July 1, 2021

David Godinho
Godinho Dairy
12710 Wilson Rd
Los Banos, CA 93635

Re: Notice of Preliminary Decision - Authority to Construct
Facility Number: N-6094
Project Number: N-1204379

Dear Mr. Godinho:

Enclosed for your review and comment is the District's analysis of Godinho Dairy’s application for an Authority to Construct for a 917 horsepower Tier 2 certified diesel engine to provide emergency power in the event of an electrical outage, at 12710 Wilson Rd in Los Banos, CA.

The notice of preliminary decision for this project has been posted on the District’s website (www.valleyair.org). After addressing all comments made during the 30-day public notice period, the District intends to issue the Authority to Construct. Please submit your written comments on this project within the 30-day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Dakota Ballard of Permit Services at (559) 230-5865.

Sincerely,

Brian Clements
Director of Permit Services

BC:dhb

Enclosures

cc: Courtney Graham, CARB (w/ enclosure) via email
Ryan Sundstrom, Reddy Power Services
San Joaquin Valley Air Pollution Control District
Authority to Construct
Application Review
Agricultural Diesel-Fired Emergency Standby IC Engine

Facility Name: Godinho Dairy
Mailing Address: 12710 Wilson Rd
Los Banos, CA 93635
Engineer: Dakota Ballard
Date: July 1, 2021
Lead Engineer: Jerry Sandhu
Contact Person: David Godinho
Telephone: 209-587-1541
E-mail: Godinhodairy209@gmail.com
Application #: N-6094-8-0
Project #: N-1204379
Deemed Complete: February 5, 2021

I. Proposal

Godinho Dairy is proposing to install a 917 bhp (intermittent) diesel-fired emergency standby internal combustion (IC) engine powering an electrical generator.

II. Applicable Rules

Rule 2201 New and Modified Stationary Source Review Rule (8/15/19)
Rule 2410 Prevention of Significant Deterioration (6/16/11)
Rule 2520 Federally Mandated Operating Permits (8/15/19)
Rule 4001 New Source Performance Standards (4/14/99)
Rule 4002 National Emission Standards for Hazardous Air Pollutants (5/20/04)
Rule 4101 Visible Emissions (2/17/05)
Rule 4102 Nuisance (12/17/92)
Rule 4201 Particulate Matter Concentration (12/17/92)
Rule 4701 Internal Combustion Engines - Phase 1 (8/21/03)
Rule 4702 Internal Combustion Engines (11/14/13)
Rule 4801 Sulfur Compounds (12/17/92)
CH&SC 41700 Health Risk Assessment
CH&SC 42301.6 School Notice
Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines
Public Resources Code 21000-21177: California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines
III. Project Location

The equipment will be located at 12710 Wilson Rd in Los Banos, CA.

The District has verified that the equipment is not located within 1,000 feet of the outer boundary of a K-12 school. Therefore, the public notification requirement of California Health and Safety Code 42301.6 is not applicable to this project.

IV. Process Description

The emergency standby engine powers an electrical generator which will be used for the growing of crops and/or animals. Other than emergency standby operation, the engine may be operated up to 100 hours per year for maintenance and testing purposes.

V. Equipment Listing

N-6094-8-0: 917 BHP (INTERMITTENT) VOLVO PENTA MODEL TWD1643GE TIER 2 CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

VI. Emission Control Technology Evaluation

The applicant has proposed to install a Tier 2 certified diesel-fired IC engine that is fired on very low-sulfur diesel fuel.

The proposed engine meets the latest Tier Certification requirements; therefore, the engine meets the latest ARB/EPA emissions standards for diesel particulate matter, hydrocarbons, nitrogen oxides, and carbon monoxide (see Appendix C for a copy of the emissions data sheet).

The use of very low-sulfur diesel fuel (0.0015% by weight sulfur maximum) reduces SOx emissions by over 99% from standard diesel fuel.

VII. General Calculations

A. Assumptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency operating schedule:</td>
<td>24 hours/day</td>
</tr>
<tr>
<td>Non-emergency operating schedule:</td>
<td>100 hours/year</td>
</tr>
<tr>
<td>Density of diesel fuel:</td>
<td>7.1 lb/gal</td>
</tr>
<tr>
<td>EPA F-factor (adjusted to 60 °F):</td>
<td>9,051 dscf/MBtu</td>
</tr>
<tr>
<td>Fuel heating value:</td>
<td>137,000 Btu/gal</td>
</tr>
<tr>
<td>BHP to Btu/hr conversion:</td>
<td>2,542.5 Btu/bhp-hr</td>
</tr>
<tr>
<td>Thermal efficiency of engine:</td>
<td>commonly ≈ 35%</td>
</tr>
<tr>
<td>PM10 fraction of diesel exhaust:</td>
<td>0.96 (CARB, 1988)</td>
</tr>
<tr>
<td>Conversion factor:</td>
<td>1.341 bhp/kw</td>
</tr>
</tbody>
</table>
To streamline emission calculations, PM2.5 emissions are assumed to be equal to PM10 emissions.

B. Emission Factors

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (g/bhp-hr)</th>
<th>Emission Factor (g/kW-hr)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_x)</td>
<td>4.20</td>
<td>5.63</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>SO(_x)</td>
<td>0.0051</td>
<td>0.0068</td>
<td>Mass Balance Equation Below</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>0.057</td>
<td>0.076</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>CO</td>
<td>0.31</td>
<td>0.41</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>VOC</td>
<td>0.08</td>
<td>0.11</td>
<td>Engine Manufacturer</td>
</tr>
</tbody>
</table>

\[
\frac{0.000015 \text{ lb} - S}{\text{bhp} - \text{hr}} \times \frac{7.1 \text{ lb} - \text{fuel}}{\text{gallon}} \times \frac{2 \text{ lb} - \text{SO}_2}{1 \text{ lb} - S} \times \frac{1 \text{ gal}}{137,000 \text{ Btu}} \times \frac{1 \text{ bhp input}}{0.35 \text{ bhp out}} \times \frac{2,542.5 \text{ Btu}}{\text{bhp} - \text{hr}} \times \frac{453.6 \text{ g}}{\text{lb}} = \frac{0.0051 \text{ g} - \text{SO}_x}{\text{bhp} - \text{hr}}
\]

C. Calculations

1. Pre-Project Potential to Emit (PE1)

Since this is a new emissions unit, PE1 = 0.

