing areas. The flush water then carries the manure and the dissolved ammonia into the liquid manure storage system, where ammonia can be sequestered until it is applied to cropland as a nitrogen fertilizer.

Feed lanes and walkways are typically flushed once or twice per day in the mature cow housing areas; and as infrequently as once a week in the support stock housing areas. Flushing the lanes four times per day for mature cows and once per day for support stock will increase the frequency with which manure is removed from the housing areas, which should result in a higher percentage of ammonia being captured in the flush water, and therefore higher control efficiency.

Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines

Nutritional management of dairy feed is routinely practiced to improve milk production and herd health. The potential for ammonia emissions can be reduced by reducing the amount of undigested nitrogen compounds in the manure. The level of microbial action in the manure corresponds to the level of organic nitrogen present, hence the lower the level of nitrogen the lower the level of microbial action and the lower the production of ammonia.
A diet that is formulated to feed proper amounts of ruminantly degradable protein will result in improved nitrogen utilization by the animal and corresponding reduction in urea and organic nitrogen content of the manure, which will reduce the production of VOC and ammonia. The latest National Research Council (NRC) guidelines for the selection of an optimal bovine diet should be followed to the maximum extent possible. The diet recommendations made in this publication seek to achieve the maximum uptake of protein by the animal and the minimum carryover of nitrogen into the manure.

Properly sloping exercise pens/corrals

Accumulation of water on exercise pen/corral surfaces, due to rain or on-farm activities, could result in anaerobic conditions and thereby increase emissions. Keeping exercise pen/corral surfaces dry and properly aerated, on the other hand, promotes the aerobic conditions that reduce emissions. Proper slope design is therefore required to ensure that drainage of any water deposited on the exercise pen surfaces will be as rapid as possible.

b. Step 2 - Eliminate technologically infeasible options

All the options identified in step 1 are technologically feasible.

c. Step 3 - Rank remaining options by control effectiveness

All the options identified in step 1 are assumed to have the same control effectiveness:

1) Feed and Manure Management Practices
 - Concrete feed lanes and walkways;
 - Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;
 - Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;
 - Properly sloping exercise pens/corrals (minimum slope of 3% where the available space for each animal is 400 square feet or less and 1.5% where the available space for each animal is more than 400 square feet) or managing exercise pens/corrals to maintain a dry surface;
 - Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions; and

d. Step 4 - Cost Effectiveness Analysis

Feed and Manure Management Practices

- Concrete feed lanes and walkways;
- Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;
• Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;

• Properly sloping exercise pens/corrals (minimum slope of 3% where the available space for each animal is 400 square feet or less and 1.5% where the available space for each animal is more than 400 square feet) or managing exercise pens/corrals to maintain a dry surface; and

• Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions.

The applicant has proposed these options. In addition, these options are achieved in practice. A cost effectiveness analysis is therefore not required.

e. Step 5 - Select BACT

The applicant has proposed the following feed and manure management practices:

• Concrete feed lanes and walkways;

• Flushing feed lanes and walkways for mature cows (milk and dry cows) at least four times per day and flushing feed lanes and walkways for support stock at least once per day;

• Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines;

• Properly sloping exercise pens/corrals (minimum slope of 3% where the available space for each animal is 400 square feet or less and 1.5% where the available space for each animal is more than 400 square feet) or managing exercise pens/corrals to maintain a dry surface; and

• Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions.

The proposal satisfies BACT for this category.

3. **PM10 Emissions**

a. Step 1 - Identify all control technologies

The following options have been identified as possible controls for ammonia emissions from cow housing freestall barns using flush cleaning:

1) Manure Management Practices

• Concrete feed lanes and walkways; and

• Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions
Description of Control Technologies

See detailed discussion of these control under VOC and NH₃ section above.

b. Step 2 - Eliminate technologically infeasible options

All the options identified in step 1 are technologically feasible.

c. Step 3 - Rank remaining options by control effectiveness

All the options identified in step 1 are assumed to have the same control effectiveness:

1) Manure Management Practices
 • Concrete feed lanes and walkways; and
 • Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions

d. Step 4 - Cost Effectiveness Analysis

Manure Management Practices
 • Concrete feed lanes and walkways; and
 • Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions.

The applicant has proposed these options. In addition, these options are achieved in practice. A cost effectiveness analysis is therefore not required.

e. Step 5 - Select BACT

The applicant has proposed the following manure management practices:

 • Concrete feed lanes and walkways; and
 • Scraping exercise pens/corrals every two weeks using a pull-type scraper in the morning hours except when prevented by wet conditions.

The proposal satisfies BACT for this category.

II. Top-Down BACT Analysis for the Baby Calves Housing

 VOC: Baby Calves Housing
 NH₃: Baby Calves Housing

1. VOC Emissions

a. Step 1 - Identify all control technologies

The following options have been identified as possible controls for VOC emissions from baby calves housing:
1) Feed and Manure Management Practices
 - Flushing or scraping to remove manure from the cow housing area from the baby calves at least once per week; and
 - Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines

b. Step 2 - Eliminate technologically infeasible options

All the options identified in step 1 are technologically feasible.

c. Step 3 - Rank remaining options by control effectiveness

All the options identified in step 1 are assumed to each have the same control effectiveness:

1) Feed and Manure Management Practices
 - Flushing or scraping to remove manure from the cow housing area from the baby calves at least once per week; and
 - Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines

d. Step 4 - Cost Effectiveness Analysis

Feed and Manure Management Practices

 - Flushing or scraping to remove manure from the cow housing area from the baby calves at least once per week; and
 - Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines

The applicant has proposed these options. In addition, these options are achieved in practice. A cost effectiveness analysis is therefore not required.

e. Step 5 - Select BACT

The applicant has proposed the following feed and manure management practices:

 - Flushing or scraping to remove manure from the cow housing area from the baby calves at least once per week; and
 - Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines

The proposal satisfies BACT for this category.
2. Ammonia (NH₃) Emissions

a. Step 1 - Identify all control technologies

The following options have been identified as possible controls for VOC emissions from baby calves housing:

2) Feed and Manure Management Practices
 - Flushing or scraping to remove manure from the cow housing area from the baby calves at least once per week; and
 - Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines

b. Step 2 - Eliminate technologically infeasible options

All the options identified in step 1 are technologically feasible.

c. Step 3 - Rank remaining options by control effectiveness

All the options identified in step 1 are assumed to each have the same control effectiveness:

2) Feed and Manure Management Practices
 - Flushing or scraping to remove manure from the cow housing area from the baby calves at least once per week; and
 - Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines

d. Step 4 - Cost Effectiveness Analysis

Feed and Manure Management Practices

- Flushing or scraping to remove manure from the cow housing area from the baby calves at least once per week; and
- Feeding all animals in accordance with National Research Council (NRC) or other District-approved guidelines

The applicant has proposed these options. In addition, these options are achieved in practice. A cost effectiveness analysis is therefore not required.

e. Step 5 - Select BACT

The applicant has proposed the following feed and manure management practices:

- Flushing or scraping to remove manure from the cow housing area from the baby calves at least once per week; and
- Feeding all animals in accordance with National Research Council (NRC) or other
District-approved guidelines

The proposal satisfies BACT for this category.

III. Top-Down BACT Analysis for the Liquid Manure Handling System - Lagoon & Storage Pond

1. VOC Emissions

 a. Step 1 - Identify all control technologies

 The following options were identified as possible controls for VOC emissions from the lagoon & storage pond:

 1) Aerobic treatment lagoon or mechanically aerated lagoon

 2) Covered lagoon digester vented to a control device with minimum 95% control

 3) Anaerobic treatment lagoon designed according to NRCS guidelines, and solids removal/separation system (mechanical separator(s) or settling basin(s)/weeping wall(s))

Description of Control Technologies

1) Aerobic Treatment Lagoon or Mechanically Aerated Lagoon

An aerobic lagoon is a waste treatment lagoon that is designed to facilitate the decomposition of wastewater by microbes in the presence of oxygen (O₂). The process of aerobic decomposition results in the conversion of organic compounds in the wastewatert into carbon dioxide (CO₂), and (H₂O), nitrates, sulfates, and inert biomass (sludge). This process is sometimes referred to as nitrification (especially when discussing NH₃ transformation). Complete aerobic decomposition (100% aeration) removes nearly all malodors and also virtually eliminates VOC, H₂S, and NH₃ emissions.

