September 3, 2020

Kevin Winston
Amazon.com Services, LLC - TCY5
PO Box 80842
Seattle, WA 98108

Re: Notice of Preliminary Decision - Authorities to Construct
Facility Number: N-9855
Project Number: N-1203602

Dear Mr. Winston:

Enclosed for your review and comment is the District’s analysis of Amazon.com Services, LLC - TCY5’s application for Authorities to Construct for the installation of a 274 bhp diesel-fired emergency engine powering a fire pump and the installation of a 909 bhp diesel-fired emergency engine powering a 600 kW electrical generator located at 6250 Promontory Road, Tracy, CA.

The notice of preliminary decision for this project has been posted on the District’s website (www.valleyair.org). After addressing all comments made during the 30-day public notice period, the District intends to issue the Authorities to Construct. Please submit your written comments on this project within the 30-day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Fred Cruz of Permit Services at (209) 557-6456.

Sincerely,

Arnaud Marjollet
Director of Permit Services

AM:fjc

Enclosures

cc: Courtney Graham, CARB (w/ enclosure) via email
San Joaquin Valley Air Pollution Control District
Authority to Construct Application Review
Emergency Standby IC Engines

Facility Name: Amazon.com Services, LLC TCY5 Date: 9/2/2020
Mailing Address: PO Box 80842 Engineer: Fred Cruz
 Seattle, WA 98108
Contact Person: Kevin Winston Mike Rectanus Lead Engineer: James Harader
Telephone: (925) 577-5326 (513) 560-8367
Email: winskevi@amazon.com Mike.Rectanus@erm.com

Application Nos: N-9855-1-0 & -2-0
Project No: N-1203602
Deemed Complete: August 20, 2020

I. Proposal:
Amazon submitted Authority to Construct applications to install a 274 bhp diesel-fired emergency engine powering a fire pump and a 909 bhp diesel-fired emergency engine powering a 600 kW electrical generator.

II. Applicable Rules:
Rule 2201 New and Modified Stationary Source Review Rule (8/15/2019)
Rule 2410 Prevention of Significant Deterioration (6/16/2011)
Rule 2520 Federally Mandated Operating Permits (8/15/2019)
Rule 4001 New Source Performance Standards (4/14/1999)
Rule 4101 Visible Emissions (2/17/2005)
Rule 4102 Nuisance (12/17/1992)
Rule 4201 Particulate Matter Concentration (12/17/1992)
Rule 4701 Stationary Internal Combustion Engines – Phase 1 (8/21/2003)
Rule 4702 Stationary Internal Combustion Engines – Phase 2 (11/14/2013)
Rule 4801 Sulfur Compounds (12/17/1992)
CH&SC 41700 Health Risk Assessment
CH&SC 42301.6 School Notice
Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines
California Environmental Quality Act (CEQA)
Public Resources Code 21000-21177: California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines
III. **Project Location:**

The facility is located at 6250 Promontory Road, Tracy, CA. The project is not located within 1,000 feet of a K-12 school. Therefore, the school notification requirements of CH&SC Section 42301.6 are not required.

IV. **Process Description:**

N-9855-1-0: The emergency engine powers a firewater pump. Other than emergency operation, the engine can be operated up to 100 hours per year for maintenance and testing purposes.

N-9855-2-0: The 909 bhp Perkins diesel-fired emergency engine powers a 600 kW electrical generator. Other than emergency operation, the engine can be operated up to 50 hours per year for maintenance and testing purposes.

V. **Equipment Listing:**

N-9855-1-0: 274 BHP JOHN DEERE MODEL 6068HFC48B EMERGENCY ENGINE (TIER 3 CERTIFIED) POWERING A FIRE PUMP

N-9855-2-0: 909 BHP PERKINS MODEL DIESEL-FIRED EMERGENCY ENGINE (TIER 2 CERTIFIED) POWERING A 600 KW ELECTRICAL GENERATOR

VI. **Emission Control Technology Evaluation:**

N-9855-1-0: The applicant has proposed to install a Tier 3 certified diesel-fired IC engine that is fired on very low-sulfur diesel fuel.

N-9855-1-0: The applicant has proposed to install a Tier 2 certified diesel-fired IC engine that is fired on very low-sulfur diesel fuel.

The proposed engines meet the latest Tier Certification requirements for emergency standby engines. Therefore, this engine meets the latest ARB/EPA emissions standards for diesel particulate matter, hydrocarbons, nitrogen oxides, and carbon monoxide.

The use of very low-sulfur diesel fuel (0.0015% by weight sulfur maximum) reduces SOx emissions by over 99% from standard diesel fuel.

VII. **Emission Calculations:**

A. **Assumptions N-9855-1-0 & N-9855-2-0:**

Density of diesel fuel: 7.1 lb/gal

EPA F-factor: 9051 dscf/MMBtu (corrected to 60° F)

PM_{10} fraction of diesel exhaust is 96% (Reference - CARB, 1988)

Fuel heating value: 137,000 Btu/gal

BHP to Btu/hr conversion: 2542.5 Btu/hp-hr
Thermal efficiency of engine commonly ≈ 35%

N-9855-1-0:
- Operating schedule: 24 hours/day, 100 hours/year
- Fuel consumption rate: 13.5 gal/hr @ 100% load (engine data sheet)

N-9855-2-0:
- Operating schedule: 24 hours/day, 50 hours/year
- Fuel consumption rate: 41.4 gal/hr @ 100% load (engine data sheet)

B. Emission Factors:

N-9855-1-0: The engine manufacturer supplied the emissions factor for NOx, CO, VOC and PM\textsubscript{10} emissions.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (g/bhp-hr)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>2.47</td>
<td>Engine manufacturer</td>
</tr>
<tr>
<td>CO</td>
<td>0.45</td>
<td>Engine manufacturer</td>
</tr>
<tr>
<td>VOC</td>
<td>0.08</td>
<td>Engine manufacturer</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.07</td>
<td>Engine manufacturer</td>
</tr>
<tr>
<td>SOx</td>
<td>0.0051</td>
<td>See calculation below</td>
</tr>
</tbody>
</table>

N-9855-2-0: The engine manufacturer supplied the emissions factor for NOx, CO, VOC and PM\textsubscript{10} emissions.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (g/bhp-hr)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>3.80</td>
<td>Engine manufacturer</td>
</tr>
<tr>
<td>CO</td>
<td>0.60</td>
<td>Engine manufacturer</td>
</tr>
<tr>
<td>VOC</td>
<td>0.08</td>
<td>Engine manufacturer</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.05</td>
<td>Engine manufacturer</td>
</tr>
<tr>
<td>SOx</td>
<td>0.0051</td>
<td>See calculation below</td>
</tr>
</tbody>
</table>

The emission factor for SOx may be calculated based on the current CARB standard for diesel sulfur content, which is 15 ppm by weight.

\[
\frac{0.000015 \text{ lb} - S}{\text{gal}} \times \frac{7.1 \text{ lb} - \text{fuel}}{\text{gallon}} \times \frac{2 \text{ lb} - \text{SO}_2}{1 \text{ lb} - S} \times \frac{1 \text{ gal}}{137,000 \text{ Btu}} \times \frac{1 \text{ bhp input}}{0.35 \text{ bhp out}} \times \frac{2,542.5 \text{ Btu}}{\text{bhp} - \text{hr}} \times \frac{453.6 \text{ g}}{\text{lb}} = 0.0051 \text{ g} - \text{SO}_2 \text{ bhp} - \text{hr}^{-1}
\]

C. Calculations:

1. **Pre-Project Emissions (PE1)**

These emergency engines are considered as new emission units and PE1 will equal zero for all pollutants.
2. Post Project PE (PE2)

The potential to emit emissions from this emergency IC engine is based on the maximum operating capacity of the engine for 24 hours per day. The following calculation for NO\textsubscript{x} emissions is representative of emission calculations for all pollutants. Annual emissions are based on 100 hours per year for non-emergency operation for permit unit N-9855-1-0.

NO\textsubscript{x}: \(2.47 \text{ g/hp-hr} \times 274 \text{ hp} \times \frac{\text{lb}}{453.6 \text{ g}}\)

\[
\text{NO}_x: 1.49 \text{ lb/hr, 35.8 lb/day, 149 lb/yr} \\
\text{CO: 0.27 lb/hr, 6.5 lb/day, 27 lb/yr} \\
\text{VOC: 0.04 lb/hr, 1.2 lb/day, 5 lb/yr} \\
\text{PM}_{10}: 0.04 \text{ lb/hr, 1.0 lb/day, 4 lb/yr} \\
\text{SO}_x: 0.003 \text{ lb/hr, 0.1 lb/day, 0.3 lb/yr} \]

<table>
<thead>
<tr>
<th></th>
<th>NO\textsubscript{x}</th>
<th>CO</th>
<th>VOC</th>
<th>PM\textsubscript{10}</th>
<th>SO\textsubscript{x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily PE</td>
<td>35.8</td>
<td>6.5</td>
<td>1.2</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Annual PE</td>
<td>149</td>
<td>27</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Annual emissions are based on 50 hours per year for non-emergency operation for permit unit N-9855-2-0.