2. Post-Project Potential to Emit (PE2)

The daily and annual PE are calculated as follows:

Daily PE2 (lb-pollutant/day) = EF (g-pollutant/bhp-hr) x rating (bhp) x operation (hr/day) / 453.6 g/lb

Annual PE2 (lb-pollutant/yr) = EF (g-pollutant/bhp-hr) x rating (bhp) x operation (hr/yr) / 453.6 g/lb

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emissions Factor (g/bhp-hr)</th>
<th>Rating (bhp)</th>
<th>Daily Hours of Operation (hrs/day)</th>
<th>Annual Hours of Operation (hrs/year)</th>
<th>Daily PE2 (lb/day)</th>
<th>Annual PE2 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_x)</td>
<td>4.20</td>
<td>917</td>
<td>24</td>
<td>100</td>
<td>203.8</td>
<td>849</td>
</tr>
<tr>
<td>SO(_x)</td>
<td>0.0051</td>
<td>917</td>
<td>24</td>
<td>100</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>0.057</td>
<td>917</td>
<td>24</td>
<td>100</td>
<td>2.8</td>
<td>12</td>
</tr>
<tr>
<td>CO</td>
<td>0.31</td>
<td>917</td>
<td>24</td>
<td>100</td>
<td>15.0</td>
<td>63</td>
</tr>
<tr>
<td>VOC</td>
<td>0.08</td>
<td>917</td>
<td>24</td>
<td>100</td>
<td>3.9</td>
<td>16</td>
</tr>
</tbody>
</table>
3. Pre-Project Stationary Source Potential to Emit (SSPE1)

Pursuant to District Rule 2201, the SSPE1 is the Potential to Emit (PE) from all units with valid Authorities to Construct (ATC) or Permits to Operate (PTO) at the Stationary Source and the quantity of Emission Reduction Credits (ERC) which have been banked since September 19, 1991 for Actual Emissions Reductions (AER) that have occurred at the source, and which have not been used on-site.

SSPE1 is summarized in the following table. See Appendix F for detailed SSPE calculations.

<table>
<thead>
<tr>
<th>SSPE1</th>
<th>NO\textsubscript{X} (lb/yr)</th>
<th>SO\textsubscript{X} (lb/yr)</th>
<th>PM\textsubscript{10} (lb/yr)</th>
<th>CO (lb/yr)</th>
<th>VOC (lb/yr)</th>
<th>NH\textsubscript{3} (lb/yr)</th>
<th>H\textsubscript{2}S (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPE1 Total</td>
<td>397</td>
<td>0</td>
<td>1,811</td>
<td>121</td>
<td>106,127</td>
<td>144,042</td>
<td>2,573</td>
</tr>
</tbody>
</table>

4. Post-Project Stationary Source Potential to Emit (SSPE2)

Pursuant to District Rule 2201, the SSPE2 is the PE from all units with valid ATCs or PTOs at the Stationary Source and the quantity of ERCs which have been banked since September 19, 1991 for AER that have occurred at the source, and which have not been used on-site.

For this project the change in emissions for the facility is due to the installation of the new emergency standby IC engine. Thus:

<table>
<thead>
<tr>
<th>SSPE2</th>
<th>NO\textsubscript{X} (lb/yr)</th>
<th>SO\textsubscript{X} (lb/yr)</th>
<th>PM\textsubscript{10} (lb/yr)</th>
<th>CO (lb/yr)</th>
<th>VOC (lb/yr)</th>
<th>NH\textsubscript{3} (lb/yr)</th>
<th>H\textsubscript{2}S (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Unit</td>
<td>NO\textsubscript{X} (lb/yr)</td>
<td>SO\textsubscript{X} (lb/yr)</td>
<td>PM\textsubscript{10} (lb/yr)</td>
<td>CO (lb/yr)</td>
<td>VOC (lb/yr)</td>
<td>NH\textsubscript{3} (lb/yr)</td>
<td>H\textsubscript{2}S (lb/yr)</td>
</tr>
<tr>
<td>SSPE1</td>
<td>397</td>
<td>0</td>
<td>1,811</td>
<td>121</td>
<td>106,127</td>
<td>144,042</td>
<td>2,573</td>
</tr>
<tr>
<td>N-6094-8-0</td>
<td>849</td>
<td>1</td>
<td>12</td>
<td>63</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SSPE2 Total</td>
<td>1,246</td>
<td>1</td>
<td>1,823</td>
<td>184</td>
<td>106,143</td>
<td>144,042</td>
<td>2,573</td>
</tr>
</tbody>
</table>

5. Major Source Determination

Rule 2201 Major Source Determination:

Pursuant to District Rule 2201, a Major Source is a stationary source with a SSPE2 equal to or exceeding one or more of the following threshold values. For the purposes of determining major source status the following shall not be included:

- any ERCs associated with the stationary source
- Emissions from non-road IC engines (i.e. IC engines at a particular site at the facility for less than 12 months)
- Fugitive emissions, except for the specific source categories specified in 40 CFR 51.165

Since agricultural operations do not fall under any of the specific source categories specified in 40 CFR 51.165, fugitive emissions are not counted when determining if an agricultural operation is a major source.

Since emissions at this facility are not actually collected, a determination of whether emissions could be reasonably collected must be made by the permitting authority. The California Air Pollution Control Association (CAPCOA) prepared guidance in 2005 for estimating potential to emit of Volatile Organic Compounds from dairy farms. The guidance states that “VOC emissions from the milking centers, cow housing areas, corrals, common manure storage areas, and land application of manure are not physically contained and could not reasonably pass through a stack, chimney, vent, or other functionally-equivalent opening. No collection technologies currently exist for VOC emissions from these emissions units. Therefore, the VOC emissions from these sources are considered fugitive.” The guidance also concludes that, because VOC collection technologies do exist for liquid waste systems at dairies, “… the VOC emissions from waste lagoons and storage ponds are considered non-fugitive.”

The District has researched this issue and concurs with the CAPCOA assessment. All fugitive emissions are excluded from the Major Source determination.

SSPE calculations including fugitive and non-fugitive emissions from this facility are shown in Appendix F.

<table>
<thead>
<tr>
<th>Rule 2201 Major Source Determination (lb/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
</tr>
<tr>
<td>SSPE1 (Non-Fugitive)</td>
</tr>
<tr>
<td>SSPE2 (Non-Fugitive)</td>
</tr>
<tr>
<td>Major Source Threshold</td>
</tr>
<tr>
<td>Major Source?</td>
</tr>
</tbody>
</table>

Note: PM2.5 assumed to be equal to PM10

As seen in the table above, the facility is not an existing Major Source and is not becoming a Major Source as a result of this project.
Rule 2410 Major Source Determination:

The facility is not an existing major source for PSD for at least one pollutant. Therefore the facility is not an existing major source for PSD.

6. Baseline Emissions (BE)

BE = Pre-project Potential to Emit for:
- Any unit located at a non-Major Source,
- Any Highly-Utilized Emissions Unit, located at a Major Source,
- Any Fully-Offset Emissions Unit, located at a Major Source, or
- Any Clean Emissions Unit, located at a Major Source.

otherwise,

BE = Historic Actual Emissions (HAE), calculated pursuant to District Rule 2201.

Since this is a new emissions unit, BE = PE1 = 0 for all criteria pollutants.

7. SB 288 Major Modification

SB 288 Major Modification is defined in 40 CFR Part 51.165 as "any physical change in or change in the method of operation of a major stationary source that would result in a significant net emissions increase of any pollutant subject to regulation under the Act."

Since this facility is not a major source for any of the pollutants addressed in this project, this project does not constitute an SB 288 major modification.

8. Federal Major Modification / New Major Source

Federal Major Modification

District Rule 2201 states that a Federal Major Modification is the same as a "Major Modification" as defined in 40 CFR 51.165 and part D of Title I of the CAA.