In completely aerated lagoons, sufficient oxygen must be provided to sustain the aerobic microorganisms. NRCS Practice Standard Code 359 specifies that naturally aerobic lagoons have a minimum surface area determined by regional climate and daily Biological Oxygen Demand (BOD₅) and requires naturally aerobic lagoons to have a maximum depth no greater than five feet. For mechanically aerated lagoons, NRCS Practice Standard Code 359 specifies that the aeration equipment shall provide a minimum of 1 pound of oxygen for each pound of daily BOD₅ loading. The mechanical aerators that provide the required oxygen may float on the lagoon surface or be submerged in the lagoon. Aeration can also be performed by injection of tiny air bubbles into the lagoon water, mixing of the lagoon water, or spraying of the water into the air. According to Dr. Ruihong Zhang, a researcher at the University of California, Davis, at least 95% VOC control can be achieved if the dissolved oxygen (DO) concentration of the liquid manure is 2.0 mg/L or more. However, the DO concentrations achieved in mechanically aerated lagoons treating manure are typically much less than this and the control efficiencies will therefore be lower.
2) Covered Lagoon Digester

Covered treatment lagoons are one type of anaerobic digester. An anaerobic digester is an enclosed basin or tank that is designed to facilitate the decomposition of wastewater by microbes in the absence of oxygen. The process of anaerobic decomposition results in the preferential conversion of organic compounds in the wastewater into methane (CH₄), carbon dioxide (CO₂), and water rather than intermediate metabolites (VOC). The gas generated by this process is known as biogas, waste gas or digester gas. In addition to methane and carbon dioxide, biogas also contains small amounts of Nitrogen (N₂), Oxygen (O₂), Hydrogen Sulfide (H₂S), and Ammonia (NH₃). Biogas will also include trace amounts of various Volatile Organic Compounds (VOCs) that remain from incomplete digestion of the volatile solids in the incoming wastewater. The small amounts of undigested solids that remain after digestion are removed from the digester as sludge. Because biogas is mostly composed of methane, the main component of natural gas, the gas produced in the digester can be cleaned to remove H₂S and other impurities and used as fuel. The captured biogas can be combusted in a flare or may be sent to a boiler or internal combustion engine, where the gas can be used to generate useful heat or electrical energy.

As stated above, the gas generated in the covered lagoon anaerobic digester can be captured and then sent to a suitable combustion device. During combustion, gaseous hydrocarbons are oxidized to form CO₂ and water. The VOC emitted from the liquid manure in the covered lagoon can be reduced by 95% with the use of an appropriate combustion device. Therefore, installation of the digester will lower the total VOC emitted from the liquid manure handling system. Although the control efficiency of the gas captured from the primary lagoon is expected to be 95% or more, the overall control efficiency is expected to be less, since some VOC will also be emitted from the storage pond and as fugitive emissions. For this analysis, the overall control efficiency is assumed to be 80% of the emissions that would have been emitted from the lagoon system.

3) Anaerobic Treatment Lagoon and Solids Removal/Separation System

An anaerobic treatment lagoon is a waste treatment lagoon that is designed to facilitate the decomposition of manure by microbes in the absence of oxygen. The process of anaerobic decomposition results in the preferential conversion of organic compounds in the wastewater into methane (CH₄), carbon dioxide (CO₂), and water rather than intermediate metabolites (VOC). The Natural Resources Conservation Service (NRCS) Field Office Technical Guide No. 359, Waste Treatment Lagoon, for California specifies the following criteria for the design of anaerobic treatment lagoons:

- Required volume - the minimum design volume should account for all potential sludge, treatment, precipitation, and runoff volumes.
- Treatment period - retention time of the material in the lagoon shall be the time required to provide environmentally safe utilization of waste. The minimum hydraulic retention time for a covered lagoon in the San Joaquin Valley is about 38 days.
• Waste loading shall be based on the maximum daily loading considering all waste sources that will be treated by the lagoon. The loading rate is typically based on volatile solids (VS) loading per unit of volume. The suggested loading rate for the San Joaquin Valley is 6.5-11 lb-VS/1000 ft³/day depending on separation and type of system.

• The operating depth of the lagoon as per Guide No. 359, Waste Treatment Lagoon. Maximizing the depth of the lagoon minimizes the surface area, which in turn minimizes the cover size and cost. Increasing the lagoon depth has the following advantages:
 o Minimizes surface area in contact with the atmosphere, thus reducing surface available to convection, evaporation
 o Smaller surface areas provide a more favorable and stable environment for methane bacteria
 o Better mixing of lagoon due to rising gas bubbles
 o Requires less land
 o More efficient for mechanical mixing

The lagoon design shall also consider location, soils and foundation, erosion, and depth to groundwater as required by the regional water control board.

The NRCS guideline suggests that this system consist of two cells, a treatment lagoon (primary lagoon) and a storage pond (secondary lagoon). The first stage of the lagoon system is the biological treatment stage and is designed with a constant liquid level to stabilize the anaerobic digestion. The effluent from the first stage overflows into a second lagoon designed for liquid storage capacity. Effluent from the second lagoon/storage pond is used in the flush lanes and for the irrigation of cropland. The secondary (overflow) lagoon acts as the storage pond, which can be emptied when necessary. However, a single lagoon can also be considered an anaerobic lagoon as long as all the criteria are met and that the liquid manure is not drawn less than 6 feet at any time.

A properly designed anaerobic treatment lagoon will reduce the volatile solids (VS) by at least 50%. This will reduce the biological oxygen demand (BOD) and increase the efficiency at which organic compounds are converted into methane and carbon dioxide rather than VOC. Although the VS reduction is expected to be at least 50%, a conservative control efficiency of 40% will be assumed, until better data becomes available.

Solids Removal/Separation

The liquid manure handling system at Blue Sky Dairy includes mechanical separator(s) with processing pit and settling basin for solids separation. Solids separation prevents excessive loading of volatile solids in lagoon treatment systems. Excessive loading of volatile solids in lagoons inhibits the activity of the methanogenic bacteria and leads to increased rates of volatile solids production. When the activity of the methanogenic bacteria is not inhibited, most of the VOCs are metabolized to simpler compounds, and the potential for VOC emissions is reduced.

G-13
b. Step 2 - Eliminate technologically infeasible options

There are no technologically infeasible options to eliminate from step 1.

c. Step 3 - Rank remaining options by control effectiveness

The remaining options are ranked below according to their control effectiveness:

1) Aerobic treatment lagoon or mechanically aerated lagoon (95% control efficiency)
2) Covered lagoon digester vented to a control device (80% control efficiency)
3) Anaerobic treatment lagoon designed to meet Natural Resources Conservation Service (NRCS) standards (40% control efficiency)
4) Solids Removal/Separation

d. Step 4 - Cost Effectiveness Analysis

Aerobic Treatment Lagoon or Mechanically Aerated Lagoon

Aerobic Treatment Lagoon

NRCS Practice Standard Code 359 requires that naturally aerobic lagoons be designed to have a minimum treatment surface area as determined on the basis of daily BOD₅ loading per unit of lagoon surface. The standard specifies that the maximum loading rate of naturally aerobic lagoons shall not exceed the loading rate indicated by the NRCS Agricultural Waste Management Field Handbook (AWMFH) or the maximum loading rate according to state regulatory requirements, whichever is more stringent. According to Figure 10-30 (August 2009) of the latest version of the AWMFH, the maximum aerobic lagoon loading rate for the San Joaquin Valley is 45 - 55 lb-BOD₅/acre-day. According to Table 4-5 (March 2008) of the NRCS AWMFH, the total daily manure produced by a milk cow will have 2.9 lb-BOD₅/day. Assuming that at least 80% of the manure will be flushed to the lagoon system, the minimum lagoon surface area required for a naturally aerobic lagoon treating manure from 2,750 milk cows in the San Joaquin Valley can be calculated as follows:

\[
\text{BOD}_5 \text{ loading (lb/day) } = 2,750 \text{ milk cows } \times 2.9 \text{ lb-BOD}_5/\text{cow-day} \times 0.80 \\
= 6,380 \text{ lb-BOD}_5/\text{day} \\

\text{Minimum Surface Area (acres) } = 6,380 \text{ lb-BOD}_5/\text{day} \div 55 \text{ lb-BOD}_5/\text{acre-day} \\
= 116 \text{ acres}
\]

As shown above, the minimum surface area required for a naturally aerobic lagoon to treat manure from the proposed number of milk cows is 116 acres. This does not include the additional surface area that would be required to treat manure from support stock. Based on the space requirements alone it is clear that this option cannot reasonably be required and no further analysis is needed.
Mechanically Aerated Lagoon

As discussed above, the very large space requirements for naturally aerobic lagoons cause this option to be infeasible for most confined animal facilities. Mechanically aerating a lagoon can achieve some of the benefits of a naturally aerobic lagoon without the large space requirements. However, the costs of energy for complete aeration have also caused this option to be infeasible. The amount of energy required for aeration is based on the amount of volatile solids that must be treated; thus, this cost will be directly proportional to the number of cows. The following analysis will determine the cost of emission reductions that can be achieved from a mechanically aerated lagoon treating manure from the proposed milk cow herd.

Biological Oxygen Demand (BOD$_5$)

In order to effectively calculate the cost of this control option, the energy requirement for complete aeration must be determined. It should be noted that approximately 1.5 to 2.5 pounds of oxygen is required to digest 1 pound of Biological Oxygen Demand (BOD$_5$) with additional oxygen required for conversion of ammonia to nitrate (nitrification). It is generally accepted that at least twice the BOD should be provided for complete aeration. According to Dr. Ruihong Zhang of the University of California, Davis, 2.4 lb (1.1 kg) of oxygen per cow must be provided each day for removal of BOD and an additional 3 lb (1.4 kg) per cow for oxidation of 70% of the nitrogen.