NO\textsubscript{x}: \(3.80 \text{ g/hp-hr} \times 909 \text{ hp} \times \frac{\text{lb}}{453.6 \text{ g}}\)

\[
\text{NO}_x: 7.62 \text{ lb/hr, 182.8 lb/day, 381 lb/yr} \\
\text{CO: 1.20 lb/hr, 28.9 lb/day, 60 lb/yr} \\
\text{VOC: 0.16 lb/hr, 3.8 lb/day, 8 lb/yr} \\
\text{PM}_{10}: 0.10 \text{ lb/hr, 2.4 lb/day, 5 lb/yr} \\
\text{SO}_x: 0.01 \text{ lb/hr, 0.5 lb/day, 0.5 lb/yr} \]

<table>
<thead>
<tr>
<th></th>
<th>NO\textsubscript{x}</th>
<th>CO</th>
<th>VOC</th>
<th>PM\textsubscript{10}</th>
<th>SO\textsubscript{x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily PE</td>
<td>182.8</td>
<td>28.9</td>
<td>3.8</td>
<td>2.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Annual PE</td>
<td>381</td>
<td>60</td>
<td>8</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Pre-Project Stationary Source Potential to Emit (SSPE1):

Pursuant to Section 4.9 of District Rule 2201, the Pre-Project Stationary Source Potential to Emit (SSPE1) is the Potential to Emit (PE) from all units with valid ATCs or PTOs at the Stationary Source and the quantity of Emission Reduction Credits (ERCs) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site. This is a new facility and SSPE1 emissions will equal zero for all pollutants.

\[\text{1 Per District practice, annual emissions less than 0.5 lbs are de minimus values and are set to zero.}\]
4. Post Project Stationary Source Potential to Emit (SSPE2):

Pursuant to Section 4.10 of District Rule 2201, the Post Project Stationary Source Potential to Emit (SSPE2) is the Potential to Emit (PE) from all units with valid ATCs or PTOs, except for emissions units proposed to be shut down as part of the Stationary Project, at the Stationary Source and the quantity of Emission Reduction Credits (ERCs) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site.

<table>
<thead>
<tr>
<th>SSPE2 (lb/yr)</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>PM10</th>
<th>SOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-9855-1-0 (ATC)</td>
<td>149</td>
<td>27</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>N-9855-2-0 (ATC)</td>
<td>381</td>
<td>60</td>
<td>8</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>ERC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>530</td>
<td>87</td>
<td>13</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

5. Major Source Determination:

Pursuant to Section 3.24 of District Rule 2201, a Major Source is a stationary source with post project emissions or a Post Project Stationary Source Potential to Emit (SSPE2), equal to or exceeding one or more of the following threshold values. However, Section 3.24.2 states, “for the purposes of determining major source status, the SSPE2 shall not include the quantity of emission reduction credits (ERC) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site.” This facility does not have ERCs, which have been banked at the source. Therefore, SSPE2 does not have to be adjusted.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE1 (lb/yr)</th>
<th>SSPE2 (lb/yr)</th>
<th>Major Source Threshold (lb/yr)</th>
<th>Existing Major Source?</th>
<th>Becoming a Major Source?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>0</td>
<td>530</td>
<td>20,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SOx</td>
<td>0</td>
<td>1</td>
<td>140,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PM10</td>
<td>0</td>
<td>9</td>
<td>140,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>0</td>
<td>87</td>
<td>200,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>0</td>
<td>13</td>
<td>20,000</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

As seen in the table above, the facility is not an existing Major Source and does not become a Major Source as a result of this project.
Rule 2410 Major Source Determination:

The facility or the equipment evaluated under this project is not listed as one of the categories specified in 40 CFR 52.21 (b) (1) (I). Therefore, the following PSD Major Source thresholds are applicable.

<table>
<thead>
<tr>
<th>PSD Major Source Determination (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Estimated Facility PE before Project Increase</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
</tr>
<tr>
<td>PSD Major Source ? (Y/N)</td>
</tr>
</tbody>
</table>

As shown above, the facility is not an existing major source for PSD for any pollutant. Therefore, the facility is not an existing major source for PSD.

The BE calculation (in lb/year) is performed pollutant-by-pollutant for each unit within the project to calculate the QNEC, and if applicable, to determine the amount of offsets required.

Pursuant to District Rule 2201, BE will equal PE1 for:
• Any unit located at a non-Major Source,
• Any Highly-Utilized Emissions Unit, located at a Major Source,
• Any Fully-Offset Emissions Unit, located at a Major Source, or
• Any Clean Emissions Unit, located at a Major Source.

Otherwise, BE will equal the Historic Actual Emissions (HAE), calculated pursuant to District Rule 2201. As shown above, the facility is not a Major Source for any pollutant.

7. SB 288 Major Modification:

SB 288 Major Modification is defined in 40 CFR Part 51.165 as "any physical change in or change in the method of operation of a major stationary source that would result in a significant net emissions increase of any pollutant subject to regulation under the Act." Since this facility is not a major source for any of the pollutants addressed in this project, this project does not constitute a SB 288 major modification.
8. Federal Major Modification

District Rule 2201 states that a Federal Major Modification is the same as a “Major Modification” as defined in 40 CFR 51.165 and part D of Title I of the CAA. Since this source is not included in the 28 specific source categories specified in 40 CFR 51.165, the increases in fugitive emissions are not included in the Federal Major Modification determination. Since this facility is not a Major Source for any pollutants, this project does not constitute a Federal Major Modification.

9. Quarterly Net Emissions Change (QNEC)

The QNEC is calculated solely to establish emissions that are used to complete the District’s PAS emissions profile screen. Detailed QNEC calculations are included in Appendix B.

10. Rule 2410 – Prevention of Significant Deterioration (PSD) Applicability Determination:

Rule 2410 applies to pollutants for which the District is in attainment or for unclassified pollutants. The pollutants addressed in the PSD applicability determination are listed as follows:

- NO₂ (as a primary pollutant)
- SO₂ (as a primary pollutant)
- CO
- PM
- PM₁₀
- Greenhouse gases (GHG): CO₂, N₂O, CH₄, HFCs, PFCs, and SF₆

The first step of this PSD applicability evaluation consists of determining whether the facility is an existing PSD Major Source. This facility is not an existing PSD Major source (See Section VII.C.5 of this document). In the case the facility is NOT an existing PSD Major Source, the second step of the PSD evaluation is to determine if the project, by itself, would be a PSD major source.

Potential to Emit of attainment/unclassified pollutant for New or Modified Emission Units vs PSD Significant Emission Increase Thresholds

As a screening tool, the potential to emit from all new and modified units is compared to the PSD significant emission increase thresholds, and if total potential to emit from all new and modified units is below this threshold, no further analysis will be needed.
PSD Major Source Determination: Potential to Emit (tons/yr)

<table>
<thead>
<tr>
<th></th>
<th>NO₂</th>
<th>VOC</th>
<th>SO₂</th>
<th>CO</th>
<th>PM</th>
<th>PM₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PE from New and Modified Units</td>
<td>0.27</td>
<td>0.007</td>
<td>0.001</td>
<td>0.04</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>PSD Major Source threshold</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>New PSD Major Source?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

As demonstrated above, because the project has a total potential to emit from all new and modified emission units below the PSD significant emission increase thresholds, this project is not subject to the requirements of Rule 2410 due to a significant emission increase and no further discussion is required.

VII. Compliance

Rule 2201 New and Modified Stationary Source Review Rule

A. Best Available Control Technology (BACT):

1. **BACT Applicability:**

 BACT requirements are triggered on a pollutant-by-pollutant basis and on an emissions unit-by-emissions unit basis for the following*:

 a) Any new emissions unit with a potential to emit exceeding 2.0 pounds per day,
 b) The relocation from one Stationary Source to another of an existing emissions unit with a potential to emit exceeding 2.0 pounds per day,
 c) Modifications to an existing emissions unit with a valid Permit to Operate resulting in an AIPE exceeding 2.0 pounds per day, and/or
 d) Any new or modified emissions unit, in a stationary source project, which results in a Major Modification.

 *Except for CO emissions from a new or modified emissions unit at a Stationary Source with an SSPE2 of less than 200,000 pounds per year of CO.

 a. New emissions units – PE > 2.0 lb/day

 These engines are each considered as a new emissions unit at the time of installation and the daily emissions from each engine is compared to the BACT thresholds in the following tables:
New Emissions Unit BACT Applicability

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Daily Emissions for unit -1-0 (lb/day)</th>
<th>BACT Threshold (lb/day)</th>
<th>SSPE2 (lb/yr)</th>
<th>BACT Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_x)</td>
<td>35.8</td>
<td>> 2.0</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>SO(_x)</td>
<td>0.1</td>
<td>> 2.0</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>1.0</td>
<td>> 2.0</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>6.5</td>
<td>> 2.0 and SSPE2 (\geq 200,000) lb/yr</td>
<td>87</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>1.2</td>
<td>> 2.0</td>
<td>N/A</td>
<td>No</td>
</tr>
</tbody>
</table>

BACT will be triggered for NO\(_x\) emissions for this engine.