As defined in 40 CFR 51.165, Section (a)(1)(v) and part D of Title I of the CAA, a Federal Major Modification is any physical change in or change in the method of operation of a major stationary source that would result in a significant net emissions increase of any pollutant subject to regulation under the Act. The significant net emission increase threshold for each criteria pollutant is included in Rule 2201.

Since this facility is not a Major Source for any pollutants, this project does not constitute a Federal Major Modification and no further discussion is required.
New Major Source

As demonstrated above, this facility is not becoming a Major Source as a result of this project, therefore, this facility is not a New Major Source pursuant to 40 CFR 51.165 a(1)(iv)(A)(3).

9. Rule 2410 - Prevention of Significant Deterioration (PSD) Applicability Determination

The project potential to emit, by itself, will not exceed any PSD major source thresholds. Therefore Rule 2410 is not applicable and no further discussion is required.

10. Quarterly Net Emissions Change (QNEC)

The QNEC is calculated solely to establish emissions that are used to complete the District’s PAS emissions profile screen. Detailed QNEC calculations are included in Appendix E.

VIII. Compliance

Rule 1070 Inspections

This rule applies to any source operation, which emits or may emit air contaminants.

This rule allows the District to perform inspections for the purpose of obtaining information necessary to determine whether air pollution sources are in compliance with applicable rules and regulations. The rule also allows the District to require record keeping, to make inspections and to conduct tests of air pollution sources. Therefore, the following conditions will be listed on the ATC to ensure compliance:

- {3215} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee's premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

- {3216} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]
Rule 2201 New and Modified Stationary Source Review Rule

A. Best Available Control Technology (BACT)

1. BACT Applicability

BACT requirements are triggered on a pollutant-by-pollutant basis and on an emissions unit-by-emissions unit basis for the following*:

a. Any new emissions unit with a potential to emit exceeding two pounds per day,
b. The relocation from one Stationary Source to another of an existing emissions unit with a potential to emit exceeding two pounds per day,
c. Modifications to an existing emissions unit with a valid Permit to Operate resulting in an AIPE exceeding two pounds per day, and/or
d. Any new or modified emissions unit, in a stationary source project, which results in an SB288 Major Modification or a Federal Major Modification, as defined by the rule.

*Except for CO emissions from a new or modified emissions unit at a Stationary Source with an SSPE2 of less than 200,000 pounds per year of CO.

As discussed in Section I, the facility is proposing to install a new emergency standby IC engine. Additionally, as determined in Sections VII.C.7 and VII.C.8, this project does not result in an SB288 Major Modification or a Federal Major Modification, respectively. Therefore, BACT can only be triggered if the daily emissions exceed 2.0 lb/day for any pollutant.

The daily emissions from the new engine are compared to the BACT threshold levels in the following table:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Daily Emissions (lb/day)</th>
<th>BACT Threshold (lb/day)</th>
<th>SSPE2 (lb/yr)</th>
<th>BACT Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>203.8</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>SO\textsubscript{x}</td>
<td>0.2</td>
<td>> 2.0</td>
<td>n/a</td>
<td>No</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>2.8</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>CO</td>
<td>15.0</td>
<td>> 2.0 and SSPE2 ≥ 200,000 lb/yr</td>
<td>184</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>3.9</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
</tbody>
</table>

As shown above, BACT will be triggered for NO\textsubscript{x}, PM\textsubscript{10}, and VOC emissions from the engine for this project.

2. BACT Guideline

BACT Guideline 3.1.1, which appears in Appendix B of this report, covers diesel-fired emergency IC engines.
3. Top Down BACT Analysis

Per District Policy APR 1305, Section IX, “A top-down BACT analysis shall be performed as a part of the Application Review for each application subject to the BACT requirements pursuant to the District’s NSR Rule for source categories or classes covered in the BACT Clearinghouse, relevant information under each of the following steps may be simply cited from the Clearinghouse without further analysis.”

Pursuant to the attached Top-Down BACT Analysis, which appears in Appendix B of this report, BACT is satisfied with:

- **NOx**: Latest Available Tier Certification level for applicable horsepower*
- **VOC**: Latest Available Tier Certification level for applicable horsepower*
- **PM₁₀**: 0.15 g/bhp-hr

The facility has proposed to install a 917 bhp Tier 2 certified IC engine (with a PM10 emissions rate of 0.057 g/bhp-hr). Therefore, BACT is satisfied for NOx, VOC, and PM10.

B. Offsets

Since emergency IC engines are exempt from the offset requirements of Rule 2201, per Section 4.6.2, offsets are not required for this engine, and no offset calculations are required.

However, even when there is an applicable exemption, the SSPE2 values are compared to the offset threshold to determine if offsets are triggered. In its PAS database, the District keeps track of facilities where offsets are triggered but an exemption applies. The SSPE2 values are compared to the offset trigger thresholds in the following table:

<table>
<thead>
<tr>
<th>Offset Determination (lb/year)</th>
<th>NOx</th>
<th>SOx</th>
<th>PM<sub>10</sub></th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPE2</td>
<td>1,246</td>
<td>1</td>
<td>1,823</td>
<td>184</td>
<td>106,143</td>
</tr>
<tr>
<td>Offset Thresholds</td>
<td>20,000</td>
<td>54,750</td>
<td>29,200</td>
<td>200,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Offsets Triggered?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Quantity of Offsets Required

As shown in the table above, offsets are triggered for VOC emissions since the VOC SSPE2 exceeds the offset trigger threshold; however, as previously discussed, the offset exemption from Section 4.6.2 of District Rule 2201 is applicable to this project; therefore, offset calculations are not necessary and offsets are not required.
C. Public Notification

1. Applicability

Public noticing is required for:

a. **New Major Sources, SB288 Major Modifications, and Federal Major Modifications**

As shown in Sections VII.C.5, VII.C.7, and VII.C.8, this facility is not a new Major Source, not an SB 288 Major Modification, and not a Federal Major Modification, respectively.

b. **Any new emissions unit with a Potential to Emit greater than 100 pounds during any one day for any pollutant**

As calculated in Section VII.C.2, daily emissions for NOx are greater than 100 lb/day.

c. **Any project which results in the offset thresholds being surpassed**

The SSPE1 and SSPE2 are compared to the offset thresholds in the following table.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE1 (lb/year)</th>
<th>SSPE2 (lb/year)</th>
<th>Offset Threshold</th>
<th>Public Notice Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>397</td>
<td>1,246</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>SOx</td>
<td>0</td>
<td>1</td>
<td>54,750 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>PM10</td>
<td>1,811</td>
<td>1,823</td>
<td>29,200 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>121</td>
<td>184</td>
<td>200,000 lb/year</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>106,127</td>
<td>106,143</td>
<td>20,000 lb/year</td>
<td>No</td>
</tr>
</tbody>
</table>

While VOC emissions already exceed the offset threshold, no offset thresholds are being surpassed as a result of this project.

d. **Any project with a Stationary Source Project Increase in Permitted Emissions (SSIPE) greater than 20,000 lb/year for any pollutant.**

For this project, the proposed engine is the only emissions source that will generate an increase in Potential to Emit. Since the proposed engine emissions are well below 20,000 lb/year for all pollutants (See Section VII.C.2), the SSIPE for this project will be below the public notice threshold.
e. **Title V Significant Modification**

Since this facility does not have a Title V operating permit, this change is not a Title V significant Modification, and therefore public noticing is not required.

