Table of Contents

List of Acronyms .. 3
Overview ... 4
Section 1 – Evaluation of Emission Sources and Community Impact .. 5
 1.1 Facility Description .. 5
 1.2 Sensitive Receptors ... 5
 1.3 Emission Sources ... 8
 1.4 Wind Rose Analysis .. 10
Section 2 – Proposed Fence-line Monitoring Systems and Site Locations 15
 2.1 Monitoring Technology Descriptions .. 15
 2.2 Proposed Locations for Monitoring Equipment .. 17
 2.3 Generic Timeline for SJR System Implementation ... 19
Section 3 – Data Presentation to the Public .. 20
Section 4 – Data Management .. 25
 4.1 Quality Assurance Project Plan (QAPP) and Standard Operating Procedures (SOPs) 27
Appendix A – Emission Inventory ... 31
List of Acronyms

APCO - Air Pollution Control Officer
BTEX – Benzene, Toluene, Ethylbenzene, Xylene
CAL/OSHA – California Division of Occupational Safety and Health
CARB – California Air Resources Board
EPA – Environmental Protection Agency
GC – Gas Chromatograph
H₂S – Hydrogen Sulfide
HARP - Hotspots Analysis and Reporting Program
LDL – Lower Detection Limit
OEHHA – Office of Environmental Health Hazard Assessment
MET – Meteorological Station
NOx – Nitrous Oxide
PPB – Parts per Billion
QA/QC – Quality Assurance / Quality Control
QAPP – Quality Assurance Project Plan
REL – Recommended Exposure Limit
SJVAPCD – San Joaquin Valley Air Pollution Control District
SJR – San Joaquin Refinery
SO₂ – Sulfur Dioxide
SOP – Standard Operating Procedure
UDL – Upper Detection Limit
Overview

On December 19, 2019, the San Joaquin Valley Air Pollution Control District (SJVAPCD) adopted a new rule: Rule 4460 concerning Petroleum Refinery Fence-line Air Monitoring.

Rule 4460 requires petroleum refineries operating under SJVAPCD’s jurisdiction with refining capacity less than 40,000 barrels per day to submit to the District a written fence-line air monitoring plan for establishing and operating a real-time monitoring system. The plan is to consider the monitoring for benzene, toluene, ethylbenzene, and xylene (BTEX) gases, as well as hydrogen sulfide (H₂S), and sulfur dioxide (SO₂) gases. The purpose of the monitoring plan is to evaluate potential hazards to at-risk populations located near the refinery, present a list of air monitoring systems to be used to measure the emissions at the boundary of the refinery, and to present the information from the air monitoring systems to the public on a real-time basis. The critical tasks addressed in the development of the plan are included in the following sections:

- **Section 1** presents an evaluation of emission sources and community impact associated with emissions from the San Joaquin Refinery. This includes locating the individuals and organizations who might be considered sensitive receptors within a one-mile boundary of the refinery, along with the using of dispersion modeling and wind rose analysis to evaluate downwind impacts to communities.
- **Section 2** presents the proposed site locations for the fence-line air monitoring systems at the San Joaquin Refinery and an evaluation of specific fence-line air monitoring systems to be used to detect refinery emissions at the fence line.
- **Section 3** presents an overview of the presentation of the fence-line data to the public including a real-time public access website.
- **Section 4** presents the data management program including an outline of the Quality Assurance Project Plan.
- **Appendix A** presents the emission data used to model the downwind impact of the target pollutants.
Section 1 – Evaluation of Emission Sources and Community Impact

1.1 Facility Description

The San Joaquin Refinery (SJR) is located in Bakersfield, California and specializes in supplying products for numerous applications including printing inks, lubricants, rubber and plastics, adhesives, paints and coatings, electrical insulating, fuels, road paving, asphalt recycling, and roofing. SJR feed stock includes refining San Joaquin Valley Heavy Naphthenic crude oil for developing its product. The facility produces less than 40,000 barrels per day of end goods.