New Emissions Unit BACT Applicability

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Daily Emissions for unit -2-0 (lb/day)</th>
<th>BACT Threshold (lb/day)</th>
<th>SSPE2 (lb/yr)</th>
<th>BACT Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_x)</td>
<td>182.8</td>
<td>> 2.0</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>SO(_x)</td>
<td>0.2</td>
<td>> 2.0</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>2.4</td>
<td>> 2.0</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>CO</td>
<td>28.9</td>
<td>> 2.0 and SSPE2 (\geq 200,000) lb/yr</td>
<td>87</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>3.8</td>
<td>> 2.0</td>
<td>N/A</td>
<td>Yes</td>
</tr>
</tbody>
</table>

BACT will be triggered for NO\(_x\), VOC and PM\(_{10}\) emissions for this engine.

b. Relocation of emissions units – PE > 2.0 lb/day

These engines are not being relocated from one stationary source to another stationary source as a result of this project.

c. Modification of emissions units – Adjusted Increase in Permitted Emissions (AIPE) > 2.0 lb/day

These engines are not being modified. Therefore, BACT is not triggered for the modification of emissions units with an AIPE > 2.0 lb/day.

d. Major Modification

This project does not constitute a Major Modification. Therefore, BACT is not triggered for a Major Modification.

2. **BACT Guideline:**

N-9855-1-0: BACT Guideline 3.1.4, which appears in Appendix D of this report, covers diesel-fired emergency IC engines powering fire pumps.
N-9855-2-0: BACT Guideline 3.1.1, which appears in Appendix D of this report, covers diesel-fired emergency IC engines.

3. Top Down BACT Analysis:

Per District Policy APR 1305, Section IX, “A top down BACT analysis shall be performed as a part of the Application Review for each application subject to the BACT requirements pursuant to the District’s NSR Rule for source categories or classes covered in the BACT Clearinghouse, relevant information under each of the following steps may be simply cited from the Clearinghouse without further analysis.”

N-9855-1-0: Pursuant to the attached top down BACT Analysis, which appears in Appendix D of this report, BACT is satisfied with:

NO\textsubscript{X}: Latest Available Tier Certification level for applicable horsepower

The applicant has proposed to install a 274 bhp Tier 3 certified IC engine that will use very low sulfur diesel fuel. Therefore, BACT is satisfied for NO\textsubscript{X}.

N-9855-2-0: Pursuant to the attached top down BACT Analysis, which appears in Appendix C of this report, BACT is satisfied with:

NO\textsubscript{X}, VOC: Latest Available Tier Certification level for the applicable horsepower
PM\textsubscript{10}: 0.15 g/bhp-hr, or less

The applicant has proposed to install a 909 bhp Tier 2 certified IC engine with a PM\textsubscript{10} emissions rate of 0.05 g/bhp-hr. Therefore, BACT is satisfied for NO\textsubscript{X}, VOC and PM\textsubscript{10}.

B. Offsets:

Since emergency standby IC engines are exempt from the offset requirements of Rule 2201, per Section 4.6.2, offsets are not required for these engines and offset calculations are not required.

C. Public Notification:

1. Applicability:

Public noticing is required for:

a. New Major Sources, which is a new facility that also becomes a Major Source,
b. Major Modifications,
c. Any new emissions unit with a Potential to Emit greater than 100 pounds during any one day for any one pollutant,
d. Any project which results in the offset thresholds being surpassed, and/or
e. Any project with an SSIPE of greater than 20,000 lb/year for any pollutant,
f. Title V Significant Modification.
a. **New Major Source**

A New Major Source is a new facility, which also becomes a major source. This is a new facility and does not become a Major Source from this project; public noticing is not required for this project for New Major Source purposes.

b. **Major Modification**

As demonstrated previously in Sections VII.C.7 and VII.C.8, this project does not constitute a Major Modification. Therefore, public noticing for Major Modification purposes is not required.

c. **PE > 100 lb/day**

The Daily PE for each of these new emission units is compared to the daily PE Public Notice Thresholds in the following tables:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Daily PE for unit -1-0 (lb/day)</th>
<th>Public Notice Threshold (lb/day)</th>
<th>Public Notice Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>35.8</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>SOX</td>
<td>0.1</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>PM10</td>
<td>1.0</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>6.5</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>1.2</td>
<td>100</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Daily PE for unit -2-0 (lb/day)</th>
<th>Public Notice Threshold (lb/day)</th>
<th>Public Notice Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>182.8</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>SOX</td>
<td>0.2</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>PM10</td>
<td>2.4</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>28.9</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>3.8</td>
<td>100</td>
<td>No</td>
</tr>
</tbody>
</table>

As detailed in the preceding table, NOx emissions from permit unit N-9855-2-0 exceed the pollutant public notice threshold and public noticing is required for this project.
d. Offset Threshold

The following table compares the SSPE1 and SSPE2 with the offset thresholds to determine if any offset thresholds are surpassed.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE1 (lb/yr)</th>
<th>SSPE2 (lb/yr)</th>
<th>Offset Threshold (lb/yr)</th>
<th>Public Notice Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
<td>0</td>
<td>530</td>
<td>20,000</td>
<td>No</td>
</tr>
<tr>
<td>SO\textsubscript{X}</td>
<td>0</td>
<td>1</td>
<td>54,750</td>
<td>No</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0</td>
<td>9</td>
<td>29,200</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>0</td>
<td>87</td>
<td>200,000</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>0</td>
<td>13</td>
<td>20,000</td>
<td>No</td>
</tr>
</tbody>
</table>

As detailed in the preceding table, there are no offset thresholds surpassed with this project. Therefore, public noticing is not required for this project.

e. SSIPE > 20,000 lb/year

Public notification is required for any permitting action that results in a Stationary Source Increase in Permitted Emissions (SSIPE) of more than 20,000 lb/year of any affected pollutant. According to District policy, the SSIPE is calculated as the Post Project Stationary Source Potential to Emit (SSPE2) minus the Pre-Project Stationary Source Potential to Emit (SSPE1), i.e. SSIPE will equal SSPE2 – SSPE1. The values for SSPE2 and SSPE1 are calculated according to Rule 2201, Sections 4.9 and 4.10, respectively. The SSIPE is compared to the SSIPE Public Notice thresholds in the following table:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE2 (lb/yr)</th>
<th>SSPE1 (lb/yr)</th>
<th>SSIPE (lb/yr)</th>
<th>SSIPE Threshold (lb/yr)</th>
<th>Public Notice Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
<td>530</td>
<td>0</td>
<td>530</td>
<td>20,000</td>
<td>No</td>
</tr>
<tr>
<td>SO\textsubscript{X}</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>20,000</td>
<td>No</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>20,000</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>87</td>
<td>0</td>
<td>87</td>
<td>20,000</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>20,000</td>
<td>No</td>
</tr>
</tbody>
</table>
As detailed in the preceding table, there are no SSIPE thresholds surpassed with this project. Therefore, public noticing is not required for exceeding the SSIPE thresholds.

f. Title V Significant Modification:

This facility is not a Major Source and has not been issued a Title V permit. Therefore, public noticing for a Title V Significant Modification is not required.

2. Public Notice Action

As discussed above, this project results in emissions exceeding the 100-lb/day threshold for NOx emissions from the emergency engine covered by permit unit N-9855-2-0. Therefore, public notice is required for this project.

D. Daily Emissions Limits

Daily Emissions Limitations (DELs) and other enforceable conditions are required by Section 3.15 to restrict a unit’s maximum daily emissions, to a level at or below the emissions associated with the maximum design capacity. Per Sections 3.15.1 and 3.15.2, the DEL must be contained in the latest ATC and contained in or enforced by the latest PTO and enforceable, in a practicable manner, on a daily basis. DELs are also required to enforce the applicability of BACT. For this emergency standby IC engine, the DELs are stated in the form of emission factors, the maximum engine horsepower rating, and the maximum operational time of 24 hours per day. Therefore, the following conditions will be listed on each ATC to ensure compliance:

N-9855-1-0:
- Emissions from this IC engine shall not exceed any of the following limits: 2.47 g-NOx/bhp-hr, 0.45 g-CO/bhp-hr, or 0.08 g-VOC/bhp-hr. [District Rule 2201 and 17 CCR 93115]

- Emissions from this IC engine shall not exceed 0.07 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, and 17 CCR 93115]

- Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, and 17 CCR 93115]

N-9855-2-0:
- Emissions from this IC engine shall not exceed any of the following limits: 3.80 g-NOx/bhp-hr, 0.60 g-CO/bhp-hr, or 0.08 g-VOC/bhp-hr. [District Rule 2201 and 17 CCR 93115]
• Emissions from this IC engine shall not exceed 0.05 g-PM$_{10}$/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, and 17 CCR 93115]

• Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, and 17 CCR 93115]

E. Compliance Assurance:

1. Source Testing
 Per District Practice, source testing is not required for emergency standby IC engines to demonstrate compliance with Rule 2201.

2. Monitoring
 Monitoring is not required to demonstrate compliance with Rule 2201.

3. Recordkeeping
 Recordkeeping is required to demonstrate compliance with the offset, public notification, and daily emission limit requirements of Rule 2201. As required by District Rule 4702, Stationary Internal Combustion Engines - Phase 2, this IC engine is subject to recordkeeping requirements. Recordkeeping requirements, in accordance with District Rule 4702, will be discussed in Section VIII, District Rule 4702, of this evaluation.

4. Reporting
 Reporting is not required to ensure compliance with Rule 2201.

F. Ambient Air Quality Analysis (AAQA):

An AAQA shall be conducted for the purpose of determining whether a new or modified Stationary Source will cause or make worse a violation of an air quality standard. The District’s Technical Services Division conducted the required analysis. Refer to Appendix C of this document for the AAQA summary sheet.

The proposed location is in an attainment area for NO$_x$, CO, and SO$_x$. As shown by the AAQA summary sheet the proposed equipment will not cause a violation of an air quality standard for NO$_x$, CO, or SO$_x$.