2. **Public Notice Action**

As demonstrated above, this project will require public noticing. Therefore, public notice documents will be submitted to the California Air Resources Board (CARB) and a public notice will be published on the District’s website prior to the issuance of the ATC for this equipment.

D. **Daily Emissions Limits**

Daily Emissions Limitations (DELs) and other enforceable conditions are required by Rule 2201 to restrict a unit’s maximum daily emissions, to a level at or below the emissions associated with the maximum design capacity. The DEL must be contained in the latest ATC and contained in or enforced by the latest PTO and enforceable, in a practicable manner, on a daily basis. Therefore, the following conditions will be listed on the ATC to ensure compliance:

- \{4771\} Emissions from this IC engine shall not exceed any of the following limits: 4.20 g-NOx/bhp-hr, 0.31 g-CO/bhp-hr, or 0.08 g-VOC/bhp-hr. [District Rule 2201 and 17 CCR 93115]

- \{4772\} Emissions from this IC engine shall not exceed 0.057 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, and 17 CCR 93115]

- \{4258\} Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, and 17 CCR 93115]

E. **Compliance Assurance**

1. **Source Testing**

Pursuant to District Policy APR 1705, source testing is not required for emergency standby IC engines to demonstrate compliance with Rule 2201.

2. **Monitoring**

No monitoring is required to demonstrate compliance with Rule 2201.
3. Recordkeeping

Recordkeeping requirements, in accordance with District Rule 4702, will be discussed in Section VIII, *District Rule 4702*, of this evaluation.

4. Reporting

No reporting is required to ensure compliance with Rule 2201.

F. Ambient Air Quality Analysis (AAQA)

An AAQA shall be conducted for the purpose of determining whether a new or modified Stationary Source will cause or make worse a violation of an air quality standard. The District’s Technical Services Division conducted the required analysis. Refer to Appendix D of this document for the AAQA summary sheet.

The proposed location is in an attainment area for NO\(_X\), CO, and SO\(_X\). As shown by the AAQA summary sheet the proposed equipment will not cause a violation of an air quality standard for NO\(_X\), CO, or SO\(_X\).

The proposed location is in a non-attainment area for the state’s PM\(_{10}\) as well as federal and state PM\(_{2.5}\) thresholds. As shown by the AAQA summary sheet the proposed equipment will not cause a violation of an air quality standard for PM\(_{10}\) and PM\(_{2.5}\).

Rule 2410 Prevention of Significant Deterioration

This project does not result in a new PSD major source or PSD major modification. No further discussion is required.

Rule 2520 Federally Mandated Operating Permits

Since this facility’s potential to emit does not exceed any major source thresholds of Rule 2201, this facility is not a Major Source, and Rule 2520 does not apply.

Rule 4001 New Source Performance Standards (NSPS)

40 CFR 60 Subpart III - Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

The District has not been delegated the authority to implement Subpart III requirements for non-Major Sources; therefore, no requirements shall be included on the permit.
Rule 4002 National Emission Standards for Hazardous Air Pollutants

The District has not been delegated the authority to implement NESHAP regulations for Area Source requirements for non-Major Sources; therefore, no requirements shall be included on the permit.

Rule 4101 Visible Emissions

Rule 4101 states that no air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. Therefore, the following condition will be listed on the ATC to ensure compliance:

- {15} No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]

Rule 4102 Nuisance

Rule 4102 states that no air contaminant shall be released into the atmosphere which causes a public nuisance. Public nuisance conditions are not expected as a result of these operations, provided the equipment is well maintained. Therefore, the following condition will be listed on the ATC to ensure compliance:

- {98} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

California Health & Safety Code 41700 (Health Risk Assessment)

District Policy APR 1905 – Risk Management Policy for Permitting New and Modified Sources specifies that for an increase in emissions associated with a proposed new source or modification, the District perform an analysis to determine the possible impact to the nearest resident or worksite.

An HRA is not required for a project with a total facility prioritization score of less than one. According to the Technical Services Memo for this project (Appendix D), the total facility prioritization score including this project was greater than one. Therefore, an HRA was required to determine the short-term acute and long-term chronic exposure from this project.
RMR Results

<table>
<thead>
<tr>
<th>Unit</th>
<th>Acute Hazard Index</th>
<th>Chronic Hazard Index</th>
<th>Cancer Risk</th>
<th>T-BACT Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6094-8-0</td>
<td>N/A^1</td>
<td>0.00</td>
<td>0.488 in a million</td>
<td>No</td>
</tr>
</tbody>
</table>

Notes:

1. Acute Hazard Indices were not calculated for Unit 8 since there is no risk factor or the risk factor is so low that it has been determined to be insignificant for this type of unit.

The following conditions will be listed on the ATC to ensure compliance with the RMR:

- **{1898}** The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

- **{4772}** Emissions from this IC engine shall not exceed 0.057 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, and 17 CCR 93115]

- **{4920}** This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year. [District Rules 2201, 4102, and 4702, and 17 CCR 93115]

Rule 4201 Particulate Matter Concentration

Rule 4201 limits particulate matter emissions from any single source operation to 0.1 g/dscf, which, as calculated below, is equivalent to a PM$_{10}$ emission factor of 0.4 g-PM$_{10}$/bhp-hr.

\[
0.1 \times \frac{\text{grain}}{\text{dscf}} \times \frac{\text{g}}{15.43 \text{ grain}} \times \frac{1 \text{ Btu}_{\text{in}}}{0.35 \text{ Btu}_{\text{out}}} \times \frac{9.051 \text{ dscf}}{10^6 \text{ Btu}} \times \frac{2.542.5 \text{ Btu}}{1 \text{ bhp - hr}} \times \frac{0.96 \text{ g} - \text{PM}_{10}}{1 \text{ g} - \text{PM}} = 0.4 \times \frac{\text{g} - \text{PM}_{10}}{\text{bhp - hr}}
\]

The new engine has a PM$_{10}$ emission factor less than 0.4 g/bhp-hr. Therefore, compliance is expected and the following condition will be listed on the ATC:

- **{14}** Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201]

Rule 4701 Internal Combustion Engines - Phase 1

The purpose of this rule is to limit the emissions of nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOC) from internal combustion engines. Except as provided in Section 4.0, the provisions of this rule apply to any internal combustion engine, rated greater than 50 bhp, that requires a PTO.
Section 4.1 of the rule specifically exempts IC engines in agricultural operations used for the growing of crops or raising of fowl or animals. Since the engine is used for the growing of crops or raising of fowl or animals, it is exempt from the requirements of this rule. Therefore, the following condition will be listed on the ATC to ensure compliance.