The proposed rule specifies that an aerobic lagoon be designed and operated in accordance with NRCS Practice Standard Code 359. NRCS Practice Standard Code 359 requires that mechanically aerated lagoons use aeration equipment that provides a minimum of one pound of oxygen for each pound of daily BOD$_5$ loading. As discussed above, the total daily manure produced by a milk cow will have a BOD$_5$ of 2.9 lb/day and a lagoon handling flushed manure from 2,750 milk cows will have a loading rate of approximately 6,380 lb-BOD$_5$/day (2,894 kg-BOD$_5$/day).

Energy Requirement

Based on the data gathered in a UC Davis study on aerator performance for wastewater lagoons, aeration efficiencies for mechanical aerators ranged from 0.10 to 0.68 kg of oxygen provided per kW-hr of energy utilized. The most efficient aerator tested that had been installed in dairy lagoons had an aeration efficiency of 0.49 kg-O$_2$/kW-hr. These efficiency tests were performed in clean water and lower aeration efficiencies are expected in liquid manure because of the significant amount of solids that it contains. The yearly energy requirement for a mechanically aerated lagoon system treating flushed manure from 2,750 milk cows is calculated as follows:

\[
2,894 \text{ kg-BOD}_5/\text{day} \div (0.68 \text{ kg-O}_2/\text{kW-hr}) \times (365 \text{ day/year}) = 1,553,397 \text{ kW-hr/year}
\]
Cost of Electricity

The cost of electricity will be based upon the average price for industrial electricity in California as of April 2018, as taken from the Energy Information Administration (EIA) website:¹³

Average cost of electricity = $0.1144/kW-hr

The electricity cost for complete aeration is calculated as follows:

1,553,397 kW-hr/year x $0.1144/kW-hr = $ 177,709/year

VOC Emissions Reductions

It will be conservatively assumed that a mechanically aerated lagoon providing 1 lb of oxygen for every 1 lb of BOD₅ loading will control 90% of the VOC emissions from the lagoon/storage pond. However, as noted above, it is generally accepted that the oxygen provided should be twice the BOD₅ loading rate for complete aeration. Thus, the actual control from providing 1 lb of oxygen for every 1 lb of BOD₅ loading is probably in the 50% range.

The annual VOC emissions reductions are calculated as:

\[
\text{[Number of cows] x [Lagoon/Storage Pond VOC EF (lb/cow-year)] x [Complete Aeration Control Efficiency for Lagoon/Storage Pond] = 2,750 cows x 1.3 lb-VOC/cow-yr x 90\% control = 3,218 lb-VOC/yr}
\]

Cost of Reductions

\[
\text{Cost of reductions = ($177,709/year)/[(3,218 lb-VOC/year)(1 ton/2000 lb)] = $110,447/ton}
\]

As shown above, based on the cost of electricity alone, the cost of the VOC reductions for this control option is greater than the $17,500/ton cost effectiveness threshold specified by the District’s BACT policy. This control option is therefore not cost effective and will not be required.

Covered Lagoon Digester

Capital Cost for Installation

The capital cost estimates for installation of a covered lagoon digester are based on information from the United States EPA AgSTAR publication “Anaerobic Digestion Capital Costs for Dairy Farms” (May 2010)¹⁴ and the California Energy Commission (CEC) Public Interest Energy Research (PIER) Program Dairy Methane Digester System Program

¹³ [Link: http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_b]

Evaluation Report (Feb 2009). The formula in the AgSTAR publication results in a capital cost of $1,032 per cow. This estimate excludes costs of solids separation after digestion, hydrogen sulfide removal, and utility charges including line upgrades and interconnection costs and fees. Based on information from installations in California, the CEC PIER Dairy Methane Digester Program Evaluation Report gives an average cost of $585 per cow for installation of covered lagoon anaerobic digesters (see Table 9 - Total Project Costs and Cost per Cow and per kW).

For the purposes of this analysis, the more conservative capital cost of $585/cow will be used. Thus, the installation capital cost for the proposed herd of 2,750 milk cows is at least $1,608,750 ($585/cow x 2,750 cows).

Pursuant to the District’s BACT policy, the equivalent annual cost will be calculated using the capital recovery equation, as shown below:

\[A = P \frac{i(1+i)^n}{(1+i)^n - 1} \]

Where:

- **A** = Equivalent annual capital cost of the control equipment
- **P** = Present value of the control equipment, including installation cost
- **i** = Interest rate (assumed to be 10%)
- **n** = Equipment life (assumed to be 10 years)

\[A = \frac{1,608,750 \times 0.1(1.1)^{10}}{(1.1)^{10} - 1} \]
\[= 261,816/year \]

Potential Production of Electricity

It may be possible to offset some of the installation costs of a covered lagoon anaerobic digester with revenue from generation of electricity. Based on the information given in the CEC PIER Dairy Methane Digester Program Evaluation Report, Table 7 – Actual Generation per Cow Comparisons, California dairies that used a covered lagoon digester to produce electricity generated between 429.1 and 1,031.8 kW-hr/yr per lactating cow with an overall per facility average generation rate of 670.3 kW-hr/yr per lactating cow. This average annual generation rate is actually higher than all the facilities included in the average except one that had a very high generation rate. In addition, this average may overestimate the per-cow generation potential because the contributions of support stock to the digesters were not

accounted for. However, for more conservative calculations, this average will be used to calculate the potential annual savings in electricity costs.

The potential quantity of electricity produced is calculated as follows:

\[
\text{Electrical Produced} = 670.3 \text{ kW-hr/(milk cow-yr)} \times 2,750 \text{ milk cows} \\
= 1,843,325 \text{ kW-hr/yr}
\]

Potential Cost Savings from Production of Electricity

The value of electricity generated will be calculated using the previously cited EIA rate of $0.1144/\text{kW-hr}$.

\[
\text{Potential Cost Savings} = 1,843,325 \text{ kW-hr/yr} \times 0.1144/\text{kW-hr} \\
= 210,876/\text{yr}
\]

The annualized capital cost less the potential savings from electricity produced is:

\[
= 261,816 - 210,876 \\
= 50,940
\]

VOC Emissions Reductions

The annual VOC emissions reductions are calculated as:

\[
= \text{[Number of cows] x [Lagoon/Storage Pond VOC EF (lb/cow-year)] x [Covered Lagoon Digester Efficiency for Lagoon/Storage Pond]} \\
= 2,750 \text{ cows} \times 1.3 \text{ lb-VOC/cow-yr} \times 80\% \text{ control} \\
= 2,860 \text{ lb-VOC/yr}
\]

Cost of Reductions

Cost of reductions \(= (50,940/\text{year})/[(2,860 \text{ lb-VOC/year})(1 \text{ ton/2000 lb})] \)
\[
= 35,622/\text{ton}
\]

As shown above, based the on the installation cost alone, after offsetting this cost by potential savings from electricity produced, the cost of the VOC reductions for this control option is greater than the $17,500/\text{ton} cost effectiveness threshold specified by the District’s BACT policy. This control option is therefore not cost effective and will not be required.

Anaerobic Treatment Lagoon and Solids Removal/Separation System

The applicant has proposed these options. In addition, these options are achieved in practice. Cost effectiveness analyses are therefore not required.
e. Step 5 - Select BACT

The applicant has proposed an anaerobic treatment system designed according to NRCS guidelines, and a solids removal/separation system (mechanical separator(s)). The proposal satisfies BACT for this category.

2. NH₃ Emissions

a. Step 1 - Identify all control technologies

The following option was identified as a possible control for NH₃ emissions from the lagoons & storage ponds:

1) All animals fed in accordance with NRC or other District-approved guidelines

Description of Control Technology

1) All animals fed in accordance with NRC or other District-approved guidelines

Nutritional management of dairy feed is routinely practiced to improve milk production and herd health. The potential for ammonia emissions can be reduced by reducing the amount of undigested nitrogen compounds in the manure. The level of microbial action in the manure corresponds to the level of organic nitrogen content in the manure; the lower the level of nitrogen the lower the level of microbial action and the lower the production of ammonia and VOCs.

A diet that is formulated to feed proper amounts of ruminantly degradable protein will result in improved nitrogen utilization by the animal and corresponding reduction in urea and organic nitrogen content of the manure, which will reduce the production of VOCs and ammonia. The latest National Research Council (NRC) guidelines for the selection of an optimal bovine diet should be followed to the maximum extent possible. The diet recommendations made in this publication seek to achieve the maximum uptake of protein by the animal and the minimum carryover of nitrogen into the manure, which will reduce ammonia emissions from the liquid manure in the lagoon and storage pond.

b. Step 2 - Eliminate technologically infeasible options

The option listed in Step 1 above is technologically feasible.

c. Step 3 - Rank remaining options by control effectiveness

The remaining option is listed below:

1) All animals fed in accordance with NRC or other District-approved guidelines

d. Step 4 - Cost Effectiveness Analysis

The applicant has proposed this option. In addition, this option is achieved in practice. A cost effectiveness analysis is therefore not required.
e. Step 5 - Select BACT

The applicant has proposed to feed all animals in accordance with NRC or other District-approved guidelines. The proposal satisfies BACT for this category.