The proposed location is in a non-attainment area for the state’s PM$_{10}$ as well as federal and state PM$_{2.5}$ thresholds. As shown by the AAQA summary sheet the proposed equipment will not cause a violation of an air quality standard for PM$_{10}$ and PM$_{2.5}$.

Rule 2520 Federally Mandated Operating Permits

Since this facility’s potential to emit does not exceed any major source thresholds of Rule 2201, this facility is not a major source and Rule 2520 does not apply.
Rule 4001 New Source Performance Standards (NSPS)

40 CFR 60 Subpart III - Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

The District has not been delegated the authority to implement Subpart III requirements for non-Major Sources; therefore, no requirements shall be included on the permit.

Rule 4002 National Emission Standards for Hazardous Air Pollutants

The District has not been delegated the authority to implement NESHAP regulations for Area Source requirements for non-Major Sources; therefore, no requirements shall be included on the permit.

Rule 4101 Visible Emissions

Rule 4101 states that no air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. Therefore, the following condition will be listed on the ATC to ensure compliance:

- {15} No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]

Rule 4102 Nuisance

Rule 4102 states that no air contaminant shall be released into the atmosphere, which causes a public nuisance. Public nuisance conditions are not expected as a result of this operation provided the equipment is well maintained. Therefore, the following condition will be listed on the ATC to ensure compliance:

- {98} No air contaminant shall be released into the atmosphere, which causes a public nuisance. [District Rule 4102]

California Health & Safety Code 41700 (Health Risk Assessment)

District Policy APR 1905 - Risk Management Policy for Permitting New and Modified Sources (dated 3/2/01) specifies that for an increase in emissions associated with a proposed new source or modification, the District perform an analysis to determine the possible impact to the nearest resident or worksite.

The District performed an analysis pursuant to the District's Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015) to determine the possible cancer and non-cancer health impact to the nearest resident or worksite. This policy
requires that an assessment be performed on a unit by unit basis, project basis, and on a facility-wide basis. If a preliminary prioritization analysis demonstrates that:

- A unit’s prioritization score is less than the District’s significance threshold and;
- The project’s prioritization score is less than the District’s significance threshold and;
- The facility’s total prioritization score is less than the District’s significance threshold

Then, generally, no further analysis is required.

The District’s significant prioritization score threshold is defined as being equal to or greater than 1.0. If a preliminary analysis demonstrates that either the unit(s) or the project’s or the facility’s total prioritization score is greater than the District threshold, a screening or a refined assessment is required.

If a refined assessment is greater than one in a million but less than 20 in one million for carcinogenic impacts (Cancer Risk) and less than 1.0 for the Acute and Chronic hazard indices (Non-Carcinogenic) on a unit by unit basis, project basis and on a facility-wide basis the proposed application is considered less than significant. For unit’s that exceed a cancer risk of 1 in one million, Toxic Best Available Control Technology (T-BACT) must be implemented.

Toxic emissions for this project were calculated using the following methods:

- Toxic emissions for the proposed unit were calculated and provided by the processing engineer.

These emissions were input into the San Joaquin Valley APCD’s Hazard Assessment and Reporting Program (SHARP). In accordance with the District’s Risk Management Policy, risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 2016 CAPCOA Facility Prioritization Guidelines. The prioritization score for this proposed facility was greater than 1.0 (see RMR Summary Table below). Therefore, a refined health risk assessment was required. See details of the RMR Summary in Appendix C.

<table>
<thead>
<tr>
<th>Units</th>
<th>Prioritization Score</th>
<th>Acute Hazard Index</th>
<th>Chronic Hazard Index</th>
<th>Maximum Individual Cancer Risk</th>
<th>T-BACT Required</th>
<th>Special Permit Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
<td>N/A</td>
<td>0.00</td>
<td>4.78E-08</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>0.13</td>
<td>N/A</td>
<td>0.00</td>
<td>3.85E-08</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Project Totals</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
<td>8.63E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Totals</td>
<td>>1</td>
<td>0.00</td>
<td>0.00</td>
<td>8.63E-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Acute Hazard Index was not calculated for Units 1 and 2 since there is no risk factor or the risk factor is so low that it has been determined to be insignificant for these types of units.

The following conditions will be listed on the ATCs to ensure compliance with the RMR:

Unit N-9855-1-0:
1. The PM$_{10}$ emissions rate shall not exceed 0.07 g/bhp-hr based on US EPA certification using ISO 8178 test procedure.
2. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.

3. This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year.

Unit N-9855-2-0:
1. The PM$_{10}$ emissions rate shall not exceed 0.05 g/bhp-hr based on US EPA certification using ISO 8178 test procedure.
2. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.
3. This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year.

Rule 4201 Particulate Matter Concentration

Particulate matter emissions from the engine will be less than or equal to the rule limit of 0.1 grain per cubic foot of gas at dry standard conditions as shown by the following:

N-9855-1-0:

\[
\frac{g - PM}{bhp - hr} \times \frac{1 bhp - hr}{2,542.5 Btu} \times \frac{10^6 Btu}{8,578 dscf} \times \frac{0.35 Btu_{out}}{1 Btu_{in}} \times \frac{15.43 grain}{g} = 0.02 \text{ grain-PM/dscf}
\]

Since 0.02 grain-PM/dscf is ≤ to 0.1 grain per dscf, compliance with Rule 4201 is expected.

N-9855-2-0:

\[
\frac{g - PM}{bhp - hr} \times \frac{1 bhp - hr}{2,542.5 Btu} \times \frac{10^6 Btu}{8,578 dscf} \times \frac{0.35 Btu_{out}}{1 Btu_{in}} \times \frac{15.43 grain}{g} = 0.01 \text{ grain-PM/dscf}
\]

Since 0.01 grain-PM/dscf is ≤ to 0.1 grain per dscf, compliance with Rule 4201 is expected.

Therefore, the following condition will be listed on each ATC permit to ensure compliance:

- {14} Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration.
 [District Rule 4201]

Rule 4701 Internal Combustion Engines – Phase 1

District Rule 4701 is applicable to diesel-fired emergency standby or emergency IC engines. Rule 4702 is at least as stringent as this rule in all aspects. Therefore, compliance with that rule will ensure compliance with Rule 4701.
Rule 4702 Internal Combustion Engines – Phase 2

The purpose of this rule is to limit the emissions of nitrogen oxides (NO\textsubscript{X}), carbon monoxide (CO), and volatile organic compounds (VOC) from internal combustion engines.

This rule applies to any internal combustion engine with a rated brake horsepower greater than 50 horsepower.

Permit unit N-9855-1-0: Pursuant to Section 4.3, except for the requirements of Section 6.2.3, the requirements of this rule shall not apply to an internal combustion engine that meets the following conditions:

1) The engine is operated exclusively to preserve or protect property, human life, or public health during a disaster or state of emergency, such as a fire or flood, and
2) Except for operations associated with Section 4.3.1.1, the engine is limited to operate no more than 100 hours per calendar year as determined by an operational nonresettable elapsed operating time meter, for periodic maintenance, periodic readiness testing, and readiness testing during and after repair work of the engine, and
3) The engine will be operated with a nonresettable elapsed operating time meter. In lieu of installing a nonresettable time meter, the owner of an engine may use an alternative device, method, or technique, in determining operating time, provided that the alternative is approved by the APCO. The owner of the engine shall properly maintain and operate the time meter or alternative device in accordance with the manufacturer’s instructions.

Therefore, the emergency IC engine involved with this project will only have to meet the requirements of Section 6.2.3 of this Rule.

Section 6.2.3 requires that an owner claiming an exemption under Section 4.2 or Section 4.3 shall maintain annual operating records. This information will be retained for at least five years, shall be readily available, and submitted to the APCO upon request and at the end of each calendar year in a manner and form approved by the APCO. Therefore, the following conditions will be listed on the ATC to ensure compliance:

- {3816} This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. For testing purposes, the engine shall only be operated the number of hours necessary to comply with the testing requirements of the National Fire Protection Association (NFPA) 25 - "Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems", 1998 edition. Total hours of operation for all maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year. [District Rule 4702 and 17 CCR 93115]

- {3809} This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year. [District Rule 4702 and 17 CCR 93115]
• {3489} The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, and the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.). For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

• {3475} All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]

• {3476} All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. For units at unstaffed sites or operated remotely, records may be maintained and retained at a District-approved off-site location. [District Rule 4702 and 17 CCR 93115]

In addition, the following conditions will be listed on the ATC to ensure compliance:

• {3404} This engine shall be equipped with an operational non-resettable elapsed time meter or other APCO approved alternative. [District Rule 4702]

• {3807} An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rule 4702]

The following table demonstrates how the proposed engine covered by permit unit N-9855-2-0 will comply with the requirements of District Rule 4702.