- {4002} This IC engine shall only be used for the growing and harvesting of crops or the raising of fowl or animals for the primary purpose of making a profit, providing a livelihood, or conducting agricultural research or instruction by an educational institution. [District Rules 4701 and 4702, and 17 CCR 93115]

Rule 4702 Internal Combustion Engines

The following summarizes District Rule 4702 requirements for emergency standby IC engines:

1. Operation of emergency standby engines is limited to 100 hours or less per calendar year for non-emergency purposes. The following condition will be included on the permit:

 - {4775} This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year. [District Rules 2201 and 4702]

2. Properly operate and maintain each engine as recommended by the engine manufacturer or emission control system supplier. The following condition will be included on the permit:

 - {4261} This engine shall be operated and maintained in proper operating condition as recommended by the engine manufacturer or emissions control system supplier. [District Rule 4702]

3. Monitor the operational characteristics of each engine as recommended by the engine manufacturer or emission control system supplier. The following condition will be included on the permit:

 - {3478} During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example: check engine fluid levels, battery, cables and connections; change engine oil and filters; replace engine coolant; and/or other operational characteristics as recommended by the manufacturer or supplier). [District Rule 4702]

4. Install and operate a nonresettable elapsed time meter. In lieu of installing a nonresettable elapsed time meter, the operator may use an alternative device,
method, or technique, in determining operating time provided that the alternative is approved by the APCO and EPA and is allowed by Permit-to-Operate condition. The operator shall properly maintain and operate the nonresettable elapsed time meter or alternative device in accordance with the manufacturer’s instructions.

The following condition shall be used:

- {4749} This engine shall be equipped with a non-resettable hour meter with a minimum display capability of 9,999 hours, unless the District determines that a non-resettable hour meter with a different minimum display capability is appropriate in consideration of the historical use of the engine and the owner or operator's compliance history. [District Rule 4702 and 17 CCR 93115]

5. Emergency standby engines cannot be used to reduce the demand for electrical power when normal electrical power line service has not failed, or to produce power for the electrical distribution system, or in conjunction with a voluntary utility demand reduction program or interruptible power contract. The following conditions will be included on the permit:

- {3807} An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rule 4702]

- {3808} This engine shall not be used to produce power for the electrical distribution system, as part of a voluntary utility demand reduction program, or for an interruptible power contract. [District Rule 4702]

6. Records of the total hours of operation, type of fuel used, purpose for operating the engine, all hours of non-emergency and emergency operation, and other support documentation must be maintained. All records shall be retained for a period of at least five years, shall be readily available, and be made available to the APCO upon request. The following conditions will be included on the permit:

- {3496} The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

- {4263} The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]
• {3475} All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]

Rule 4801 Sulfur Compounds

Rule 4801 requires that sulfur compound emissions (as SO\(_2\)) shall not exceed 0.2% by volume. Using the ideal gas equation, the sulfur compound emissions are calculated as follows:

\[
\text{Volume SO}_2 = \left(\frac{n \times R \times T}{P}\right)
\]

\(n = \text{moles SO}_2\)

\(T = \text{standard temperature} = 60 \, ^\circ\text{F} \text{ or } 520 \, ^\circ\text{R}\)

\(R = \text{universal gas constant} = \frac{10.73 \, \text{psi} \cdot \text{ft}^3}{\text{lb} \cdot \text{mol} \cdot ^\circ\text{R}}\)

\[
\frac{0.000015 \, \text{lb} - \text{fuel}}{\text{gal}} \times \frac{7.1 \, \text{lb}}{32 \, \text{lb} - \text{S}} \times \frac{64 \, \text{lb} - \text{SO}_2}{9,051 \, \text{scf}} \times \frac{1 \, \text{MMBtu}}{0.137 \, \text{MMBtu}} \times \frac{1 \, \text{gal}}{64 \, \text{lb} - \text{SO}_2} \times \frac{10.73 \, \text{psi} - \text{lb}^3}{14.7 \, \text{psi}} \times \frac{520 \, ^\circ\text{R}}{1,000,000} = 1.0 \, \text{ppmv}
\]

Since 1.0 ppmv is ≤ 2,000 ppmv, this engine is expected to comply with Rule 4801. Therefore, the following condition will be listed on the ATC to ensure compliance:

• {4258} Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, and 17 CCR 93115]

California Health & Safety Code 42301.6 (School Notice)

The District has verified that this engine is not located within 1,000 feet of a school. Therefore, pursuant to California Health and Safety Code 42301.6, a school notice is not required.

Title 17 California Code of Regulations (CCR), Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines

The following requirements apply to new engines (those installed after 1/1/05):

<table>
<thead>
<tr>
<th>Title 17 CCR Section 93115 Requirements for New Emergency IC Engines Powering Electrical Generators</th>
<th>Proposed Method of Compliance with Title 17 CCR Section 93115 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>The requirements in Sections 93115.6, 93115.7, and 93115.10(a) do not apply to new stationary diesel-fueled CI engines used in agricultural operations.</td>
<td>The following condition will be added to the permit:</td>
</tr>
<tr>
<td>• {4002} This IC engine shall only be used for the growing and harvesting of crops or the raising of fowl or animals for the primary purpose of making a profit, providing a livelihood, or conducting</td>
<td></td>
</tr>
<tr>
<td>Emergency engines</td>
<td>The applicant has proposed the use of CARB certified diesel fuel. The proposed permit condition, requiring the use of CARB certified diesel fuel, was included earlier in this evaluation.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Emergency engines must be fired on CARB diesel fuel, or an approved alternative diesel fuel.</td>
<td>For emergency engines, the Off-road engine certification standards are identified in Table 1 of the ATCM. The applicant has proposed the use of an emergency engine that meets the Table 1 emission standards (Off-road engine certification standards) for the applicable horsepower range.</td>
</tr>
<tr>
<td>The engines must meet Table 6 of the ATCM, which requires the Off-road engine certification standard for the specific power rating of the proposed engine on the date of acquisition (purchase date) or permit application submittal to the District, whichever is earliest.</td>
<td>The following condition will be included on the permit:</td>
</tr>
<tr>
<td>- A non-resettable hour meter with a minimum display capability of 9,999 hours shall be installed upon engine installation, or by no later than January 1, 2005, on all engines subject to all or part of the requirements of sections 93115.6, 93115.7, or 93115.8(a) unless the District determines on a case-by-case basis that a non-resettable hour meter with a different minimum display capability is appropriate in consideration of the historical use of the engine and the owner or operator’s compliance history.</td>
<td>- (4749) This engine shall be equipped with a non-resettable hour meter with a minimum display capability of 9,999 hours, unless the District determines that a non-resettable hour meter with a different minimum display capability is appropriate in consideration of the historical use of the engine and the owner or operator’s compliance history. [District Rule 4702 and 17 CCR 93115]</td>
</tr>
<tr>
<td>An owner or operator shall maintain monthly records of the following: emergency use hours of operation; maintenance and testing hours of operation; hours of operation for emission testing; initial start-up testing hours; hours of operation for all other uses; and the type of fuel used. All records shall be retained for a minimum of 36 months.</td>
<td>Permit conditions enforcing these requirements were shown earlier in the evaluation.</td>
</tr>
</tbody>
</table>

1 Although Section 93115.8 of the ATCM states that new IC engines used in agricultural operations must meet the emissions limits in Table 6, the ATCM Staff Report clarifies that all new emergency standby IC engines must meet the emissions limits specified in Table 1 of the ATCM. This eliminates the requirement that new agricultural emergency standby IC engines would otherwise have to meet the after-treatment based Tier 4 standards specified in Table 6.
California Environmental Quality Act (CEQA)

The California Environmental Quality Act (CEQA) requires each public agency to adopt objectives, criteria, and specific procedures consistent with CEQA Statutes and the CEQA Guidelines for administering its responsibilities under CEQA, including the orderly evaluation of projects and preparation of environmental documents. The San Joaquin Valley Unified Air Pollution Control District (District) adopted its Environmental Review Guidelines (ERG) in 2001. The basic purposes of CEQA are to:

- Inform governmental decision-makers and the public about the potential, significant environmental effects of proposed activities.
- Identify the ways that environmental damage can be avoided or significantly reduced.
- Prevent significant, avoidable damage to the environment by requiring changes in projects through the use of alternatives or mitigation measures when the governmental agency finds the changes to be feasible.
- Disclose to the public the reasons why a governmental agency approved the project in the manner the agency chose if significant environmental effects are involved.