1.2 Sensitive Receptors

SJR performed an extensive search of individuals and organizations who might be considered sensitive receptors within a one-mile boundary of the refinery. A real-time website will enable sensitive receptors as well as any individual in the community to evaluate when a detection of pollutants from the fence-line system is above normal background levels. This information can then be used by the interested parties to take appropriate action to minimize exposure from refinery emissions. Table 1.1 lists the potential sensitive receptors based on direction from the refinery. Table 1.2 shows a list of sensitive receptors located within a mile of the fence line boundary of the refinery.

Table 1.1 – Potential Sensitive Receptors Based on Direction from Refinery

<table>
<thead>
<tr>
<th>Cardinal Direction from Fence Line</th>
<th>Sensitive Receptors within a One-mile Area of the Bakersfield Refinery Fence Line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schools/Daycare</td>
</tr>
<tr>
<td>North</td>
<td></td>
</tr>
<tr>
<td>Northwest</td>
<td>X</td>
</tr>
<tr>
<td>Northeast</td>
<td>X</td>
</tr>
<tr>
<td>South</td>
<td>X</td>
</tr>
<tr>
<td>Southwest</td>
<td></td>
</tr>
<tr>
<td>Southeast</td>
<td>X</td>
</tr>
<tr>
<td>East</td>
<td></td>
</tr>
<tr>
<td>West</td>
<td></td>
</tr>
</tbody>
</table>
Table 1.2 – SJR Sensitive Receptors with Addresses and GPS Coordinates

<table>
<thead>
<tr>
<th>Name and Type</th>
<th>Address</th>
<th>GPS Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beardsley Junior High School-School</td>
<td>1001 Roberts Ln, Bakersfield, CA 93308</td>
<td>35.420160, -119.058740</td>
</tr>
<tr>
<td>Beardsley Elementary School-School</td>
<td>1001 Roberts Ln, Bakersfield, CA 93308</td>
<td>35.420160, -119.058740</td>
</tr>
<tr>
<td>San Lauren Elementary School-School</td>
<td>5210 Victor St, Bakersfield, CA 93308</td>
<td>35.407870, -119.060440</td>
</tr>
<tr>
<td>Flight Fit N Fun - Recreation Center</td>
<td>3200 Buck Owens Blvd Ste 100, Bakersfield, CA 93308</td>
<td>35.388760, -119.042220</td>
</tr>
<tr>
<td>Galaxy Gymnastics & Tumbling - Recreation Center</td>
<td>3101 Gilmore Ave #200, Bakersfield, CA 93308</td>
<td>35.388770, -119.040970</td>
</tr>
<tr>
<td>MCS CrossFit - Recreation Center</td>
<td>2620 Gibson St, Bakersfield, CA 93308</td>
<td>35.384720, -119.051700</td>
</tr>
<tr>
<td>Ferny Jiu Jitsu - Recreation Center</td>
<td>3104 Fairhaven Dr, Bakersfield, CA 93308</td>
<td>35.388450, -119.054310</td>
</tr>
<tr>
<td>Care Medical - Health Care</td>
<td>3232 Rio Mirada Dr # B3, Bakersfield, CA 93308</td>
<td>35.399310, -119.040470</td>
</tr>
<tr>
<td>Coram Healthcare - Health Care</td>
<td>3101 Sillect Ave # 109, Bakersfield, CA 93308</td>
<td>35.387780, -119.038210</td>
</tr>
<tr>
<td>Priority Care Clinic - Health Care</td>
<td>3012 Sillect Ave suite c, Bakersfield, CA 93308</td>
<td>35.386100, -119.040480</td>
</tr>
<tr>
<td>Kern Family Health Care - Health Care</td>
<td>2900 Buck Owens Blvd, Bakersfield, CA 93308</td>
<td>35.386100, -119.040480</td>
</tr>
<tr>
<td>Bakersfield Mobile Home Park - Residential</td>
<td>33219 Gulf St, Bakersfield, CA 93308</td>
<td>35.393030, -119.040200</td>
</tr>
</tbody>
</table>
Figure 1.1 shows the location of several types of sensitive receptors with respect to the refinery, including schools and childcare facilities, adult health facilities, recreation areas, and residential areas.