IV. Top-Down BACT Analysis for the Liquid Manure Handling System – Liquid Manure Land Application

1. VOC Emissions

a. Step 1 - Identify all control technologies

The following options were identified as possible controls for VOC emissions from land application of manure:

1) Irrigation of crops using liquid manure from an aerobic treatment lagoon or mechanically aerated lagoon

2) Irrigation of crops using liquid manure from a holding/storage pond after being treated in a covered lagoon/digester

3) Irrigation of crops using liquid/slurry manure from the secondary lagoon/holding/storage pond preceded by an uncovered anaerobic treatment lagoon designed to meet Natural Resources Conservation Service (NRCS) standards

Description of Control Technologies

1) **Irrigation of crops using liquid/slurry manure from an aerobic treatment lagoon or mechanically aerated lagoon**

An aerobic lagoon is a waste treatment lagoon that is designed to facilitate the decomposition of wastewater by microbes in the presence of oxygen (O_2). The process of aerobic decomposition results in the conversion of organic compounds in the wastewater into carbon dioxide (CO_2), and (H_2O), nitrates, sulfates, and inert biomass (sludge). This process is sometimes referred to as nitrification (especially when discussing NH$_3$ transformation). Complete aerobic decomposition (100% aeration) removes nearly all malodors and also virtually eliminates VOC, H$_2$S, and NH$_3$ emissions.

In completely aerated lagoons, sufficient oxygen must be provided to sustain the aerobic microorganisms. NRCS Practice Standard Code 359 specifies that naturally aerobic lagoons have a minimum surface area determined by regional climate and daily Biological Oxygen Demand (BOD$_5$) and requires naturally aerobic lagoons to have a maximum depth no greater than five feet. For mechanically aerated lagoons, NRCS Practice Standard Code 359 specifies that the aeration equipment shall provide a minimum of 1 pound of oxygen for each pound of daily BOD$_5$ loading. The mechanical aerators that provide the required oxygen may float on the lagoon surface or be submerged in the lagoon. Aeration can also be performed by injection of tiny air bubbles into the lagoon water, mixing of the lagoon water, or spraying of the water into the air. According to Dr.
Ruihong Zhang, a researcher at the University of California, Davis, at least 95% VOC control can be achieved if the dissolved oxygen (DO) concentration of the liquid manure is 2.0 mg/L or more. However, the DO concentrations achieved in mechanically aerated lagoons treating manure are typically much less than this and the control efficiencies will therefore be lower.

2) Irrigation of crops using liquid/slurry manure from a holding/storage pond after being treated in a covered lagoon/digester

This practice would only allow the irrigation of liquid manure to cropland from the secondary lagoon after proper treatment has taken place in a covered lagoon/anaerobic digester. Covered treatment lagoons are one type of anaerobic digester. An anaerobic digester is an enclosed basin or tank that is designed to facilitate the decomposition of wastewater by microbes in the absence of oxygen. The process of anaerobic decomposition results in the preferential conversion of organic compounds in the wastewater into methane (CH₄), carbon dioxide (CO₂), and water rather than intermediate metabolites (VOC). The gas generated by this process is known as biogas, waste gas or digester gas. In addition to methane and carbon dioxide, biogas also contains small amounts of Nitrogen (N₂), Oxygen (O₂), Hydrogen Sulfide (H₂S), and Ammonia (NH₃). Biogas will also include trace amounts of various VOC that remain from incomplete digestion of the volatile solids in the incoming wastewater. The small amounts of undigested solids are removed from the digester as sludge.

Assumptions:

- 80% of the Volatile Solids (VS) can be removed from the covered anaerobic digestion process.
- 20% of the remaining VS will be assumed to be in the manure during land application. This will be considered worst-case because further digestion of the VS is likely to occur in the secondary lagoon.
- As a worst-case scenario, it will be assumed that all remaining VS will be emitted as VOC during land application.

Since 80% of the VS is removed or digested in the covered lagoon and the remaining VS have been assumed to be emitted as VOC, a control efficiency of 80% can be used for land application of liquid manure from a holding/storage pond after treatment in a covered lagoon.

3) Irrigation of crops using liquid/slurry manure from the secondary lagoon/holding/storage pond where preceded by an uncovered anaerobic treatment lagoon designed to meet Natural Resources Conservation Service (NRCS) standards

This practice would only allow the irrigation of liquid manure to cropland from the secondary lagoon after going through a treatment phase in an anaerobic treatment lagoon, or the primary lagoon.
An anaerobic treatment lagoon is a waste treatment lagoon that is designed to facilitate the decomposition of manure by microbes in the absence of oxygen. The process of anaerobic decomposition results in the preferential conversion of organic compounds in the wastewater into methane (CH₄), carbon dioxide (CO₂), and water rather than intermediate metabolites (VOC).

The NRCS Field Office Technical Guide No. 359, *Waste Treatment Lagoon*, for California specifies the following criteria for anaerobic treatment lagoons:

- Required volume - the minimum design volume should account for all potential sludge, treatment, precipitation, and runoff volumes.
- Treatment period - retention time of the material in the lagoon shall be the time required to provide environmentally safe utilization of waste. The minimum hydraulic retention time for a covered lagoon in the San Joaquin Valley is about 38 days.
- Waste loading shall be based on the maximum daily loading considering all waste sources that will be treated by the lagoon. The loading rate is typically based on volatile solids (VS) loading per unit of volume. The suggested loading rate for the San Joaquin Valley is 6.5-11 lb-VS/1000 ft³/day depending on separation and type of system.
- The operating depth of the lagoon as per Guide No. 359, *Waste Treatment Lagoon*. Maximizing the depth of the lagoon minimizes the surface area, which in turn minimizes the cover size and cost. Increasing the lagoon depth has the following advantages:
 - Minimizes surface area in contact with the atmosphere, thus reducing surface available to convection, evaporation
 - Smaller surface areas provide a more favorable and stable environment for methane bacteria
 - Better mixing of lagoon due to rising gas bubbles
 - Requires less land
 - More efficient for mechanical mixing

The lagoon design shall also consider location, soils and foundation, erosion, and depth to groundwater as required by the regional water control board.

The NRCS guideline suggests that this system consist of two cells, a treatment lagoon (primary lagoon) and a storage pond (secondary lagoon). The first stage of the lagoon system is the biological treatment stage and is designed with a constant liquid level to stabilize the anaerobic digestion. The effluent from the first stage overflows into a second lagoon designed for liquid storage capacity. Effluent from the second lagoon/storage pond
is used in the flush lanes and for the irrigation of cropland. The secondary (overflow) lagoon acts as the storage pond, which can be emptied when necessary.

A properly designed anaerobic treatment lagoon will reduce the volatile solids (VS) by at least 50%. This will reduce the biological oxygen demand (BOD) and increase the efficiency at which organic compounds are converted into methane and carbon dioxide rather than VOC. Since 50% of the VS in the liquid manure will have been removed or digested in the lagoon, there will be less VS remaining in the effluent to decompose into VOC. Although, the VS reduction will be at least 50%, a conservative control efficiency of 40% will be applied to irrigation from a storage pond after an anaerobic treatment lagoon.

b. Step 2 - Eliminate technologically infeasible options

There are no technologically infeasible options to eliminate from step 1.

c. Step 3 - Rank remaining options by control effectiveness

The remaining options are ranked below according to their control effectiveness:

1) Irrigation of crops using liquid/slurry manure from an aerobic treatment lagoon or mechanically aerated lagoon (95% control efficiency)

2) Irrigation of crops using liquid/slurry manure from a holding/storage pond after being treated in a covered lagoon/digester (80% control efficiency)

3) Irrigation of crops using liquid/slurry manure from the secondary lagoon/holding/storage pond where preceded by an uncovered anaerobic treatment lagoon designed to meet Natural Resources Conservation Service (NRCS) standards (40% control efficiency)

d. Step 4 - Cost Effectiveness Analysis

Irrigation of crops using liquid/slurry manure from an aerobic treatment lagoon or mechanically aerated lagoon

The cost effectiveness analysis performed in the previous section (BACT analysis for VOC emissions from the lagoons/storage ponds) demonstrated that, based on the space requirements alone, aerobic treatment cannot reasonably be required for this project. The previous analysis also demonstrated that mechanically aerated lagoons are not cost effective. Since the emission rate from land application of manure (1.4 lb/cow-yr) is not significantly different from the emission rate from lagoons/storage ponds (1.3 lb/cow-yr), no significant change from the previous cost effectiveness determination can be expected.

Irrigation of crops using liquid/slurry manure from a holding/storage pond after being treated in a covered lagoon digester

The cost effectiveness analysis performed in the previous section (BACT analysis for VOC emissions from the lagoons/storage ponds) demonstrated that a covered lagoon digester is not cost effective. Since the emission rate from land application of manure (1.4
lb/cow-yr) is not significantly different from the emission rate from lagoons/storage ponds (1.3 lb/cow-yr), no significant change from the previous cost effectiveness determination can be expected.