The District performed an Engineering Evaluation (this document) for the proposed project and determined that the project qualifies for ministerial approval under the District’s Guideline for Expedited Application Review (GEAR). Section 21080 of the Public Resources Code exempts from the application of CEQA those projects over which a public agency exercises only ministerial approval. Therefore, the District finds that this project is exempt from the provisions of CEQA.

Indemnification Agreement/Letter of Credit Determination

According to District Policy APR 2010 (CEQA Implementation Policy), when the District is the Lead or Responsible Agency for CEQA purposes, an indemnification agreement and/or a letter of credit may be required. The decision to require an indemnity agreement and/or a letter of credit is based on a case-by-case analysis of a particular project’s potential for litigation risk, which in turn may be based on a project’s potential to generate public concern, its potential for significant impacts, and the project proponent’s ability to pay for the costs of litigation without a letter of credit, among other factors.

As described above, the project requires only ministerial approval, and is exempt from the provisions of CEQA. As such, an Indemnification Agreement or a Letter of Credit will not be required for this project in the absence of expressed public concern.

To ensure that issuance of this permit does not conflict with any conditions imposed by any local agency permit process, the following permit condition will be listed on the ATC:

- {3658} This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site
Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act].

IX. Recommendation

Pending a successful NSR Public Noticing period, issue Authority to Construct N-6094-8-0 subject to the permit conditions on the attached draft Authority to Construct in Appendix A.

X. Billing Information

<table>
<thead>
<tr>
<th>Billing Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Number</td>
</tr>
<tr>
<td>N-6094-8-0</td>
</tr>
</tbody>
</table>

Appendixes

A. Draft ATC
B. BACT Guideline and BACT Analysis
C. Emissions Data Sheet
D. RMR Summary and AAQA
E. QNEC Calculations
F. SSPE Calculations
Appendix A
Draft ATC
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: N-6094-8-0

LEGAL OWNER OR OPERATOR: GODINHO DAIRY
MAILING ADDRESS: 12710 WILSON RD
LOS BANOS, CA 93635

LOCATION: 12710 WILSON RD
LOS BANOS, CA 93635

EQUIPMENT DESCRIPTION:
917 BHP (INTERMITTENT) VOLVO PENTA MODEL TWD1643GE TIER 2 CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

CONDITIONS

1. {3215} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to enter the permittee's premises where a permitted source is located or emissions related activity is conducted, or where records must be kept under condition of the permit. [District Rule 1070]

2. {3216} Upon presentation of appropriate credentials, a permittee shall allow an authorized representative of the District to have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit. [District Rule 1070]

3. {3658} This permit does not authorize the violation of any conditions established for this facility in the Conditional Use Permit (CUP), Special Use Permit (SUP), Site Approval, Site Plan Review (SPR), or other approval documents issued by a local, state, or federal agency. [Public Resources Code 21000-21177: California Environmental Quality Act]

4. {98} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

5. {15} No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]

6. {14} Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Samir Sheikh, Executive Director / APCO

Brian Clements, Director of Permit Services

Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95356-8718 • (209) 557-6400 • Fax (209) 557-6475
7. {4002} This IC engine shall only be used for the growing and harvesting of crops or the raising of fowl or animals for the primary purpose of making a profit, providing a livelihood, or conducting agricultural research or instruction by an educational institution. [District Rules 4701 and 4702, and 17 CCR 93115]

8. {1898} The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

9. {4749} This engine shall be equipped with a non-resettable hour meter with a minimum display capability of 9,999 hours, unless the District determines that a non-resettable hour meter with a different minimum display capability is appropriate in consideration of the historical use of the engine and the owner or operator's compliance history. [District Rule 4702 and 17 CCR 93115]

10. {4258} Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, and 17 CCR 93115]

11. Emissions from this IC engine shall not exceed any of the following limits: 4.20 g-NOx/bhp-hr, 0.31 g-CO/bhp-hr, or 0.08 g-VOC/bhp-hr. [District Rule 2201 and 17 CCR 93115]

12. Emissions from this IC engine shall not exceed 0.057 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, and 17 CCR 93115]

13. {4261} This engine shall be operated and maintained in proper operating condition as recommended by the engine manufacturer or emissions control system supplier. [District Rule 4702]

14. {3478} During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example: check engine fluid levels, battery, cables and connections; change engine oil and filters; replace engine coolant; and/or other operational characteristics as recommended by the manufacturer or supplier). [District Rule 4702]

15. {3807} An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rule 4702 and 17 CCR 93115]

16. {3808} This engine shall not be used to produce power for the electrical distribution system, as part of a voluntary utility demand reduction program, or for an interruptible power contract. [District Rule 4702 and 17 CCR 93115]

17. {4775} This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year. [District Rules 2201 and 4702]

18. {3496} The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

19. {4263} The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]

20. {3475} All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]
Appendix B
BACT Guideline and BACT Analysis
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 3.1.1*

Last Update: 6/13/2019

Emergency Diesel-Fired IC Engine

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td>Very low sulfur diesel fuel (15 ppmw sulfur or less)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>0.15 g/bhp-hr or the latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent (ATCM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Top Down BACT Analysis for the Emergency IC Engine(s)

BACT Guideline 3.1.1 (June 13, 2019) applies to emergency diesel IC engines. In accordance with the District BACT policy, information from that guideline will be utilized without further analysis.

1. BACT Analysis for NOx and VOC Emissions:

 a. Step 1 - Identify all control technologies

 BACT Guideline 3.1.1 identifies only the following option:

 - *Latest EPA Tier Certification level for applicable horsepower range*

 To determine the latest applicable Tier level, the following steps were taken:

 - Conduct a survey of all the emergency IC engines permitted in the District to determine the latest EPA Tier certification level that has been permitted for the proposed engine size
 - Conduct a survey of the major IC engine manufacturers/genset vendors to determine the latest EPA Tier certification level that is readily available for the proposed engine size and use
 - Review Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines to determine the latest Tier certification level required in California for the proposed engine size

Survey of Permitted Units:
The proposed emergency IC engine is rated at 917 bhp. Based on the latest survey of all permitted emergency IC engines powering electrical generators in the horsepower range of 750-1,000 bhp, the District found that three Tier 4F and numerous Tier 2 certified engines have been permitted.