<table>
<thead>
<tr>
<th>District Rule 4702 Requirements Emergency Standby IC Engines</th>
<th>Proposed Method of Compliance with District Rule 4702 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation of emergency standby engines is limited to 100 hours or less per calendar year for non-emergency purposes, verified by the use of a non-resettable elapsed operating time meter.</td>
<td>The Air Toxic Control Measure for Stationary Compression Ignition Engines (Stationary ATCM) limits these engines for maintenance and testing purposes to 50 hours/year. Thus, compliance is expected.</td>
</tr>
<tr>
<td>Emergency standby engines cannot be used to reduce the demand for electrical power when normal electrical power line service has not failed, or to produce power for the electrical distribution system, or in conjunction with a voluntary utility demand reduction program or interruptible power contract.</td>
<td>The following conditions will be included on each permit:</td>
</tr>
<tr>
<td></td>
<td>• {3807} An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rules 4701 and 4702]</td>
</tr>
<tr>
<td>• {3808} This engine shall not be used to produce power for the electrical distribution system, as part of a voluntary utility demand reduction program, or for an interruptible power contract. [District Rules 4701 and 4702]</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>The following condition will be included on the permit:</td>
<td></td>
</tr>
<tr>
<td>• {3478} During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example: check engine fluid levels, battery, cables and connections; change engine oil and filters; replace engine coolant; and/or other operational characteristics as recommended by the manufacturer or supplier). [District Rules 4701 and 4702]</td>
<td></td>
</tr>
<tr>
<td>The owner/operator must monitor the operational characteristics of each engine as recommended by the engine manufacturer or emission control system supplier.</td>
<td></td>
</tr>
<tr>
<td>The following conditions will be included on the permit:</td>
<td></td>
</tr>
<tr>
<td>• {3496} The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]</td>
<td></td>
</tr>
<tr>
<td>Records of the total hours of operation of the emergency standby engine, type of fuel used, purpose for operating the engine, all hours of non-emergency and emergency operation, and support documentation must be maintained. All records shall be retained for a period of at least five years, shall be readily available, and be made available to the APCO upon request.</td>
<td></td>
</tr>
<tr>
<td>• The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]</td>
<td></td>
</tr>
<tr>
<td>• {3475} All records shall be maintained and retained on-site for a minimum of five years, and shall be made available for District inspection upon request. [District Rules 4701 and 4702 and 17 CCR 93115]</td>
<td></td>
</tr>
</tbody>
</table>
Rule 4801 Sulfur Compounds

Rule 4801 requires that sulfur compound emissions (as SO₂) shall not exceed 0.2% by volume. Using the ideal gas equation, the sulfur compound emissions are calculated as follows:

\[
\text{Volume SO}_2 = \frac{n \times R \times T}{P}
\]

\[
n = \text{moles SO}_2
\]

\[
T \text{ (standard temperature)} = 60 \, ^\circ\text{F} \text{ or } 520 \, ^\circ\text{R}
\]

\[
R \text{ (universal gas constant)} = \frac{10.73 \, \text{psi} \cdot \text{ft}^3}{\text{lb} \cdot \text{mol} \cdot ^\circ\text{R}}
\]

\[
\frac{0.000015 \, \text{lb} - \text{fuel}}{\text{lb}} \times \frac{7.1 \, \text{lb}}{\text{gal}} \times \frac{64 \, \text{lb} - \text{SO}_2}{\text{lb}} \times \frac{1 \, \text{MMBtu}}{9,051 \, \text{scf}} \times \frac{1 \, \text{gal}}{0.137 \, \text{MMBtu}} \times \frac{1 \, \text{lb} - \text{mol}}{64 \, \text{lb} - \text{SO}_2} \times \frac{10.73 \, \text{psi} \cdot \text{ft}^3}{\text{lb} - \text{mol} \cdot ^\circ\text{R}} \times \frac{520 \, ^\circ\text{R}}{14.7 \, \text{psi}} \times \frac{1}{1,000,000} = 1.0 \, \text{ppmv}
\]

Since 1.0 ppmv is \(\leq\) 2,000 ppmv, each engine is expected to comply with Rule 4801. Therefore, the following condition will be listed on the ATC to ensure compliance:

- Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, and 17 CCR 93115]

California Health & Safety Code 42301.6 (School Notice)

The District has verified that this site is not located within 1,000 feet of a school. Therefore, pursuant to California Health and Safety Code 42301.6, a school notice is not required.

Title 17 California Code of Regulations (CCR), Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines

The following discussion applies to permit unit N-9855-1-0.

Emergency Operating Requirements:

This regulation stipulates that no owner or operator shall operate any new or in-use stationary diesel-fueled compression ignition (CI) emergency standby engine, in response to the notification of an impending rotating outage, unless specific criteria are met.

This section applies to emergency standby IC engines that are permitted to operate during non-emergency conditions for the purpose of providing electrical power. However, District Rule 4702 states that emergency standby IC engines may only be operated during non-emergency conditions for the purposes of maintenance and testing. Therefore, this section does not apply and no further discussion is required.
Fuel and Fuel Additive Requirements:

This regulation also stipulates that as of January 1, 2006 an owner or operator of a new or in-use stationary diesel-fueled CI emergency standby engine shall fuel the engine with CARB Diesel Fuel.

Since the engine involved with this project is a new or in-use stationary diesel-fueled CI emergency standby engine, these fuel requirements are applicable. Therefore, the following condition (previously proposed in this engineering evaluation) will be listed on the ATC to ensure compliance:

- [3395] Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801 and 17 CCR 93115]

At-School and Near-School Provisions:

This regulation stipulates that no owner or operator shall operate a new stationary emergency diesel-fueled CI engine, with a PM$_{10}$ emissions factor $>$ than 0.01 g/bhp-hr, for non-emergency use, including maintenance and testing, during the following periods:

1. Whenever there is a school sponsored activity, if the engine is located on school grounds, and
2. Between 7:30 a.m. and 3:30 p.m. on days when school is in session, if the engine is located within 500 feet of school grounds.

The District has verified that the engine is not located within 500 feet of a K-12 school. Therefore, conditions prohibiting non-emergency usage of the engine during school hours will not be placed on the permit.

Recordkeeping Requirements:

This regulation stipulates that as of January 1, 2005, each owner or operator of an emergency diesel-fueled CI engine shall keep a monthly log of usage that shall list and document the nature of use for each of the following:

- Emergency use hours of operation;
- Maintenance and testing hours of operation;
- Hours of operation for emission testing;
- Initial start-up hours; and
- If applicable, hours of operation to comply with the testing requirements of National Fire Protection Association (NFPA) 25 — “Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems,” 1998 edition;
- Hours of operation for all uses other than those specified in sections ‘a’ through ‘d’ above; and
- For in-use emergency diesel-fueled engines, the fuel used. The owner or operator shall document fuel use through the retention of fuel purchase records that account for
all fuel used in the engine and all fuel purchased for use in the engine, and, at a minimum, contain the following information for each individual fuel purchase transaction:

I. Identification of the fuel purchased as either CARB Diesel, or an alternative diesel fuel that meets the requirements of the Verification Procedure, or an alternative fuel, or CARB Diesel fuel used with additives that meet the requirements of the Verification Procedure, or any combination of the above;
II. Amount of fuel purchased;
III. Date when the fuel was purchased;
IV. Signature of owner or operator or representative of owner or operator who received the fuel; and
V. Signature of fuel provider indicating fuel was delivered.

The proposed emergency diesel IC engine powering a firewater pump is exempt from the operating hours limitation provided the engine is only operated the amount of hours necessary to satisfy National Fire Protection Association (NFPA) regulations. Therefore, the following conditions will be listed on the ATC to ensure compliance:

- (3489) The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, and the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.). For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

- (3475) All records shall be maintained and retained on-site for a minimum of five (5) years and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]

- (edited 3486) Emissions from this IC engine shall not exceed 0.08 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102 and 13 CCR 2423 and 17 CCR 93115]

- (3809) This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year. [District Rule 4702 and 17 CCR 93115]

PM Emissions and Hours of Operation Requirements for New Diesel Engines:

This regulation stipulates that as of January 1, 2005, no person shall operate any new stationary emergency diesel-fueled CI engine that has a rated brake horsepower greater
than 50, unless it meets all of the following applicable emission standards and operating requirements.

1. Emits diesel PM at a rate greater than 0.01 g/bhp-hr or less than or equal to 0.15 g/bhp-hr; or
2. Meets the current model year diesel PM standard specified in the Off-Road Compression Ignition Engine Standards for off-road engines with the same maximum rated power (Title 13 CCR, Section 2423), whichever is more stringent; and
3. Does not operate more than 50 hours per year for maintenance and testing purposes.
 Engine operation is not limited during emergency use and during emissions source testing to show compliance with the ATCM.