Figure 1.1 – Sensitive Receptors within a Mile Radius of the SJR Refinery Fence Line
1.3 Emission Sources

In order to determine the optimal location to site fence-line air monitoring equipment at the San Joaquin Refinery, annual emissions of applicable pollutants were used for input into a screening dispersion model, which was then used to determine conservative estimates of downwind impact on local communities. Total facility emissions used for the modeling, and the process of evaluating and determining their potential impact on downwind communities, followed guidelines outlined by the SJVAQMD. The emission source information was compiled from the Hotspots Analysis and Reporting Program (HARP) and used to determine source location. A map of the emission sources for the San Joaquin Refinery is shown in Figure 1.2.

Figure 1.2 [Map of Emission Sources]
It was decided to specifically focus on screening atmospheric dispersion models that could provide a conservative over-estimation of the impacts of the emissions at the refinery to see the worst-case impacts from the facility using the emission rates provided. The EPA SCREEN 3 model was selected, due to its international acceptance, either as an industry standard and/or regulatory use. It is designed to predict pollution concentrations from a continuous point, flare, area, line, and volume sources. In addition, the model was set up to give the worst-case scenario for emission releases based on the facility emission inventory. Downwind community impact was estimated by modeling release from the center of the refinery at low temperature and low release height to wind rose analysis gave an idea of the predominant wind directions for the dispersion of pollutants. This also provided an idea of which fence lines were going to receive the major impact.

Evaluation of what pollutants to monitor:

The result of this modeling for routine operations is shown in Table 1.3. The wind rose analysis is discussed below. Since all of these above-listed gases may be present during an unplanned release, the fence-line system will include technologies that have the capabilities to detect BTEX, H₂S, and SO₂ as a method of determining potential impact to the community when an unplanned release occurs.

Table 1.3 – Maximum Hourly Impact of Pollutants Modeled for Routing Operations

<table>
<thead>
<tr>
<th>Source</th>
<th>1 hr. Recommended Exposure Limit (REL)(ppb)</th>
<th>Maximum Ground Level Concentration 0.3 miles (ppb)</th>
<th>Maximum Ground Level Concentration at Nearest Community (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>8.6</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Toluene</td>
<td>9964</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>TBD</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Xylene</td>
<td>5142</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>30</td>
<td>0.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>
1.4 Wind Rose Analysis

In addition to the modelling data, wind roses were generated using data obtained from the Figures 1.3 through 1.7. They show the wind roses from annual and seasonal data in 2018 and are superimposed on the SJR site location.* The residential communities closest to the refinery are located to the northeast. Analysis of the wind data shows that on an annual basis the percentage of time winds are blowing toward the northeast is minimal. Data source - Bakersfield Municipal Airport

Figure 1.3 – Winter (December – February) Wind Rose at San Joaquin Refinery
Figure 1.4 – Spring (March – May) Wind Rose at San Joaquin Refinery
Figure 1.5 – Summer (June – August) Wind Rose at San Joaquin Refinery
Figure 1.6 – Fall (September – November) Wind Rose at San Joaquin Refinery
Figure 1.7 shows the wind rose generated from annual and seasonal data in 2018 superimposed on the SJR site location. The community closest to the refinery is located to the northeast. Analysis of the wind data shows that on an annual basis, the winds are blowing toward the northeast less than ten percent of the time.

Figure 1.7 - Annual Wind Rose
Section 2 – Proposed Fence-line Monitoring Systems and Site Locations

The most suitable technology to detect refinery emissions at the SJR during non-routine events are systems that can detect benzene, toluene, ethylbenzene, and xylene (BTEX) gases, as well as hydrogen sulfide (H₂S), and sulfur dioxide (SO₂) gases. A brief discussion of the system along with the technology used for meteorological measurements are given below.