Survey of IC Engine Manufacturers/Genset Vendors:
The applicant has contacted three engine distributors to inquire about the availability of Tier 4F certified engines in the power range needed for this project. The three distributors contacted were Generac, Kohler, and Blue Star Power Systems Inc. Kohler and Blue Star Power Systems Inc. have no Tier 4F certified engines in the needed power range while the District has confirmed that Generac has been unresponsive concerning this request. Considering the lack of Tier 4F certified engines from these three distributors, the District finds that Tier 4F certified engines are not considered readily available in generator configurations needed for this dairy project.

Stationary ATCM:
The CARB Stationary Air Toxic Control Measure (ATCM) for stationary emergency standby diesel-fired IC engines requires new nonroad compression-ignition engines to
meet emission standards as listed in Table 1 as well as the emission standards specified in Table 1 of 40 CFR, PART 60, Subpart III - Standards of Performance for Stationary Compression Ignition Internal Combustion Engines. Subpart III requires generator sets manufactured in 2008 or later and between 750 bhp and 1200 bhp to have emissions standards of no more than 0.15 g-PM10/bhp-hr, 4.8 g-NMHC+NOx/bhp-hr, and 2.6 g-CO/bhp-hr. The applicant has proposed a 917 bhp Tier 2 certified engine with emissions factors of 0.057 g-PM10/bhp-hr, 4.20 g-NOx/bhp-hr, 0.08 g-VOC/bhp-hr, and 0.31 g-CO/bhp hr. Therefore, the proposed certified engine meets the emissions standards set by the ATCM and 40 CFR, PART 60, Subpart III.

Summary:
The proposed emergency IC engine is rated at 917 bhp. The District has permitted three different emergency diesel-fired IC engines rated greater than 750 bhp with a Tier 4F certification level. However, the engine distributors and genset vendors contacted for this project either did not respond to the applicant’s and District’s requests regarding the availability of a Tier 4F engine, or stated a Tier 4F engine was not readily available. Therefore, the District does not conclude that Tier 4F is “achieved in practice” for an engine of the proposed size. Moreover, the ATCM does not require a tier certification level higher than Tier 2 for engines greater than 750 bhp.

Based on the above analysis, the District finds that a Tier 4F emergency IC engine/generator with a rating of approximately 917 bhp is not readily available.

Consequently, the District considers a Tier 2 certification level to be the latest available Tier certification level for the proposed engine size. Furthermore, a Tier 2 certification level satisfies the stationary ATCM requirement for emergency standby IC engines rated greater than 750 bhp.

b. Step 2 - Eliminate technologically infeasible options

The control option listed in Step 1 is not technologically infeasible.

c. Step 3 - Rank remaining options by control effectiveness

No ranking needs to be done because there is only one control option listed in Step 1.

d. Step 4 - Cost Effectiveness Analysis

The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.

e. Step 5 - Select BACT

BACT for NOx and VOC will be the use of an EPA Tier 2 certified engine. The applicant is proposing such a unit. Therefore, BACT will be satisfied.
2. BACT Analysis for PM$_{10}$ Emissions:

a. Step 1 - Identify all control technologies

BACT Guideline 3.1.1 identifies only the following option:

- 0.15 g/bhp-hr or the Latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent. (ATCM)

The latest EPA Tier Certification level for an engine of the proposed model year and horsepower rating is Tier 2. Refer to the Top-Down BACT analysis for NO$_x$ and VOC for a discussion regarding the determination of the EPA Tier level to be considered.

Please note the proposed Tier 2 certified IC engine has a PM emission factor of 0.057 g/bhp-hr. Additionally, the ATCM requires a PM emission standard of 0.15 g/bhp-hr for all new emergency standby diesel IC engines.

Therefore, the proposed PM/PM$_{10}$ emission factor of 0.057 g/bhp-hr meets BACT requirements and also satisfies the stationary ATCM requirement for new emergency standby diesel IC engines.

b. Step 2 - Eliminate technologically infeasible options

The control option listed in Step 1 is not technologically infeasible.

c. Step 3 - Rank remaining options by control effectiveness

No ranking needs to be done because there is only one control option listed in Step 1.

d. Step 4 - Cost Effectiveness Analysis

The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.

e. Step 5 - Select BACT

BACT for PM$_{10}$ is emissions of 0.15 g/hp-hr or less. The applicant is proposing an engine that meets this requirement. Therefore, BACT will be satisfied.
Appendix C
Emissions Data Sheet
EXHAUST EMISSION DECLARATION

The emission data in this declaration are measured according to the test procedures specified below and on one member engine of the engine type. Emission data may vary among production engines.

TECHNICAL SPECIFICATION

Engine type: TWD1643GE
Specification: 869523
Module No: 138052022
Rated crankshaft power *): 674 kW
Rated speed: 1800 rpm

*) Stand-by power without fan acc. to ISO 3046.

TEST INFORMATION

Test conditions: 40 CFR part 89
Test identification: 29003822
Test date: December 4, 2006
Test cycle: 5-mode US constant speed test cycle

EXHAUST EMISSIONS (weighted cycle)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO (g/kWh)</td>
<td>0,41</td>
</tr>
<tr>
<td>HC (g/kWh)</td>
<td>0,11</td>
</tr>
<tr>
<td>NOx (g/kWh)</td>
<td>5,63</td>
</tr>
<tr>
<td>PM (g/kWh)</td>
<td>0,076</td>
</tr>
</tbody>
</table>

EXHAUST EMISSIONS (per cycle mode)

<table>
<thead>
<tr>
<th>Mode</th>
<th>#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Power</td>
<td>NOx</td>
<td>HC</td>
<td>CO</td>
<td>PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(kW)</td>
<td>(g/h)</td>
<td>(g/h)</td>
<td>(g/h)</td>
<td>(g/h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>668</td>
<td>3427</td>
<td>43</td>
<td>486</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>503</td>
<td>2716</td>
<td>36</td>
<td>179</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>335</td>
<td>1892</td>
<td>32</td>
<td>68</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>167</td>
<td>1009</td>
<td>31</td>
<td>83</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
<td>629</td>
<td>44</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO2</td>
<td>(g/h)</td>
<td>(g/h)</td>
<td>(g/h)</td>
<td>(g/h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>441</td>
<td>629</td>
<td>23</td>
<td>441</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>324</td>
<td>599</td>
<td>23</td>
<td>441</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>219</td>
<td>540</td>
<td>26</td>
<td>441</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>441</td>
<td>40</td>
<td>441</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64</td>
<td>386</td>
<td>81</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOx</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>629</td>
<td>23</td>
<td>138</td>
<td>7,85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>599</td>
<td>23</td>
<td>61</td>
<td>6,93</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>540</td>
<td>26</td>
<td>30</td>
<td>6,06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>441</td>
<td>40</td>
<td>56</td>
<td>5,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>386</td>
<td>81</td>
<td>147</td>
<td>3,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO2</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,85</td>
<td>10</td>
<td>11,23</td>
<td>12,45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,93</td>
<td>11,23</td>
<td>12,45</td>
<td>13,75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,06</td>
<td>12,45</td>
<td>13,75</td>
<td>15,55</td>
<td></td>
</tr>
</tbody>
</table>

TA-Luft

Test identification: 29003831
Test date: December 4, 2006

<table>
<thead>
<tr>
<th>Mode</th>
<th>#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Power</td>
<td>Nox (O2)</td>
<td>HC (O2)</td>
<td>CO (O2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(kW)</td>
<td>(g/Nm³)</td>
<td>(mg/Nm³)</td>
<td>(mg/Nm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>616</td>
<td>1,9</td>
<td>20</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td></td>
<td>462</td>
<td>2,1</td>
<td>23</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>462</td>
<td>2,1</td>
<td>23</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>308</td>
<td>2,0</td>
<td>31</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>154</td>
<td>2,0</td>
<td>51</td>
<td>163</td>
</tr>
</tbody>
</table>

* PM is calculated from multifilter measurements with AVL Smart Sampler.