Irrigation of crops using liquid/slurry manure from the secondary lagoon/holding/storage pond where preceded by an uncovered anaerobic treatment lagoon designed to meet Natural Resources Conservation Service (NRCS) standards

The applicant has proposed this option. In addition, this option is achieved in practice. A cost effectiveness analysis is therefore not required.

e. Step 5 - Select BACT

The applicant has proposed irrigation of crops using liquid/slurry manure from the secondary lagoon/holding/storage pond preceded by an uncovered anaerobic treatment system designed to meet Natural Resources Conservation Service (NRCS) standards. The proposal satisfies BACT for this category.

2. NH₃ Emissions

a. Step 1 - Identify all control technologies

The following option has been identified as a possible control option for NH₃ emissions from land application of liquid manure:

1) All animals fed in accordance with NRC or other District-approved guidelines

Description of Control Technology

1) All animals fed in accordance with NRC or other District-approved guidelines

Nutritional management of dairy feed is routinely practiced to improve milk production and herd health. The potential for ammonia emissions can be reduced by reducing the amount of undigested nitrogen compounds in the manure. The level of microbial action in the manure corresponds to the level of organic nitrogen content in the manure; the lower the level of nitrogen the lower the level of microbial action and the lower the production of ammonia and VOCs.

A diet that is formulated to feed proper amounts of ruminantly degradable protein will result in improved nitrogen utilization by the animal and corresponding reduction in urea and organic nitrogen content of the manure, which will reduce the production of VOCs and ammonia. The latest National Research Council (NRC) guidelines for the selection of an optimal bovine diet should be followed to the maximum extent possible. The diet recommendations made in this publication seek to achieve the maximum uptake of protein by the animal and the minimum carryover of nitrogen into the manure, which will reduce ammonia emissions from liquid manure applied to cropland.
b. Step 2 - Eliminate technologically infeasible options

The option listed in Step 1 above is technologically feasible.

c. Step 3 - Rank remaining options by control effectiveness

The remaining option is listed below:

1) All animals fed in accordance with NRC or other District-approved guidelines

d. Step 4 - Cost Effectiveness Analysis

The applicant has proposed this option. In addition, this option is achieved in practice. A cost effectiveness analysis is therefore not required.

e. Step 5 - Select BACT

The applicant has proposed to feed all animals in accordance with NRC or other District-approved guidelines. The proposal satisfies BACT for this category.

V. Top-Down BACT Analysis for the Solid Manure Handling Operation – Storage

1. \(\text{NH}_3 \) Emissions

a. Step 1 - Identify all control technologies

The following options were identified as possible controls for \(\text{NH}_3 \) emissions from solid manure storage:

1) All Animals Fed in Accordance With National Research Council (NRC) or other District-Approved Guidelines

Description of Control Technologies

1) All Animals fed in accordance with National Research Council (NRC) or other District-approved Guidelines

Nutritional management of dairy feed is routinely practiced to improve milk production and herd health. The potential for ammonia emissions can be reduced by reducing the amount of undigested nitrogen compounds in the manure. The level of microbial action in the manure corresponds to the level of organic nitrogen content in the manure; the lower the level of nitrogen the lower the level of microbial action and the lower the production of ammonia and VOCs.

A diet that is formulated to feed proper amounts of ruminantly degradable protein will result in improved nitrogen utilization by the animal and corresponding reduction in urea and organic nitrogen content of the manure, which will reduce the production of VOCs and ammonia. The latest National Research Council (NRC) guidelines for the selection of an optimal bovine diet should be followed to the maximum extent possible.
The diet recommendations made in this publication seek to achieve the maximum uptake of protein by the animal and the minimum carryover of nitrogen into the manure, which will reduce ammonia emissions from solid manure.

b. Step 2 - Eliminate technologically infeasible options

There are no technologically infeasible options to eliminate from step 1.

c. Step 3 - Rank remaining options by control effectiveness

After eliminating the technologically infeasible options, the remaining options are ranked according to their control efficiency.

1) All animals Fed in Accordance With National Research Council (NRC) or Other District-Approved Guidelines.

d. Step 4 - Cost Effectiveness Analysis

The applicant has proposed the only option listed; therefore a cost effectiveness analysis is not required.

e. Step 5 - Select BACT

The applicant has proposed to feed all animals in accordance with NRC or other District-approved guidelines. The proposal satisfies BACT for this category.

VI. Top-Down BACT Analysis for the Solid Manure Handling Operation – Land Application

1. \textbf{NH}_3\textbf{ Emissions}

a. Step 1 - Identify all control technologies

The following options were identified as possible controls for \textit{NH}_3 emissions from solid manure land application:

1) Rapid incorporation of solid manure into the soil after land application, and All Animals Fed in Accordance With National Research Council (NRC) or Other District-Approved Guidelines

\textbf{Description of Control Technologies}

1) \textbf{Rapid Incorporation of Solid Manure into the Soil After Land Application}

Various types of spreading techniques, such as box spreaders, flail type spreaders, side discharge spreaders, and spinner spreaders, are used to apply solid manure to cropland. Regardless of which technique is used, this practice requires the immediate incorporation of the manure into the soil, reducing emissions and surface run-off while minimizing the loss of nitrogen into the atmosphere. Based on a study by a local Valley
dairy, there is a great potential of reducing emissions by incorporating slurry manure rapidly into the soil. A similar reduction may be obtained by the rapid incorporation of solid manure. This technology is expected to yield a NH₃ control efficiency ranging from 49% to upwards of 98%.¹⁶

2) **All Animals fed in accordance with National Research Council (NRC) or other District-approved Guidelines**

 Nutritional management of dairy feed is routinely practiced to improve milk production and herd health. The potential for ammonia emissions can be reduced by reducing the amount of undigested nitrogen compounds in the manure. The level of microbial activity in the manure corresponds to the level of organic nitrogen content in the manure; the lower the level of nitrogen the lower the level of microbial action and the lower the production of ammonia and VOCs.

 A diet that is formulated to feed proper amounts of ruminantly degradable protein will result in improved nitrogen utilization by the animal and corresponding reduction in urea and organic nitrogen content of the manure, which will reduce the production of VOCs and ammonia. The latest National Research Council (NRC) guidelines for the selection of an optimal bovine diet should be followed to the maximum extent possible. The diet recommendations made in this publication seek to achieve the maximum uptake of protein by the animal and the minimum carryover of nitrogen into the manure, which will reduce ammonia emissions from solid manure.

 b. Step 2 - Eliminate technologically infeasible options

 There are no technologically infeasible options to eliminate from step 1.

 c. Step 3 - Rank remaining options by control effectiveness

 1) Rapid Incorporation of Solid Manure into the Soil after Land Application; and All animals Fed in Accordance with National Research Council (NRC) or Other District-Approved Guidelines.

 d. Step 4 - Cost Effectiveness Analysis

 Rapid Incorporation of Solid Manure into the Soil After Land Application; and All animals Fed in Accordance With National Research Council (NRC) or Other District-Approved Guidelines.

 These technologies/practices are currently used at multiple dairies located throughout the valley, therefore a cost effective analysis is not required.

¹⁶ Page 81 of "Recommendations to the San Joaquin Valley Air Pollution Control Officer Regarding Best Available Control Technology for Dairies in the San Joaquin Valley" January 31, 2006 (http://www.valleyair.org/busind/pto/dpaa/dpaa_idx.htm).
e. Step 5 - Select BACT

The Achieved in Practice option is determined to be BACT. Therefore, BACT for this category is rapid incorporation of solid manure into the soil after land application; and all animals fed in accordance with National Research Council (NRC) or other District-approved guidelines.

VII. Top-Down BACT Analysis for Feed Storage and Handling – Total Mixed Ration (TMR) Feeding

VOC Emissions

a. Step 1 - Identify all control technologies

The following option has been identified as a possible control for VOC emissions from TMR feeding:

1) District Rule 4570 measures

Description of Control Technology

District Rule 4570 measures

District Rule 4570 requires the implementation of various management practices to reduce VOC emissions from TMR. These practices include pushing feed so that it is within three feet of feedline fence within two hours of putting out the feed or use a feed trough or other feeding structure designed to maintain feed within reach of the animals, so the area of the feed is minimized and the feed can be consumed by the cows in a shorter time period instead of continuing to emit VOCs; beginning feeding total mixed rations within two hours of grinding and mixing rations, reducing the time that fresh feed emits VOCs; storing grain in a weatherproof storage structure or under a weatherproof covering from October through May; feeding stream-flaked, dry rolled, cracked or ground corn or other ground cereal grains; removal of uneaten wet feed from feeding areas; and preparing TMR with a minimum moisture content, which reduces VOC since most of the compounds emitted are highly soluble in water.

b. Step 2 - Eliminate technologically infeasible options

The option identified in step 1 is technologically feasible.

c. Step 3 - Rank remaining options by control effectiveness

Only one option was previously identified in step 1:

1) District Rule 4570 measures

d. Step 4 - Cost Effectiveness Analysis

District Rule 4570 Measures

The applicant has proposed this option. In addition, this option is achieved in practice. A
cost effectiveness analysis is therefore not required.

e. Step 5 - Select BACT

The applicant has proposed to implement District Rule 4570 measures. The proposal satisfies BACT for this category.
Appendix H

RMR and AAQA Summary
San Joaquin Valley Air Pollution Control District
Risk Management Review and Ambient Air Quality Analysis