2.1 Monitoring Technology Descriptions

Open-path UV Air Monitoring Systems

The measurements of BTEX gases and SO₂ can be achieved using a short path (less than 50 meters) open-path UV-DOAS air monitoring system. The light source for a short path system is a deuterium lamp which is different from a long-path system that uses a xenon lamp. The benefit of a deuterium lamp is it enables the UV-DOAS system to identify and quantify gases in the spectral region where gases such as H₂S absorb light. These systems are comparable to point sampling stations used by regulatory agencies to measure gases in the ambient air.

The UV-DOAS air monitoring system detects benzene, toluene, ethylbenzene, xylene, and sulfur dioxide on a real-time basis using beams of ultraviolet light. A beam of light is sent out in the open air to a reflector at the other end of the beam path. The light beam is then transmitted back to the base unit where the light spectra is analyzed. The system identifies gases by examining the wavelengths of UV light that have been absorbed by the gases present in the light beam. The amount of gas in the air is proportional to the amount of light absorbed at specific wavelengths.

The system uses a multivariate method to quantify data. This analytic approach is critical to ensure false detections of gas do not occur. Each target gas has a spectral library of gases covering the concentration range of the analyzer. It also includes libraries of potential interfering gases such as oxygen and ozone. In addition, the system has the ability of undergoing data and quality assurance checks in the field by using a sealed gas cell that contains the target gases. It is anticipated the length of time needed for routine maintenance will be less than four hours per month.

Hydrogen Sulfide Point Monitoring System

Hydrogen sulfide (H₂S) will be monitored using Teledyne/Advanced Pollution Instrumentation (Teledyne/API) T101 hydrogen sulfide analyzers. In the T101 analyzer, sulfur dioxide is removed from the sample gas in a scrubber. Hydrogen sulfide in the sample gas then is converted into sulfur dioxide in a molybdenum converter operating at 315 °C, designed to minimize conversion of reduced sulfur species other than hydrogen sulfide. Sulfur dioxide then is measured through excitation by ultraviolet (UV) light, where sulfur dioxide molecules absorb UV light and become excited at one wavelength, then decay to a
lower energy state emitting UV light at a different wavelength. The emitted light is captured on a photomultiplier tube through a bandpass filter tuned to wavelengths emitted by excited sulfur dioxide molecules and is translated into a reading of hydrogen sulfide concentration. The instruments will be configured to collect and record data in five-minute averages.

Meteorological Station

In addition to the air monitoring equipment, a meteorological station (MET) will be installed at the refinery. The station will provide wind speed, wind direction, temperature, and relative humidity measurements. With both open-path methods or point detection, using the data in combination with the metrological data from a MET station located on site is helpful in determining where sources of gases come from, and in which direction the gases are moving.

Table 2.1 – Monitoring Technology Detection Limits

<table>
<thead>
<tr>
<th>Distance (25 meters)</th>
<th>Path 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>LDL (ppb)</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.9</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>12</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>2.0</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>2.1</td>
</tr>
<tr>
<td>Toluene</td>
<td>2.8</td>
</tr>
<tr>
<td>Xylene</td>
<td>1.6</td>
</tr>
</tbody>
</table>

* Detection limits were determined using EPA Method TO-16 and may vary due to field conditions

Backup Monitoring Equipment

In the event the UV-DOAS system is offline for extended periods of time, (> 96 hours), SJR will provide temporary monitoring using 24-hr volatile organic compound (VOC) canister sampling.
2.2 Proposed Locations for Monitoring Equipment

Based on the modeling analysis and wind rose analysis, most emissions are transported from the refinery a southeasterly direction. For this reason, the design of the location of the monitoring equipment for BTEX gases, H\textsubscript{2}S, and SO\textsubscript{2} is intended to capture pollutants transported in this direction where a community is within one mile of the refinery fence line. The following analysis presents the siting evaluation for each sector of the refinery:

Northwest Side of Refinery - Based on the wind rose analysis, there is minimal impact on the community located Northwest of the refinery.