The proposed emergency diesel IC engine powering a firewater pump is exempt from the operating hour’s limitation provided the engine is only operated the amount of hours necessary to satisfy National Fire Protection Association (NFPA) regulations. Therefore, the following conditions will be listed on the ATC to ensure compliance:

- {edited 3486} Emissions from this IC engine shall not exceed 0.07 g-PM/10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102 and 13 CCR 2423 and 17 CCR 93115]
- {3816} This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. For testing purposes, the engine shall only be operated the number of hours necessary to comply with the testing requirements of the National Fire Protection Association (NFPA) 25 - “Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems”, 1998 edition. Total hours of operation for all maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year. [District Rule 4702 and 17 CCR 93115]

The following requirements apply to new engines (those installed after 1/1/2005) and applies to permit unit N-9855-2-0:

<table>
<thead>
<tr>
<th>Title 17 CCR Section 93115 Requirements for New Emergency IC Engines Powering Electrical Generators</th>
<th>Proposed Method of Compliance with Title 17 CCR Section 93115 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency engines must be fired on CARB diesel fuel, or an approved alternative diesel fuel.</td>
<td>The applicant has proposed the use of CARB certified diesel fuel. The proposed permit condition, requiring the use of CARB certified diesel fuel, is included on each permit.</td>
</tr>
<tr>
<td>The engine must meet the emission standards in Table 1 of the ATCM for the specific power rating and model year of</td>
<td>• {4258} Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, and 17 CCR 93115]</td>
</tr>
<tr>
<td></td>
<td>The applicant has proposed the use of an engine that is certified to the latest EPA Tier Certification standards for the applicable horsepower range, guaranteeing</td>
</tr>
<tr>
<td>The proposed engine.</td>
<td>compliance with the emission standards of the ATCM. Additionally, the proposed diesel PM emissions rate is less than or equal to 0.15 g/bhp-hr.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>The engine may not be operated more than 50 hours per year for maintenance and testing purposes unless the PM emissions are (\leq 0.01) g/bhp-hr, then the engine is allowed 100 hours per year. Emissions from this engine are certified at 0.05 g/bhp-hr, therefore the engine is allowed 50 hours.</td>
<td>The following conditions will be included on the permit:</td>
</tr>
<tr>
<td>• Emissions from this IC engine shall not exceed 0.05 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, and 17 CCR 93115]</td>
<td>• Emissions from this IC engine shall not exceed 0.05 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, and 17 CCR 93115]</td>
</tr>
<tr>
<td>• {4920} This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rules 2201, 4102, and 4702, and 17 CCR 93115]</td>
<td>• {4920} This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rules 2201, 4102, and 4702, and 17 CCR 93115]</td>
</tr>
<tr>
<td>A non-resettable hour meter with a minimum display capability of 9,999 hours shall be installed upon engine installation, or by no later than January 1, 2005, on all engines subject to all or part of the requirements of sections 93115.6, 93115.7, or 93115.8(a) unless the District determines on a case-by-case basis that a non-resettable hour meter with a different minimum display capability is appropriate in consideration of the historical use of the engine and the owner or operator’s compliance history.</td>
<td>The following condition will be included on the permit:</td>
</tr>
<tr>
<td>• {4749} This engine shall be equipped with a non-resettable hour meter with a minimum display capability of 9,999 hours, unless the District determines that a non-resettable hour meter with a different minimum display capability is appropriate in consideration of the historical use of the engine and the owner or operator’s compliance history. [District Rule 4702 and 17 CCR 93115]</td>
<td>• {4749} This engine shall be equipped with a non-resettable hour meter with a minimum display capability of 9,999 hours, unless the District determines that a non-resettable hour meter with a different minimum display capability is appropriate in consideration of the historical use of the engine and the owner or operator’s compliance history. [District Rule 4702 and 17 CCR 93115]</td>
</tr>
<tr>
<td>An owner or operator shall maintain monthly records of the following: emergency use hours of operation; maintenance and testing hours of operation; hours of operation for emission testing; initial start-up testing hours; hours of operation for all other uses; and the type of fuel used. All records shall be retained for a minimum of 36 months.</td>
<td>The following conditions will be included on the permit:</td>
</tr>
<tr>
<td>• {3496} The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]</td>
<td>• {3496} The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]</td>
</tr>
<tr>
<td>• {4263} The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]</td>
<td>• {4263} The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]</td>
</tr>
</tbody>
</table>
All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]

California Environmental Quality Act (CEQA)

The California Environmental Quality Act (CEQA) requires each public agency to adopt objectives, criteria, and specific procedures consistent with CEQA Statutes and the CEQA Guidelines for administering its responsibilities under CEQA, including the orderly evaluation of projects and preparation of environmental documents. The San Joaquin Valley Unified Air Pollution Control District (District) adopted its Environmental Review Guidelines (ERG) in 2001.

The basic purposes of CEQA are to:

- Inform governmental decision-makers and the public about the potential, significant environmental effects of proposed activities.
- Identify the ways that environmental damage can be avoided or significantly reduced.
- Prevent significant, avoidable damage to the environment by requiring changes in projects through the use of alternatives or mitigation measures when the governmental agency finds the changes to be feasible.
- Disclose to the public the reasons why a governmental agency approved the project in the manner the agency chose if significant environmental effects are involved.

The District performed an Engineering Evaluation (this document) for the proposed project and determined that the project qualifies for ministerial approval under the District’s Guideline for Expedited Application Review (GEAR). Section 21080 of the Public Resources Code exempts from the application of CEQA those projects over which a public agency exercises only ministerial approval. Therefore, the District finds that this project is exempt from the provisions of CEQA.

Indemnification Agreement/Letter of Credit Determination

According to District Policy APR 2010 (CEQA Implementation Policy), when the District is the Lead or Responsible Agency for CEQA purposes, an indemnification agreement and/or a letter of credit may be required. The decision to require an indemnity agreement and/or a letter of credit is based on a case-by-case analysis of a particular project’s potential for litigation risk, which in turn may be based on a project’s potential to generate public concern, its potential for significant impacts, and the project proponent’s ability to pay for the costs of litigation without a letter of credit, among other factors.

The criteria pollutant emissions and toxic air contaminant emissions associated with the proposed project are not significant, and there is minimal potential for public concern for this particular type of facility/operation. Therefore, an Indemnification Agreement and/or a Letter of Credit will not be required for this project in the absence of expressed public concern.
IX. Recommendation:

Compliance with all applicable prohibitory rules and regulations is expected. Issue the Authority to Construct permits subject to the conditions on the attached permits.

X. Billing Information:

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Fee Schedule</th>
<th>Fee Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-9855-1-0</td>
<td>3020-10-C</td>
<td>274 bhp ($290)</td>
</tr>
<tr>
<td>N-9855-2-0</td>
<td>3020-10-E</td>
<td>909 bhp ($723)</td>
</tr>
</tbody>
</table>

Appendix A - Authority to Construct permits N-9855-1-0 and N-9855-2-0
Appendix B - QNEC Calculations
Appendix C - RMR Summary
Appendix D – BACT Guidelines and Top-down Analysis
Appendix A

Authority to Construct Permits N-9855-1-0 and N-9855-2-0
Appendix B
QNEC Calculations

Quarterly Net Emissions Change (QNEC)

The Quarterly Net Emissions Change is used to complete the emission profile screen for the District’s PAS database. The QNEC shall be calculated as follows:

\[\text{QNEC} = \text{PE2} - \text{PE1} \]

where:
- \(\text{QNEC} \) = Quarterly Net Emissions Change for each emissions unit, lb/qtr
- \(\text{PE2} \) = Post-Project Potential to Emit for each emissions unit, lb/qtr
- \(\text{PE1} \) = Pre-Project Potential to Emit for each emissions unit, lb/qtr

Using the emission calculations in this evaluation, \(\text{PE}_{\text{quarterly}} \) and \(\text{BE}_{\text{quarterly}} \) can be calculated as follows:

This calculation is required for application emission profile purposes. It is assumed that each unit’s annual emissions are evenly distributed throughout the year as follows: \(\Delta \text{PE} \) (lb/qtr) = \(\text{PE} \) (lb/yr) / 4 qtr/yr

\[\Delta \text{PENOx} = 149 \text{ lb-NOx/year} - 0 \text{ lb-NOx/year} = 149 \text{ lb/year} \]
\[\Delta \text{PECO} = 27 \text{ lb-CO/year} - 0 \text{ lb-CO/year} = 27 \text{ lb/year} \]
\[\Delta \text{PEVOC} = 4 \text{ lb-VOC/year} - 0 \text{ lb-VOC/year} = 4 \text{ lb/year} \]
\[\Delta \text{PEPM10} = 5 \text{ lb-PM10/year} - 0 \text{ lb-PM10/year} = 5 \text{ lb/year} \]
\[\Delta \text{PESOx} = 0 \text{ lb-SOx/year} - 0 \text{ lb-SOx/year} = 0 \text{ lb/year} \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Quarter} & \text{NOx} & \text{CO} & \text{VOC} & \text{PM}_{10} & \text{SOx} \\
\hline
1 & 37 & 6 & 1 & 1 & 0 \\
2 & 37 & 7 & 1 & 1 & 0 \\
3 & 37 & 7 & 1 & 1 & 0 \\
4 & 38 & 7 & 1 & 2 & 0 \\
\hline
\end{array}
\]

\[\Delta \text{PENOx} = 381 \text{ lb-NOx/year} - 0 \text{ lb-NOx/year} = 381 \text{ lb/year} \]
\[\Delta \text{PECO} = 60 \text{ lb-CO/year} - 0 \text{ lb-CO/year} = 60 \text{ lb/year} \]
\[\Delta \text{PEVOC} = 8 \text{ lb-VOC/year} - 0 \text{ lb-VOC/year} = 8 \text{ lb/year} \]
\[\Delta \text{PEPM10} = 5 \text{ lb-PM10/year} - 0 \text{ lb-PM10/year} = 5 \text{ lb/year} \]
\[\Delta \text{PESOx} = 1 \text{ lb-SOx/year} - 0 \text{ lb-SOx/year} = 1 \text{ lb/year} \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Quarter} & \text{NOx} & \text{CO} & \text{VOC} & \text{PM}_{10} & \text{SOx} \\
\hline
1 & 95 & 15 & 2 & 1 & 0 \\
2 & 95 & 15 & 2 & 1 & 0 \\
3 & 95 & 15 & 2 & 2 & 0 \\
4 & 96 & 15 & 2 & 2 & 1 \\
\hline
\end{array}
\]
Appendix C
RMR Summary

Date: August 24, 2020
Facility Name: Amazon.com Services LLC - TCY5
Location: 6250 Promontory Parkway, Tracy, CA
Application No: N-9855-1-0
Project No: N-1203602

Summary:

RMR:

<table>
<thead>
<tr>
<th>Units</th>
<th>Prioritization Score</th>
<th>Acute Hazard Index</th>
<th>Chronic Hazard Index</th>
<th>Maximum Individual Cancer Risk</th>
<th>T-BACT Required</th>
<th>Special Permit Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
<td>N/A</td>
<td>0.00</td>
<td>4.78E-08</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>0.13</td>
<td>N/A</td>
<td>0.00</td>
<td>3.85E-08</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Project Totals</td>
<td>0.23</td>
<td>N/A</td>
<td>0.00</td>
<td>8.63E-08</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Facility Totals</td>
<td>>1</td>
<td>N/A</td>
<td>0.00</td>
<td>8.63E-08</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:
1. Acute Hazard Index was not calculated for Units 1 and 2 since there is no risk factor or the risk factor is so low that it has been determined to be insignificant for these types of units.