To: Rupi Gill – Permit Services
From: Kyle J Melching – Technical Services
Date: May 21, 2020
Facility Name: BLUE SKY DAIRY
Location: 4390 N FOX RD, MERCED
Application #(s): N-6733-1-1, -2-1, -3-2, -4-1, -5-1
Project #: N-1191038

Summary

RMR

<table>
<thead>
<tr>
<th>Units</th>
<th>Prioritization Score</th>
<th>Acute Hazard Index</th>
<th>Chronic Hazard Index</th>
<th>Maximum Individual Cancer Risk</th>
<th>T-BACT Required</th>
<th>Special Permit Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.40</td>
<td>0.00</td>
<td>0.00</td>
<td>5.40E-08</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>61.7</td>
<td>0.25</td>
<td>0.05</td>
<td>3.36E-06</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>98.94</td>
<td>0.00</td>
<td>0.02</td>
<td>1.05E-05</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00E+00</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Project Totals</td>
<td>162</td>
<td>0.27</td>
<td>0.08</td>
<td>14.0E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Totals</td>
<td>>1</td>
<td>0.27</td>
<td>0.08</td>
<td>14.0E-06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. TBACT is based on a cow housing by cow housing emissions unit. See conclusion section for which emission units require T-BACT.
2. There is no risk associated with Unit 5 as the District does not have an approved toxic speciation profile for dairy feed and storage handling operations.
AAQA

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Air Quality Standard (State/Federal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Hour</td>
</tr>
<tr>
<td>PM10</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Results were taken from the attached AAQA Report.
2. The criteria pollutants are below EPA's level of significance as found in 40 CFR Part 51.165 (b)(2) unless otherwise noted below.
3. Modeled PM10 concentrations were below the District SIL for fugitive sources of 10.4 μg/m³ for the 24-hour average concentration and 2.08 μg/m³ for the annual concentration.
4. Modeled PM2.5 concentrations were below the District SIL for fugitive sources of 2.5 μg/m³ for the 24-hour average concentration and 0.63 μg/m³ for the annual concentration.

To ensure that human health risks will not exceed District allowable levels; the following shall be included as requirements for:

Unit # 1-1, -2-1, -3-2, -4-1, & -5-1

1. No special requirements.

T-BACT is required for this unit Unit 2 (FSB 4 and FSB 5) and Unit3 (LAGOONS) because of emissions of Napthanlene which is a VOC.

Project Description

Technical Services received a request on May 11, 2020 to perform a Risk Management Review (RMR) and Ambient Air Quality Analysis (AAQA) for the following:

- **Unit -1-1:** MODIFICATION OF 1,200 COW MILKING OPERATION WITH ONE DOUBLE 12 HERRINGBONE (24 STALLS) MILKING PARLOR: INCREASE MILK COWS FROM 1,200 TO 2,750 MILK COWS AND ADD A NEW 80 STALL ROTARY PARLOR. THE EXISTING DOUBLE 12 HERRINGBONE (24 STALLS) WILL REMAIN AND CONVERTED TO DOUBLE 24 PARALLEL (48 STALLS) MILK BARN

- **Unit -2-1:** MODIFICATION OF COW HOUSING - 1,200 MILK COWS NOT TO EXCEED A COMBINED TOTAL OF 1,350 MATURE COWS (MILK AND DRY COWS); 640 SUPPORT STOCK (HEIFERS, CALVES, AND BULLS); AND 2 FREESTALLS WITH A FLUSH SYSTEM: INCREASE HERD SIZE FROM 1,200 MILK COWS AND 1,350 MATURE COWS (MILK AND DRY) TO 2,750 MILK COWS AND 3,310 MATURE COWS (MILK AND DRY), INCREASE SUPPORT STOCK FROM 640 TO 2,056, ADD THREE NEW FREESTALL BARNS AND HEIFER/CALF HUTCH AREA

- **Unit -3-2:** MODIFICATION OF LIQUID MANURE HANDLING SYSTEM CONSISTING OF ONE SETTLING BASIN; TWO LAGOONS; MANURE LAND APPLIED THROUGH FLOOD IRRIGATION AND FURROW IRRIGATION: INCREASE IN LIQUID MANURE DUE TO INCREASE HERD PROFILE AS AUTHORIZED BY ATC N-6733-2-1, ADD MECHANICAL SEPARATOR(S) AND PROCESSING PIT, AND OPERATE LIQUID MANURE STORAGE IN AN ANAEROBIC TREATMENT SYSTEM AS PER ANAEROBIC TREATMENT LAGOON SPECIFICATION

- **Unit -4-1:** MODIFICATION OF SOLID MANURE HANDLING CONSISTING OF MANURE STOCK PILES; SOLID MANURE APPLICATION TO LAND: INCREASE IN SOLID MANURE DUE TO INCREASE IN HERD PROFILE AS AUTHORIZED BY ATC N-6733-2-1

- **Unit -5-1:** MODIFICATION OF FEED STORAGE AND HANDLING CONSISTING OF COVERED FEED STORAGE OR COMMODITY BARN(S), SILAGE PILE(S) AND DRY GRAIN
RMR Report

Analysis

The District performed an analysis pursuant to the District’s Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015) to determine the possible cancer and non-cancer health impact to the nearest resident or worksite. This policy requires that an assessment be performed on a unit by unit basis, project basis, and on a facility-wide basis. If a preliminary prioritization analysis demonstrates that:

- A unit’s prioritization score is less than the District’s significance threshold and;
- The project’s prioritization score is less than the District’s significance threshold and;
- The facility’s total prioritization score is less than the District’s significance threshold

Then, generally no further analysis is required.

The District’s significant prioritization score threshold is defined as being equal to or greater than 1.0. If a preliminary analysis demonstrates that either the unit(s) or the project’s or the facility’s total prioritization score is greater than the District threshold, a screening or a refined assessment is required.

If a refined assessment is greater than one in a million but less than 20 in one million for carcinogenic impacts (Cancer Risk) and less than 1.0 for the Acute and Chronic hazard indices (Non-Carcinogenic) on a unit by unit basis, project basis and on a facility-wide basis the proposed application is considered less than significant. For unit’s that exceed a cancer risk of 1 in one million, Toxic Best Available Control Technology (TBACT) must be implemented.

Toxic emissions for this project were calculated using the following methods:

- Toxic emissions for the Cow Housing, Lagoon(s), and Milk Parlor(s) were calculated using emission factors derived from the District's evaluation of dairy research studies conducted by California colleges and universities. PM based toxic emissions for the Cow Housing were calculated using emission factors generated from using the worst case composite of the 1997 EPA speciation of Kern County feedlot soil.

These emissions were input into the San Joaquin Valley APCD's Hazard Assessment and Reporting Program (SHARP). In accordance with the District’s Risk Management Policy, risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 2016 CAPCOA Facility Prioritization Guidelines. The prioritization score for this proposed facility was greater than 1.0 (see RMR Summary Table). Therefore, a refined health risk assessment was required.

The AERMOD model was used, with the parameters outlined below and meteorological data for 2013-2017 from Merced (rural dispersion coefficient selected) to determine the dispersion factors (i.e., the predicted concentration or X divided by the normalized source strength or Q) for a receptor grid. These dispersion factors were input into the SHARP Program, which then used the Air Dispersion Modeling and Risk Tool (ADMRT) of the Hot Spots Analysis and Reporting Program Version 2 (HARP 2) to calculate the chronic and acute hazard indices and the carcinogenic risk for the project.

The following parameters were used for the review:
Housing Name Parameters

<table>
<thead>
<tr>
<th>Housing Names</th>
<th>Type of Cow</th>
<th># of Cows</th>
<th>VOC (lb/hr)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/hr)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/hr)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freestall 2</td>
<td>support stock</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>0.008</td>
<td>55</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Shade Barn 1</td>
<td>support stock</td>
<td>130</td>
<td>0.05</td>
<td>460</td>
<td>0.05</td>
<td>462</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Freestall Barn 3</td>
<td>milk cows</td>
<td>920</td>
<td>0.98</td>
<td>8602</td>
<td>2.22</td>
<td>19438</td>
<td>0.03</td>
<td>214</td>
</tr>
<tr>
<td>FSB 4 Totals</td>
<td>Various</td>
<td>926</td>
<td>0.99</td>
<td>8626</td>
<td>2.23</td>
<td>19471</td>
<td>0.03</td>
<td>215</td>
</tr>
<tr>
<td>Freestall Barn 5</td>
<td>milk cows</td>
<td>910</td>
<td>0.97</td>
<td>8509</td>
<td>2.2</td>
<td>19227</td>
<td>0.03</td>
<td>212</td>
</tr>
<tr>
<td>Hutch Totals</td>
<td>Various</td>
<td>420</td>
<td>0.08</td>
<td>709</td>
<td>0.1</td>
<td>935</td>
<td>0.02</td>
<td>185</td>
</tr>
</tbody>
</table>

Area Source Parameters

<table>
<thead>
<tr>
<th>Unit ID</th>
<th>Unit Description</th>
<th>Release Height (m)</th>
<th>X-Length (m)</th>
<th>Y-Length (m)</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Hutches</td>
<td>1.00</td>
<td>135.96</td>
<td>76.97</td>
<td>10464.84</td>
</tr>
</tbody>
</table>