Southeast Side of Refinery - Based on the air dispersion, modeling emissions from the refinery will impact the community southeast of the refinery a significant amount of the time. For this reason, a short-path UV monitor that detects benzene, toluene, ethylbenzene, xylene, hydrogen sulfide, and sulfur dioxide on a real-time basis will be placed to cover the southeast side of the refinery. The location of the analyzer and the Met Station are presented in Figure 2.1 as location number one.

Southwest Side of the Refinery - Based in the wind rose analysis, there is minimal impact on the community located Northeast of the refinery.
Figure 2.1 presents the proposed locations for the fence-line air monitoring systems at the San Joaquin Refinery. Table 2.1 presents the specific site information associated with the proposed monitoring equipment.

Figure 2.1 - Map of Fence-Line Monitoring

<table>
<thead>
<tr>
<th>Location Identifier</th>
<th>Equipment</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monitoring Station</td>
<td>35° 23’ 45.15 N</td>
<td>119° 02’ 43.66” W</td>
</tr>
</tbody>
</table>
2.3 Generic Timeline for SJR System Implementation

Figure 2.2

<table>
<thead>
<tr>
<th>TASK</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic Timeline for SJR</td>
<td></td>
</tr>
<tr>
<td>Instrument Procurement</td>
<td>6</td>
</tr>
<tr>
<td>Integration</td>
<td>2</td>
</tr>
<tr>
<td>Factory Acceptance Testing</td>
<td>1</td>
</tr>
<tr>
<td>Shipment</td>
<td>1</td>
</tr>
<tr>
<td>Installation</td>
<td>1</td>
</tr>
<tr>
<td>Site Acceptance Test</td>
<td>2</td>
</tr>
<tr>
<td>Physical Setup</td>
<td></td>
</tr>
<tr>
<td>Scope Out Trailer Design Elements</td>
<td>2</td>
</tr>
<tr>
<td>Procure Monitoring Station</td>
<td>10</td>
</tr>
<tr>
<td>Deliver Monitoring Station</td>
<td>1</td>
</tr>
<tr>
<td>Secure Foundation</td>
<td>1</td>
</tr>
<tr>
<td>Install Electrical Panel</td>
<td>2</td>
</tr>
<tr>
<td>Install Sample Train</td>
<td>1</td>
</tr>
<tr>
<td>Install Hardware</td>
<td>1</td>
</tr>
<tr>
<td>Site Acceptance Test</td>
<td>2</td>
</tr>
<tr>
<td>Website</td>
<td></td>
</tr>
<tr>
<td>Website Development</td>
<td>4</td>
</tr>
<tr>
<td>Testing</td>
<td>4</td>
</tr>
<tr>
<td>Run Non-Public Website</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2.3

<table>
<thead>
<tr>
<th>Generic Timeline for SJR</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Procurement</td>
<td>6</td>
</tr>
<tr>
<td>Integration</td>
<td>2</td>
</tr>
<tr>
<td>Factory Acceptance Testing</td>
<td>1</td>
</tr>
<tr>
<td>Shipment</td>
<td>1</td>
</tr>
<tr>
<td>Installation</td>
<td>1</td>
</tr>
<tr>
<td>Site Acceptance Test</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Setup</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope Out Trailer Design Elements</td>
<td>2</td>
</tr>
<tr>
<td>Procure Monitoring Station</td>
<td>10</td>
</tr>
<tr>
<td>Deliver Monitoring Station</td>
<td>1</td>
</tr>
<tr>
<td>Secure Foundation</td>
<td>1</td>
</tr>
<tr>
<td>Install Electrical Panel</td>
<td>2</td>
</tr>
<tr>
<td>Install Sample Train</td>
<td>1</td>
</tr>
<tr>
<td>Install Hardware</td>
<td>1</td>
</tr>
<tr>
<td>Site Acceptance Test</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Website</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website Development</td>
<td>4</td>
</tr>
<tr>
<td>Testing</td>
<td>4</td>
</tr>
<tr>
<td>Run Non-Public Website</td>
<td>4</td>
</tr>
</tbody>
</table>
Section 3 – Data Presentation to the Public

All air monitoring equipment specified for the SJR fence-line system will collect data from the analyzer every five minutes and be transmitted to an Internet website where the real-time results can be viewed by the public. Figure 3.1 provides an example of how the monitoring data will be communicated.