AAQA:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Air Quality Standard (State/Federal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Hour</td>
</tr>
<tr>
<td>CO</td>
<td>N/A^2</td>
</tr>
<tr>
<td>NOx</td>
<td>N/A^2</td>
</tr>
<tr>
<td>SOx</td>
<td>N/A^2</td>
</tr>
<tr>
<td>PM_{10}</td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td>N/A^2</td>
</tr>
</tbody>
</table>

Notes:
1. Results were taken from the attached AAQA Report.
2. The project is an intermittent source as defined in APR-1920. In accordance with APR-1920, compliance with short-term (i.e., 1-hour, 3-hour, 8-hour, and 24-hour) standards is not required.
3. The criteria pollutants are below EPA’s level of significance as found in 40 CFR Part 51.165 (b)(2) unless otherwise noted.
4. Modeled PM_{10} concentrations were below the District SIL for non-fugitive sources of 1 μg/m^3 for the annual concentration.
5. Modeled PM_{2.5} concentrations were below the District SIL for non-fugitive sources of 0.2 μg/m^3 for the annual concentration.

Proposed Permit Requirements

To ensure that human health risks will not exceed District allowable levels; the following shall be included as requirements for:
Unit # 1-0
1. The PM$_{10}$ emissions rate shall not exceed 0.07 g/bhp-hr based on US EPA certification using ISO 8178 test procedure.
2. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.
3. This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year.

Unit # 2-0
1. The PM$_{10}$ emissions rate shall not exceed 0.05 g/bhp-hr based on US EPA certification using ISO 8178 test procedure.
2. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.
3. This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year.

Project Description:
Technical Services received a request on August 21, 2020 to perform a Risk Management Review (RMR) and Ambient Air Quality Analysis (AAQA) for the following:

• Unit -1-0: 274 BHP JOHN DEERE MODEL 6068HFC48B EMERGENCY ENGINE (TIER 3 CERTIFIED) POWERING A FIRE PUMP
• Unit 2-0: 909 BHP JOHN DEERE MODEL 6068HFC48B EMERGENCY ENGINE (TIER 3 CERTIFIED) POWERING AN ELECTRIC GENERATOR

RMR Report:
Analysis:
The District performed an analysis pursuant to the District’s Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015) to determine the possible cancer and non-cancer health impact to the nearest resident or worksite. This policy requires that an assessment be performed on a unit by unit basis, project basis, and on a facility-wide basis. If a preliminary prioritization analysis demonstrates that:

• A unit’s prioritization score is less than the District’s significance threshold and;
• The project’s prioritization score is less than the District’s significance threshold and;
• The facility’s total prioritization score is less than the District’s significance threshold

Then, generally, no further analysis is required.

The District’s significant prioritization score threshold is defined as being equal to or greater than 1.0. If a preliminary analysis demonstrates that either the unit’s or the project’s or the facility’s total prioritization score is greater than the District threshold, a screening or a refined assessment is required.

If a refined assessment is greater than one in a million but less than 20 in one million for carcinogenic impacts (Cancer Risk) and less than 1.0 for the Acute and Chronic hazard
indices (Non-Carcinogenic) on a unit by unit basis, project basis and on a facility-wide basis the proposed application is considered less than significant. For units that exceed a cancer risk of 1 in one million, Toxic Best Available Control Technology (TBACT) must be implemented.

Toxic emissions for this project were calculated using the following methods:

- Toxic emissions for the proposed unit were calculated and provided by the processing engineer.

These emissions were input into the San Joaquin Valley APCD's Hazard Assessment and Reporting Program (SHARP). In accordance with the District’s Risk Management Policy, risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 2016 CAPCOA Facility Prioritization Guidelines. The prioritization score for this proposed facility was greater than 1.0 (see RMR Summary Table). Therefore, a refined health risk assessment was required.

The AERMOD model was used, with the parameters outlined below and meteorological data for 2004-2008 from Tracy (rural dispersion coefficient selected) to determine the dispersion factors (i.e., the predicted concentration or \(X \) divided by the normalized source strength or \(Q \)) for a receptor grid. These dispersion factors were input into the SHARP Program, which then used the Air Dispersion Modeling and Risk Tool (ADMRT) of the Hot Spots Analysis and Reporting Program Version 2 (HARP 2) to calculate the chronic and acute hazard indices and the carcinogenic risk for the project.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Source Process Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Id</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point Source Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Id</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

AAQA Report:

The District modeled the impact of the proposed project on the National Ambient Air Quality Standard (NAAQS) and/or California Ambient Air Quality Standard (CAAQS) in accordance with District Policy APR-1925 (Policy for District Rule 2201 AAQA Modeling) and EPA’s Guideline for Air Quality Modeling (Appendix W of 40 CFR Part 51). The District uses a progressive three level approach to perform AAQAs. The first level (Level 1) uses a very conservative approach. If this analysis indicates a likely exceedance of an AAQS or Significant Impact Level (SIL), the analysis proceeds to the second level (Level 2) which implements a more refined approach. For the 1-hour \(\text{NO}_2 \) standard, there is also a third level that can be implemented if the Level 2 analysis indicates a likely exceedance of an AAQS or SIL.

The modeling analyses predicts the maximum air quality impacts using the appropriate emissions for each standard’s averaging period. Required model inputs for a refined AAQA include
background ambient air quality data, land characteristics, meteorological inputs, a receptor grid, and source parameters including emissions. These inputs are described in the sections that follow. Ambient air concentrations of criteria pollutants are recorded at monitoring stations throughout the San Joaquin Valley. Monitoring stations may not measure all necessary pollutants, so background data may need to be collected from multiple sources. The following stations were used for this evaluation:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Station Name</th>
<th>County</th>
<th>City</th>
<th>Measurement Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>TRACY AIRPORT</td>
<td>San Joaquin</td>
<td>Tracy</td>
<td>2018</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>TRACY AIRPORT</td>
<td>San Joaquin</td>
<td>Tracy</td>
<td>2018</td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>Manteca</td>
<td>San Joaquin</td>
<td>Manteca</td>
<td>2018</td>
</tr>
<tr>
<td>SOx</td>
<td>Fresno - Garland</td>
<td>Fresno</td>
<td>Fresno</td>
<td>2018</td>
</tr>
</tbody>
</table>

Technical Services performed modeling for directly emitted criteria pollutants with the emission rates below:

<table>
<thead>
<tr>
<th>Emission Rates (lbs/hour)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Id</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emission Rates (lbs/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Id</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

* The project is an intermittent source as defined in APR-1920. In accordance with APR-1920, compliance with short-term (i.e. 1-hour, 3-hour, 8-hour, and 24-hour) standards is not required.

The AERMOD model was used to determine if emissions from the project would cause or contribute to an exceedance of any state of federal air quality standard. The parameters outlined below and meteorological data for 2004-2008 from Tracy (rural dispersion coefficient selected) were used for the analysis:

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Point Source Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit ID</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Conclusion:

RMR:

The cumulative acute and chronic indices for this facility, including this project, are below 1.0; and the cumulative cancer risk for this facility, including this project, is less than 20 in a million. In addition, the cancer risk for each unit in this project is less than 1.0 in a million. In accordance with the District's Risk Management Policy, the project is approved without Toxic Best Available Control Technology (T-BACT).
To ensure that human health risks will not exceed District allowable levels; the permit requirements listed on page 1 of this report must be included for this proposed unit. These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

AAQA:
The emissions from the proposed equipment will not cause or contribute significantly to a violation of the State and National AAQS.

Attachments
A. Modeling request from the project engineer
B. Additional information from the applicant/project engineer
C. Prioritization score w/ toxic emissions summary
D. Facility Summary
E. AAQA results
Appendix D

BACT Guidelines and BACT Analyses
San Joaquin Valley
Unified Air Pollution Control District
Best Available Control Technology (BACT) Guideline 3.1.4

Emissions Unit: Emergency Diesel Fired IC Engine
Powering a Fire Pump

Industry Type: All

Equipment Rating: All

Last Update: March 2, 2020

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved-in-Practice or contained in SIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
</tr>
<tr>
<td>VOC</td>
<td></td>
</tr>
</tbody>
</table>
| CO | • 0.1 grams/bhp-hr\(^1\) (if TBACT\(^2\) is triggered)
 • 0.15 grams/bhp-hr (if TBACT\(^2\) is not triggered) |
| PM10 | Diesel fuel with sulfur content no greater than 0.0015% by weight |
| SOx | |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a state implementation plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

\(^1\) Any engine model included in the ARB or EPA diesel engine certification lists and identified as having a PM10 emission rate of 0.149 g/bhp-hr or less, based on ISO 8178 test procedure, shall be deemed to me the 0.1 g/bhp-hr requirement.