Polygon Area Source Parameters

<table>
<thead>
<tr>
<th>Unit ID</th>
<th>Unit Description</th>
<th>Release Height (m)</th>
<th>No. Vertices</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Milk Parlor 1</td>
<td>1.00</td>
<td>4</td>
<td>5189</td>
</tr>
<tr>
<td>2</td>
<td>Shade Barn 1</td>
<td>1.00</td>
<td>4</td>
<td>1512</td>
</tr>
<tr>
<td>2</td>
<td>Freestall 2</td>
<td>1.00</td>
<td>6</td>
<td>11618</td>
</tr>
<tr>
<td>2</td>
<td>Freestall Barn 5</td>
<td>1.00</td>
<td>4</td>
<td>14518</td>
</tr>
<tr>
<td>2</td>
<td>FSB 4 Totals</td>
<td>1.00</td>
<td>4</td>
<td>13294</td>
</tr>
<tr>
<td>2</td>
<td>Freestall Barn 3</td>
<td>1.00</td>
<td>4</td>
<td>10079</td>
</tr>
<tr>
<td>3</td>
<td>Lagoon 1</td>
<td>1.00</td>
<td>8</td>
<td>28445</td>
</tr>
<tr>
<td>4</td>
<td>Solid Pile Storage</td>
<td>1.00</td>
<td>6</td>
<td>26218</td>
</tr>
</tbody>
</table>

AAQA Report

The District modeled the impact of the proposed project on the National Ambient Air Quality Standard (NAAQS) and/or California Ambient Air Quality Standard (CAAQS) in accordance with District Policy APR-1925 (Policy for District Rule 2201 AAQA Modeling) and EPA’s Guideline for Air Quality Modeling (Appendix W of 40 CFR Part 51). The District uses a progressive three level approach to perform AAQAs. The first level (Level 1) uses a very conservative approach. If this analysis indicates a likely exceedance of an AAQS or Significant Impact Level (SIL), the analysis proceeds to the second level (Level 2) which implements a more refined approach. For the 1-hour NO₂ standard, there is also a third level that can be implemented if the Level 2 analysis indicates a likely exceedance of an AAQS or SIL.
The modeling analyses predicts the maximum air quality impacts using the appropriate emissions for each standard's averaging period. Required model inputs for a refined AAQA include background ambient air quality data, land characteristics, meteorological inputs, a receptor grid, and source parameters including emissions. These inputs are described in the sections that follow.

The AERMOD model was used to determine if emissions from the project would cause or contribute to an exceedance of any state of federal air quality standard. The parameters outlined below and meteorological data for 2013-2017 from Merced (rural dispersion coefficient selected) were used for the analysis:

The following parameters were used for the review:

Area Source Parameters

<table>
<thead>
<tr>
<th>Unit ID</th>
<th>Unit Description</th>
<th>Release Height (m)</th>
<th>X-Length (m)</th>
<th>Y-Length (m)</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Hutches</td>
<td>1.00</td>
<td>135.96</td>
<td>76.97</td>
<td>10464.84</td>
</tr>
</tbody>
</table>

Polygon Area Source Parameters

<table>
<thead>
<tr>
<th>Unit ID</th>
<th>Unit Description</th>
<th>Release Height (m)</th>
<th>No. Vertices</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Milk Parlor 1</td>
<td>1.00</td>
<td>4</td>
<td>5189</td>
</tr>
<tr>
<td>2</td>
<td>Shade Barn 1</td>
<td>1.00</td>
<td>4</td>
<td>1512</td>
</tr>
<tr>
<td>2</td>
<td>Freestall 2</td>
<td>1.00</td>
<td>6</td>
<td>11618</td>
</tr>
<tr>
<td>2</td>
<td>Freestall Barn 5</td>
<td>1.00</td>
<td>4</td>
<td>14518</td>
</tr>
<tr>
<td>2</td>
<td>FSB 4 Totals</td>
<td>1.00</td>
<td>4</td>
<td>13294</td>
</tr>
<tr>
<td>2</td>
<td>Freestall Barn 3</td>
<td>1.00</td>
<td>4</td>
<td>10079</td>
</tr>
<tr>
<td>3</td>
<td>Lagoon 1</td>
<td>1.00</td>
<td>8</td>
<td>28445</td>
</tr>
<tr>
<td>4</td>
<td>Solid Pile Storage</td>
<td>1.00</td>
<td>6</td>
<td>26218</td>
</tr>
</tbody>
</table>

Housing Names

<table>
<thead>
<tr>
<th>Housing Names</th>
<th>Type of Cow</th>
<th># of Cows</th>
<th>VOC (lb/hr)</th>
<th>VOC (lb/yr)</th>
<th>NH3 (lb/hr)</th>
<th>NH3 (lb/yr)</th>
<th>PM10 (lb/hr)</th>
<th>PM10 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freestall 2</td>
<td>support stock</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Shade Barn 1</td>
<td>support stock</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Freestall Barn 3</td>
<td>milk cows</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.03</td>
<td>214</td>
</tr>
<tr>
<td>FSB 4 Totals</td>
<td>Various</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.03</td>
<td>215</td>
</tr>
<tr>
<td>Freestall Barn 5</td>
<td>milk cows</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.03</td>
<td>212</td>
</tr>
<tr>
<td>Hutches Totals</td>
<td>Various</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.02</td>
<td>185</td>
</tr>
</tbody>
</table>
PM$_{10}$ Pollutant Modeling Results

Values are in $\mu g/m^3$

<table>
<thead>
<tr>
<th>Category</th>
<th>24 Hours</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Value</td>
<td>4.39</td>
<td>0.61</td>
</tr>
<tr>
<td>Interim Significance Level</td>
<td>10.41</td>
<td>2.081</td>
</tr>
<tr>
<td>Result</td>
<td>Pass</td>
<td>Pass</td>
</tr>
</tbody>
</table>

1The District has decided on an interim basis to use a SIL threshold for fugitive dust sources of 10.4 $\mu g/m^3$ for the 24-hour average concentration and 2.08 $\mu g/m^3$ for the annual concentration.

PM$_{2.5}$ Pollutant Modeling Results

Values are in $\mu g/m^3$

<table>
<thead>
<tr>
<th>Category</th>
<th>24 Hours</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Value</td>
<td>1.26</td>
<td>0.18</td>
</tr>
<tr>
<td>Interim Significance Level</td>
<td>2.51</td>
<td>0.631</td>
</tr>
<tr>
<td>Result</td>
<td>Pass</td>
<td>Pass</td>
</tr>
</tbody>
</table>

1The District has decided on an interim basis to use a SIL threshold for fugitive dust sources of 2.5 $\mu g/m^3$ for the 24-hour average concentration and 0.63 $\mu g/m^3$ for the annual concentration.
2PM$_{2.5}$ fraction of PM$_{10}$ of 28.7% was provided by the processing engineer.

Conclusion

RMR

The cumulative acute and chronic indices for this facility, including this project, are below 1.0; and the cumulative cancer risk for this facility, including this project, is less than 20 in a million. However, the cancer risk for one or more units in this project is greater than 1.0 in a million. **In accordance with the District’s Risk Management Policy, the project is approved with Toxic Best Available Control Technology (T-BACT) for the Unit 3 (Lagoon) and Unit 2 (FSB 4 and FSB 5).**

To ensure that human health risks will not exceed District allowable levels, the permit requirements listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

AAQA

The ambient air quality impacts from PM$_{10}$ and PM$_{2.5}$ emissions at the proposed dairy modification does not exceed the District’s 24-hour or Annual interim threshold for fugitive dust significant impact levels.

Attachments

A. Modeling request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. Facility Summary
E. AAQA results
Appendix I

Anaerobic Treatment Lagoon Design Check
Lagoon Design Check in Accordance with NRCS Guideline #359

Proposed Lagoon Volume

Volume of treatment lagoon = \((L \times W \times D) - (S \times D^2) \times (W + L) + (4 \times S^2 \times D^3 - 3)\)

<table>
<thead>
<tr>
<th>Primary Treatment Lagoon Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Width</td>
</tr>
<tr>
<td>Depth</td>
</tr>
<tr>
<td>Slope</td>
</tr>
</tbody>
</table>

(Subtract 2 feet from the actual lagoon depth for run-off or miscellaneous water.)

Primary Lagoon Volume: 986,760 ft³

INSTRUCTIONS

* only input yellow fields

- **Step 1** Enter primary lagoon dimensions on this sheet
- **Step 2** Go to “Net Volatile Solids Loading” sheet and enter number of animals flushing manure to lagoon
- **Step 3** Adjust % in flush and separation as necessary (see notes on sheet)
- **Step 4** Go to “Minimum Treatment Volume”
- **Step 5** Minimum treatment volume should be less than lagoon volume to be considered anaerobic treatment lagoon
- **Step 6** Go to “Hydraulic Retention Time”
- **Step 7** Adjust fresh water as applicable
- **Step 8** Hydraulic retention time should be greater than 34 days to be considered anaerobic treatment lagoon

Proposed Lagoon Volume

Volume of treatment lagoon = \((L \times W \times D) - (S \times D^2) \times (W + L) + (4 \times S^2 \times D^3 - 3)\)

<table>
<thead>
<tr>
<th>Primary Treatment Lagoon Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Width</td>
</tr>
<tr>
<td>Depth</td>
</tr>
<tr>
<td>Slope</td>
</tr>
</tbody>
</table>

(Subtract 2 feet from the actual lagoon depth for run-off or miscellaneous water.)