Figure 3.1 - Data Communication System

The community website will include a message board to inform the public of relevant information as needed. For example, the message board may be updated when an analyzer is undergoing maintenance, QA/QC checks are being conducted, or in other conditions where an analyzer is not in an operational state for an extended period. In addition, the public will be able to send E-mails suggesting enhancements to the public access website or any other issue of interest to the community. Data from the fence-line monitors will be transmitted to an Internet website where the near-real-time results can be viewed.

General Description of the Community Website

As part of the fence-line monitoring program, a public website will be created to educate the public on the information provided by the fence-line monitoring system. The site will present air monitor readings and is designed as an educational tool to inform the community, as well as answer questions about the air monitoring system used to capture these readings. The website will include four major sections:

- Learning Center
- Resources and Contacts
- Real-time Data
- Reports and Archives

Learning Center

The website will include a learning center to educate the public on the information provided on the site,
which will include the following elements:

- Where the fence-line monitors are located
- Why these locations were selected
- What chemicals are being monitored
- What equipment is being used
- Terms and definitions

Resources and Contacts

Resources and contact information will be provided for the general public to inquire about this website, the monitoring program, and resources associated with the possible health effects of the toxics being monitored. Resource links will include:

- The 24-hour phone number provided by SJR
- The contractor operating and maintaining the fence-line system
- The San Joaquin Valley Air Pollution Control District (SJVAPCD)
- The California EPA Air Resources Board (CARB)
- The California Division of Occupational Safety and Health (Cal/OSHA)
- The California Office of Environmental Health Hazard Assessment
- The U.S. Environmental Protection Agency
- The World Health Organization

Real-time Data Display

Data will be updated from the analyzer every five minutes and displayed as one-hour and eight-hour averages. In addition, the website will include a method for the general public to sign up for notifications that will give them status updates associated with the community website. These updates will include notifications when instrument readings are above preset levels, an instrument is offline or inoperable, when maintenance is being performed on the instruments, and when any other significant event associated with the fence-line monitoring programs occurs. The website will include the following:

- Information regarding the analyte measured and the measurement techniques
- Discussion of levels of concern for each measured analyte
- Definition of data QC flags
- When monitor or system is offline, flag/notification identified online explaining the loss of data
- Links to additional sources of information, as necessary
- Details of how the public can report experiences and provide comments and feedback for improvement of the website and other data dissemination tools and the monitoring activities in general
Reports and Archives

The public will be provided access to an archive of air quality monitoring reports gathered by the air quality monitoring system. Figures 3.2 through 3.4 present the website concept for the fence-line monitoring system.

Figure 3.2 – San Joaquin Refinery Community Website Home Screen
When the San Joaquin button is clicked, an interactive map will be seen that consists of:

- Short-path UV monitor, H₂S Point Monitor, and MET, with labels (SJR boundary lines added, if needed)
- An information box with an accompanying arrow to indicate wind direction and speed
- A consistently updating table below the map (not shown in this concept) that lists all the detectable gases, and their current detected concentrations
Alternative Communications Methods
Other methods of communicating the data to the public include the following:

- Automated email notification system
 - Click on the “subscribe” button on the Contact Us page.
 - Enter email for notifications.
- Published quarterly data summary reports
Section 4 – Data Management

Data generated by the fence-line monitoring equipment will undergo review throughout the measurement and reporting process. Included in this process are automated QA/QC checks that occur before data is reported on the real-time website. A complete description of the quality assurance project plan (QAPP) is included in the Quality Assurance Project Plan for the San Joaquin Fence-Line Monitoring Program. Under normal circumstances, a measurement will appear on the website within 10 minutes of the end of the measurement period. All data generated by the monitoring equipment will be retained for a period of five years after collection.