\(^2\) A site-specific Health Risk Analysis is used to determine if T-BACT is triggered.

This is a Summary Page for this Class of Source - Permit Specific BACT Determinations on Next Pages
Top Down BACT Analysis for the Emergency IC Engine N-9855-1-0:

This application was deemed complete on August 20, 2020. Therefore, BACT Guideline 3.1.4 (August 20, 2020) was in effect at the time the project was deemed complete and is the applicable BACT Guideline for this emergency diesel IC engine. In accordance with the District BACT policy, information from that guideline will be utilized without further analysis.

1. BACT Analysis for NO\textsubscript{x} Emissions:
 a. Step 1 - Identify all control technologies

 BACT Guideline 3.1.1 identifies only the following option:

 - Latest EPA Tier Certification level for applicable horsepower range

 To determine the latest applicable Tier level, the following steps were taken:

 - Conduct a survey of all the emergency IC engines permitted in the District to determine the latest EPA Tier certification level that has been permitted for the proposed engine size
 - Conduct a survey of the major IC engine manufacturers/genset vendors to determine the latest EPA Tier certification level that is readily available for the proposed engine size and use
 - Review Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines to determine the latest Tier certification level required in California for the proposed engine size

 Survey of Permitted Units:
 A review of the emergency standby fire pump IC engines permitted in the District revealed that the District has permitted 98+ Tier 3 certified emergency standby fire pump CI engines, ranging in size from 86 bhp to 575 bhp.

 The following permitted units were found which utilize Tier 4I IC engines:

 - C-8915-1-0 (64 BHP JOHN DEERE MODEL 4045TF290 TIER 4I)
 - S-8324-1-0 (64 BHP JOHN DEERE MODEL JU4H-UFAEE8 TIER 4I)
 - S-8689-1-0 (64 BHP JOHN DEERE MODEL 4045TF290 TIER 4I)

 There have been no Tier 4F certified units permitted.

 Survey of IC Engine Manufacturers/Genset Vendors:
 An internet search for emergency standby fire pump IC engines revealed only one manufacturer, Clark Fire (http://www.clarkefire.com/), which offers Tier 2 and Tier 3 certified units. No Tier 4F certified units could be found.

 Stationary ATCM:
 The requirements set forth in Table 2 of CARB’s Stationary Air Toxic Control Measure (ATCM) for stationary emergency standby diesel-fired IC engines are summarized in the table below.

BACT Analysis - 1
Table 2: Emission Standards for New Stationary Emergency Standby Direct-Drive Fire Pump Engines > 50 BHP in g/bhp-hr (equivalent EPA Tier level)

<table>
<thead>
<tr>
<th>Maximum Engine Power</th>
<th>NMHC+NOx</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ≤ bhp < 75</td>
<td>3.5 (Tier 4i)</td>
<td>3.7 (Tier 4i)</td>
</tr>
<tr>
<td>75 ≤ bhp < 100</td>
<td>3.5 (Tier 3)</td>
<td>3.7 (Tier 3)</td>
</tr>
<tr>
<td>100 ≤ bhp < 175</td>
<td>3.0 (Tier 3)</td>
<td>3.7 (Tier 3)</td>
</tr>
<tr>
<td>175 ≤ bhp < 750</td>
<td>3.0 (Tier 3)</td>
<td>2.6 (Tier 3)</td>
</tr>
<tr>
<td>≥ 750 bhp</td>
<td>4.8 (Tier 2)</td>
<td>2.6 (Tier 2)</td>
</tr>
</tbody>
</table>

Summary:
Based on a survey of currently permitted units, manufacturer availability, and State ATCM requirements, the District considers the following table to represent the latest available EPA Tier certification levels for this class and category of source at this time:

<table>
<thead>
<tr>
<th>Engine Size</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ≤ bhp < 100</td>
<td>Tier 4i</td>
<td>Tier 4i</td>
<td>Tier 4i</td>
</tr>
<tr>
<td>100 ≤ bhp < 750</td>
<td>Tier 3</td>
<td>Tier 3</td>
<td>Tier 3</td>
</tr>
<tr>
<td>≥ 750 bhp</td>
<td>Tier 2</td>
<td>Tier 3</td>
<td>Tier 2</td>
</tr>
</tbody>
</table>

b. Step 2 - Eliminate technologically infeasible options
The control option listed in Step 1 is not technologically infeasible.

c. Step 3 - Rank remaining options by control effectiveness
Ranking is not necessary since there is only one control option listed in Step 1.

d. Step 4 - Cost Effectiveness Analysis
The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.

e. Step 5 - Select BACT
The applicant has proposed to install a 274 bhp Tier 3 certified IC engine. Therefore, BACT for NOx is satisfied.
Best Available Control Technology (BACT) Guideline 3.1.1

Last Update: 6/13/2019

Emergency Diesel IC Engine

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>0.15 g/bhp-hr or the Latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent. (ATCM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td>Very low sulfur diesel fuel (15 ppmw sulfur or less)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a state implementation plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.
Top Down BACT Analysis for the Emergency IC Engine N-9855-2-0:

This application was deemed complete on July 29, 2020. Therefore, BACT Guideline 3.1.1 (June 13, 2019) was in effect at the time the project was deemed complete and will be used for this emergency diesel IC engine. In accordance with the District BACT policy, information from that guideline will be utilized without further analysis.

1. BACT Analysis for NOx and VOC Emissions:

 a. Step 1 - Identify all control technologies

 BACT Guideline 3.1.1 identifies only the following option:

 - **Latest EPA Tier Certification level for applicable horsepower range**

 To determine the latest applicable Tier level, the following steps were taken:

 - Conduct a survey of all the emergency IC engines permitted in the District to determine the latest EPA Tier certification level that has been permitted for the proposed engine size

 - Conduct a survey of the major IC engine manufacturers/genset vendors to determine the latest EPA Tier certification level that is readily available for the proposed engine size and use

 - Review Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines to determine the latest Tier certification level required in California for the proposed engine size

Survey of Permitted Units:
The proposed emergency IC engine is rated at 909 bhp. Based on the latest survey of all permitted emergency IC engines powering electrical generators in the horsepower range applicable to the proposed unit, the District found that a Tier 2 certification level is the highest certification level that has been permitted for an IC engine of the size associated with the proposed project.

Survey of IC Engine Manufacturers/Genset Vendors:
Based on the latest survey of the major IC engine/genset manufacturers and vendors (Cummins, Caterpillar, Kohler, MQ Power, etc.) to determine the availability of Tier 4F certified units in the size range associated with the proposed project that are suitable for stationary emergency standby applications, the District concluded that no Tier 4F certified unit is suitable and available for stationary emergency standby use in the size range appropriate for the proposed project.

Stationary ATCM:
Table 1 of the CARB Stationary Air Toxic Control Measure (ATCM) for stationary emergency standby diesel-fired IC engines requires a Tier 2 certification level for IC engines rated greater than 750 bhp. The ATCM does not require a Tier certification level higher than Tier 2 for engines rated greater than 750 bhp.
Summary:
The proposed emergency IC engine is rated at 909 bhp. The District has not permitted any emergency diesel-fired IC engines rated greater than 750 bhp with a tier certification level higher than Tier 2. Moreover, according to the engine manufacturers and genset vendors contacted, a Tier 2 certification level is the latest available for a 909 bhp emergency standby diesel-fired IC engine powering a generator.

Based on the above analysis, the District finds that a Tier 4F emergency IC engine/generator with a rating of approximately 909 bhp is not readily available.

Consequently, the District considers a Tier 2 certification level to be the latest available Tier certification level for the proposed engine size. Furthermore, a Tier 2 certification level satisfies the stationary ATCM requirement for emergency standby IC engines rated greater than 750 bhp.

b. Step 2 - Eliminate technologically infeasible options

The control option listed in Step 1 is not technologically infeasible.

c. Step 3 - Rank remaining options by control effectiveness

Ranking is not necessary since there is only one control option listed in Step 1.

d. Step 4 - Cost Effectiveness Analysis

The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.

e. Step 5 - Select BACT

BACT for NOx and VOC will be the use of an EPA Tier 2 certified engine. The applicant is proposing such a unit. Therefore, BACT will be satisfied.
2. BACT Analysis for PM\textsubscript{10} Emissions:

a. Step 1 - Identify all control technologies

 BACT Guideline 3.1.1 identifies only the following option:

 • 0.15 g/bhp-hr or the latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent. (ATCM)

b. Step 2 - Eliminate technologically infeasible options

 The control option listed in Step 1 is not technologically infeasible.

c. Step 3 - Rank remaining options by control effectiveness

 Ranking is not necessary since there is only one control option listed in Step 1.

d. Step 4 - Cost Effectiveness Analysis

 The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.

e. Step 5 - Select BACT

 BACT for PM\textsubscript{10} is emissions of 0.15 g/hp-hr, or less. The applicant is proposing an engine with PM\textsubscript{10} emissions of 0.05 g/bhp-hr that meets this requirement. Therefore, BACT will be satisfied.