Primary Lagoon Volume: 491,819 ft³

INSTRUCTIONS

* only input yellow fields

- **Step 1** Enter primary lagoon dimensions on this sheet
- **Step 2** Go to “Net Volatile Solids Loading” sheet and enter number of animals flushing manure to lagoon
- **Step 3** Adjust % in flush and separation as necessary (see notes on sheet)
- **Step 4** Go to “Minimum Treatment Volume”
- **Step 5** Minimum treatment volume should be less than lagoon volume to be considered anaerobic treatment lagoon
- **Step 6** Go to “Hydraulic Retention Time”
- **Step 7** Adjust fresh water as applicable
- **Step 8** Hydraulic retention time should be greater than 34 days to be considered anaerobic treatment lagoon
Proposed Lagoon Volume

Volume of treatment lagoon = \((L \times W \times D) - (S \times D^2) \times (W + L) + (4 \times S^2 \times D^2 + 3) \)

<table>
<thead>
<tr>
<th>Primary Treatment Lagoon Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length: 371 ft</td>
</tr>
<tr>
<td>Width: 187 ft</td>
</tr>
<tr>
<td>Depth: 23 ft</td>
</tr>
<tr>
<td>Slope: 1.7 ft</td>
</tr>
</tbody>
</table>

(Subtract 2 feet from the actual lagoon depth for run-off or miscellaneous water.)

Primary Lagoon Volume: 1,140,745 ft³

INSTRUCTIONS
- only input yellow boxes

Step 1: Enter primary lagoon dimensions on this sheet
Step 2: Go to "Net Volatile Solids Loading" sheet and enter number of animals flushing manure to lagoon
Step 3: Adjust % in flush and separation as necessary (see notes on sheet)
Step 4: Go to "Minimum Treatment Volume"
Step 5: Minimum treatment volume should be less than lagoon volume to be considered anaerobic treatment lagoon
Step 6: Go to "Hydraulic Retention Times"
Step 7: Adjust fresh water as applicable
Step 8: Hydraulic retention time should be greater than 34 days to be considered anaerobic treatment lagoon

<table>
<thead>
<tr>
<th>Lagoon/storage pond</th>
<th>Treatment Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>985,760</td>
</tr>
<tr>
<td>2</td>
<td>491,819</td>
</tr>
<tr>
<td>3</td>
<td>1,140,745</td>
</tr>
<tr>
<td>Total</td>
<td>2,618,324 ft³</td>
</tr>
</tbody>
</table>
Minimum Treatment Volume (ft³) Needed:

Lagoon Design Check in Accordance with NRCS Guideline #359

Minimum Treatment Volume Calculation

\[
MTV = \frac{TVS}{VSLR}
\]

Where:

\[
MTV = \text{Minimum Treatment Volume (ft}^3 \text{)}
\]

\[
TVS = \text{daily Total Volatile solids Loading (lb/day)} = 0.011 \text{ lb/ft}^3\cdot\text{day}
\]

\[
VSLR = \text{Volatile Solids Loading Rate (lb/1000 ft}^3\text{-day)}
\]

Minimum Treatment Volume in Primary Lagoon

<table>
<thead>
<tr>
<th>Breed: Holstein</th>
<th>Type of Cow</th>
<th>Net VS Loading (lb/day)</th>
<th>VSLR (lb/ft³·day)</th>
<th>MTV (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Cows</td>
<td></td>
<td>16,596</td>
<td>0.011</td>
<td>1,508,750</td>
</tr>
<tr>
<td>Dry Cow</td>
<td></td>
<td>1,529</td>
<td>0.011</td>
<td>166,259</td>
</tr>
<tr>
<td>Heifer (15 to 24 months)</td>
<td>1,363</td>
<td>0.011</td>
<td>123,927</td>
<td></td>
</tr>
<tr>
<td>Heifer (> 14 months)</td>
<td>174</td>
<td>0.011</td>
<td>89,491</td>
<td></td>
</tr>
<tr>
<td>Heifer (3 to 6 months)</td>
<td>194</td>
<td>0.011</td>
<td>17,673</td>
<td></td>
</tr>
<tr>
<td>Calf (under 3 months)</td>
<td>150</td>
<td>0.011</td>
<td>13,636</td>
<td></td>
</tr>
<tr>
<td>Bulls</td>
<td></td>
<td>13</td>
<td>0.011</td>
<td>1,204</td>
</tr>
<tr>
<td>Total for Dairy</td>
<td></td>
<td></td>
<td></td>
<td>1,609,851</td>
</tr>
</tbody>
</table>

[1] VSLR for an anaerobic treatment lagoon in San Joaquin Valley would be 0.011 lb/ft³·day, 90-day to 11 lb/ft³·1000 ft³·day according to the NRCS and USDA AWTF. Based on phone.

Sludge Accumulation Volume

The sludge accumulation volume accounts for the solids contained in the manure that cannot be fully digested by bacteria and that gradually settle to the bottom of the lagoon as sludge. The sludge accumulation volume for lagoon systems without solids separation can be calculated from the USDA Field Handbook. However, there are no accepted guidelines for calculating the sludge accumulation volume for lagoon systems with solids separation, but many designers of digesters expect it to be minimal.

This facility has an efficient solids separation system consisting prior to the anaerobic treatment lagoon system. The separation system will remove a large portion of the fibers, lignin, cellulose, and other fibrous materials from the manure. These are the materials that would otherwise cause sludge accumulation from the lack of digestion in a lagoon or digester. Because fibrous materials and other solids will not enter the lagoon system, the sludge accumulation volume required will be minimized and can be considered negligible.

Nevertheless, the primary lagoon will have sufficient space remaining for sludge accumulation, as shown by the following calculation:

\[
SAV = VPL - MTV
\]

Where:

\[
SAV = \text{Sludge Accumulation Volume (ft}^3 \text{)}
\]

\[
VPL = \text{total Volume of Primary Lagoon (ft}^3 \text{)}
\]

\[
MTV = \text{Minimum Treatment Volume (ft}^3 \text{)}
\]

\[
SAV = VPL - MTV
\]

\[
SAV = 2,518,324 \text{ ft}^3 \text{ - } 1,980,951 \text{ ft}^3 = 717,373 \text{ ft}^3
\]
Appendix J

QNEC
Quarterly Net Emissions Change (QNEC)

The Quarterly Net Emissions Change is used to complete the emission profile screen for the District’s PAS database. The QNEC shall be calculated as follows:

\[
\text{QNEC} = \text{PE2} - \text{PE1},
\]

where:

- \(\text{QNEC}\) = Quarterly Net Emissions Change for each emissions unit, lb/qtr
- \(\text{PE2}\) = Post-Project Potential to Emit for each emissions unit, lb/qtr
- \(\text{PE1}\) = Pre-Project Potential to Emit for each emissions unit, lb/qtr

The quarterly PE values are calculated as follows: \(\text{PE} (\text{lb/yr}) + 4 (\text{qtr/yr})\)

Using the annual PE2 and PE1 values previously calculated, the QNEC (lb/qtr) for each permit unit is shown below:

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Parlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual PE2 (lb/yr)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,100</td>
<td>376</td>
</tr>
<tr>
<td>Daily PE2 (lb/day)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Quarterly Net Emissions Change (lb/qtr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.00</td>
<td>53.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cow Housing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual PE2 (lb/yr)</td>
<td>0</td>
<td>0</td>
<td>2,201</td>
<td>0</td>
<td>36.026</td>
<td>74,092</td>
<td></td>
</tr>
<tr>
<td>Daily PE2 (lb/day)</td>
<td>0.00</td>
<td>0.00</td>
<td>6.1</td>
<td>0.00</td>
<td>98.7</td>
<td>203.0</td>
<td></td>
</tr>
<tr>
<td>Quarterly Net Emissions Change (lb/qtr)</td>
<td>0.00</td>
<td>0.00</td>
<td>-162.75</td>
<td>0.00</td>
<td>5,260.75</td>
<td>10,897.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Manure Handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual PE2 (lb/yr)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,562</td>
<td>17,171</td>
<td>416</td>
</tr>
<tr>
<td>Daily PE2 (lb/day)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>15.2</td>
<td>47.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Quarterly Net Emissions Change (lb/qtr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>448.32</td>
<td>1,556.67</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Manure Handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual PE2 (lb/yr)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,296</td>
<td>9,936</td>
<td></td>
</tr>
<tr>
<td>Daily PE2 (lb/day)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.6</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>Quarterly Net Emissions Change (lb/qtr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>149.29</td>
<td>1,461.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed Storage and Handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual PE2 (lb/yr)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43,586</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Daily PE2 (lb/day)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>119.4</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Quarterly Net Emissions Change (lb/qtr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6,187.65</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>