However, the data uploaded may be impacted by Internet traffic. An automated system conducts the Q/A checks before the data is reported to the website. The site will also make available a rolling 24-hour trend of the five-minute data for each gas reported. Table 4.1 lists the real-time automated data quality checks.

Table 4.1 – Real-time Data Quality Checks

<table>
<thead>
<tr>
<th>Real-Time Check</th>
<th>Check</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Error Code</td>
<td>Instrument Error Code</td>
<td>Real-time website reports "offline" message. E-mail sent to SJR and fence-line contractor. Website message board updated to inform community that analyzer troubleshooting underway. Website updated when system is back online.</td>
</tr>
<tr>
<td>Instrument Workstation Offline</td>
<td>Instrument Communication Check</td>
<td>Real-time website reports "offline" message. E-mail sent to SJR and fence-line contractor. Website message board updated to inform community that computer workstation troubleshooting underway. Website updated when system is back online.</td>
</tr>
<tr>
<td>Internet Connection Lost</td>
<td>Backup Connection Enabled</td>
<td>E-mail sent to SJR and fence-line contractor. Community is not notified because backup connection will be enabled.</td>
</tr>
<tr>
<td>High Detection</td>
<td>Valid Data Detection Above Threshold</td>
<td>Real-time website indicates detection above alarm threshold by color change for gas. Notification sent to SJR and fence-line contractor. Contractor will examine raw data to validate detection. SJR will initiate investigation into source. Message board on website will be updated with information as available.</td>
</tr>
</tbody>
</table>
The entire fence-line system is continually monitored for system performance. This includes the instruments, workstations, and Internet communication hardware. If at any time an element of the system fails to meet performance criteria, a message is generated and sent to key personnel at SJR and the contractor who will begin activities to correct the problem. If an issue cannot be immediately corrected, the real-time website will be updated with a notification explaining the problem and the corrective action activities. Table 4.2 lists elements and the performance thresholds.

Table 4.2 - Real-time Instrument Performance Checks

<table>
<thead>
<tr>
<th>Problem</th>
<th>Notification</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzer offline</td>
<td>Notification sent to contractor and SJR</td>
<td>Website updated with analyzer offline message. Technician dispatched to correct issue.</td>
</tr>
<tr>
<td>Workstation fails</td>
<td>Notification sent to contractor and SJR</td>
<td>Website updated with analyzer offline message. Technician dispatched to correct issue.</td>
</tr>
<tr>
<td>Internet communication failure</td>
<td>Notification sent to contractor and SJR</td>
<td>Backup Internet connection activated</td>
</tr>
</tbody>
</table>

In addition to the real-time data checks, data from the fence-line system will be reviewed and validated monthly with the results stored in a separate portion of the monitoring database from the raw data. Data review and validation include but are not limited to the following:

- Non-field data such as calibration data
- Spurious data associated with power or mechanical issues

Data that has been flagged as non-valid will be retained along with a notation for the reason it was flagged. Table 4.3 summarizes the process by which monitoring data is reviewed and post processed.
Table 4.3 – Monthly Data Validation Checks

<table>
<thead>
<tr>
<th>Post Process Data Check</th>
<th>Check</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-field Data Check</td>
<td>Maintenance logs and QA/QC logs will be checked to see when systems were not in normal operating mode.</td>
<td>Quality Assurance Manager will flag any data that meets these criteria. Data will be excluded from QA/QC report.</td>
</tr>
<tr>
<td>Spurious Data</td>
<td>Instrument error codes will be checked and flagged if instrument error codes are recorded.</td>
<td>Quality Assurance Manager will flag any data that meets these criteria. Data will be excluded from QA/QC report.</td>
</tr>
</tbody>
</table>

4.1 Quality Assurance Project Plan (QAPP) and Standard Operating Procedures (SOPs)

The QAPP and SOPs will be living documents that will be updated and revised as SJR and its contractors gain experience operating, maintain and managing their fence-line monitoring system. These documents will be reviewed periodically and revised and reapproved as needed. This will include an annual review and five-year updates or more frequently if significant changes are made. The QAPP and SOPs will be submitted for review and approval by SJV when the final equipment is selected for the fence-line program. The plan will be reviewed by a third-party auditing process that will be reviewed by SJVAPCD. Finally, it is understood that SJVAPCD may periodically audit the QAPP and SOPs. The following items will be included in the QAPP:

Outline - Quality Assurance Project Plan for Fence-Line Monitoring Program

- Document Control Page
- Signatory Page
- Table of Contents
- Distribution List

Section #1 - Project Management

- Fence-line Monitoring Task Organization
- Key Refinery Personnel
- Key Contractor Personnel
- Contractor Program Manager
- Contractor Quality Assurance Manager
- Contractor Data Processing Manager
- Contractor Field Technician
Section #2 - Description of the Fence-Line Program

- Objective of the monitoring program
- Site map
- Physical description of equipment location including GPS coordinates, elevations, and monitoring equipment
- Upper and lower detection limits for each pollutant

Section #3 – Description of Hardware

- Analyzer description
- Meteorological station
- Data collection equipment
- Workstations
- Routers
- Remote restart equipment
- Cloud-based data storage

Section #4 - Quality Management System

Instrument Quality Assurance Quality Control

Level 0 Continuous Real-time Operational Checks

- Monitor instrument error codes

Level 1 Monthly Checks

- Evaluate system noise
- Calibration checks

Level 2 Quarterly Checks

- Detection limit checks
- Precision, linearity, accuracy checks

Level 3 Annual Checks

- Annual servicing of instruments
- Preventive maintenance
- Validate systems are meeting original factory acceptance specifications

Data Management Quality Assurance Quality Control

Level 0 – Continuous Real-time Checks

- Real-time validation of the data using two methods for quantification

Level 1 – Daily Review of Data

- Operational staff daily review
Level 2 – Weekly Review Data

- Validation staff review considering historical and similar measurements

Level 3 – Monthly Review of Data

- Supervisor level review with consideration of interrelationships with other data

Monitoring Program Response

Level 0 – Real Time System Checks

- Real-time notification of instrument error code
- Real-time notification light signal from open-path monitoring

Level 1 – Daily System Checks

- Check community website three times per day

Level 2 – Monthly Report and Review of Operational Performance

- Review on-stream efficiency

Level 3 – Annual Audit

- Annual independent audit of fence-line monitoring program

Section #5 - System Maintenance

- Maintenance and service based on real-time error code
- Monthly maintenance check of instruments
- Quarterly preventive maintenance
- Annual service from certified manufacture representative

Section #6 – Training

- Field work training
 - System alignment
 - Routine analyzer maintenance
 - QA checks on site
- Data analysis
 - Verification of detections
 - Data validation

Section #7 – Document Control

- Management and Organization
 - Quality Assurance Project Plan for Fence-Line Monitoring Program
 - Organizational chart
 - Personnel and training
 - Support contract
• Site Information
 o Site maps
 o Equipment registers
• Field work
 o SOPs
 o Field notebooks
 o Sample handling check sheets
 o Maintenance check sheets
 o QA check sheets
• Raw data
 o Description of raw data files generated by instruments
• Data Reporting
 o Realtime website
 o Monthly reports
• Data Management
 o Database structure
 o Data management flowchart
 o Database backup plan
• Quality Assurance
 o Site audits
 o Corrective action reports
 o System audits
 o Data quality assessments
Appendix A – Emission Inventory

<table>
<thead>
<tr>
<th>Gas</th>
<th>Emission Rates (lbs./year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>1650</td>
</tr>
<tr>
<td>Toluene</td>
<td>1670</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>957</td>
</tr>
<tr>
<td>Xylene</td>
<td>1610</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>43.6</td>
</tr>
</tbody>
</table>