Gothenburg 2011-05-24

Hanna Österlindh

AB Volvo Penta
47 436, Engine Emission Certification
1. Summary

1.1 RMR

<table>
<thead>
<tr>
<th>Units</th>
<th>Prioritization Score</th>
<th>Acute Hazard Index</th>
<th>Chronic Hazard Index</th>
<th>Maximum Individual Cancer Risk</th>
<th>T-BACT Required</th>
<th>Special Permit Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>27.7</td>
<td>N/A</td>
<td>0.00</td>
<td>4.88E-07</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Project Totals</td>
<td>27.7</td>
<td>N/A</td>
<td>0.00</td>
<td>4.88E-07</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Facility Totals</td>
<td>>1</td>
<td>0.33</td>
<td>0.16</td>
<td>3.70E-06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Acute Hazard Indices were not calculated for Unit 8 since there is no risk factor or the risk factor is so low that it has been determined to be insignificant for this type of unit.

1.2 AAQA

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Ozone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1 Hour</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Results were taken from the attached AAQA Report.
2. The project is an intermittent source as defined in APR-1920. In accordance with APR-1920, compliance with short-term (i.e., 1-hour, 3-hour, 8-hour and 24-hour) standards is not required.
3. The criteria pollutants are below EPA’s level of significance as found in 40 CFR Part 51.165 (b)(2) unless otherwise noted.
4. Modeled PM10 concentrations were below the District SIL for non-fugitive sources of 1 μg/m³ for the annual concentration.
5. Modeled PM2.5 concentrations were below the District SIL for non-fugitive sources of 0.2 μg/m³ for the annual concentration.
1.3 Proposed Permit Requirements

To ensure that human health risks will not exceed District allowable levels; the following shall be included as requirements for:

Unit # 8-0

1. The PM_{10} emissions rate shall not exceed 0.057 g/bhp-hr based on US EPA certification using ISO 8178 test procedure.

2. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction.

3. This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 100 hours per calendar year.

2. Project Description

Technical Services received a request on February 09, 2021 to perform a Risk Management Review (RMR) and Ambient Air Quality Analysis (AAQA) for the following:

- Unit -8-0: 917 BHP VOLVO MODEL TWD1643GE TIER 2 CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

3. RMR Report

3.1 Analysis

The District performed an analysis pursuant to the District’s Risk Management Policy for Permitting New and Modified Sources (APR 1905, May 28, 2015) to determine the possible cancer and non-cancer health impact to the nearest resident or worksite. This policy requires that an assessment be performed on a unit by unit basis, project basis, and on a facility-wide basis. If a preliminary prioritization analysis demonstrates that:

- A unit’s prioritization score is less than the District’s significance threshold and;
- The project’s prioritization score is less than the District’s significance threshold and;
- The facility’s total prioritization score is less than the District’s significance threshold

Then, generally no further analysis is required.

The District’s significant prioritization score threshold is defined as being equal to or greater than 1.0. If a preliminary analysis demonstrates that either the unit’s or the project’s or the facility’s total prioritization score is greater than the District threshold, a screening or a refined assessment is required.

If a refined assessment is greater than one in a million but less than 20 in one million for carcinogenic impacts (Cancer Risk) and less than 1.0 for the Acute and Chronic hazard indices (Non-Carcinogenic) on a unit by unit basis, project basis and on a facility-wide basis the proposed application is considered less than significant. For units that exceed a cancer risk of 1 in one million, Toxic Best Available Control Technology (TBACT) must be implemented.

Toxic emissions for this project were calculated using the following methods:

- Toxic emissions for this proposed unit were calculated and provided by the processing engineer.
These emissions were input into the San Joaquin Valley APCD’s Hazard Assessment and Reporting Program (SHARP). In accordance with the District’s Risk Management Policy, risks from the proposed unit’s toxic emissions were prioritized using the procedure in the 2016 CAPCOA Facility Prioritization Guidelines. The prioritization score for this proposed facility was greater than 1.0 (see RMR Summary Table). Therefore, a refined health risk assessment was required.

The AERMOD model was used, with the parameters outlined below and meteorological data for 2004-2008 from Los Banos (rural dispersion coefficient selected) to determine the dispersion factors (i.e., the predicted concentration or X divided by the normalized source strength or Q) for a receptor grid. These dispersion factors were input into the SHARP Program, which then used the Air Dispersion Modeling and Risk Tool (ADMRT) of the Hot Spots Analysis and Reporting Program Version 2 (HARP 2) to calculate the chronic and acute hazard indices and the carcinogenic risk for the project.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Source Process Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit ID</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point Source Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit ID</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

4. **AAQA Report**

The District modeled the impact of the proposed project on the National Ambient Air Quality Standard (NAAQS) and/or California Ambient Air Quality Standard (CAAQS) in accordance with District Policy APR-1925 (Policy for District Rule 2201 AAQA Modeling) and EPA’s Guideline for Air Quality Modeling (Appendix W of 40 CFR Part 51). The District uses a progressive three level approach to perform AAQAs. The first level (Level 1) uses a very conservative approach. If this analysis indicates a likely exceedance of an AAQS or Significant Impact Level (SIL), the analysis proceeds to the second level (Level 2) which implements a more refined approach. For the 1-hour NO$_2$ standard, there is also a third level that can be implemented if the Level 2 analysis indicates a likely exceedance of an AAQS or SIL.

The modeling analyses predicts the maximum air quality impacts using the appropriate emissions for each standard’s averaging period. Required model inputs for a refined AAQA include background ambient air quality data, land characteristics, meteorological inputs, a receptor grid, and source parameters including emissions. These inputs are described in the sections that follow.

Ambient air concentrations of criteria pollutants are recorded at monitoring stations throughout the San Joaquin Valley. Monitoring stations may not measure all necessary pollutants, so background data may need to be collected from multiple sources. The following stations were used for this evaluation:
Technical Services performed modeling for directly emitted criteria pollutants with the emission rates below:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Station Name</th>
<th>County</th>
<th>City</th>
<th>Measurement Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>Merced-Coffee</td>
<td>Merced</td>
<td>Merced</td>
<td>2018</td>
</tr>
<tr>
<td>PM10</td>
<td>2334 'M' ST.</td>
<td>Merced</td>
<td>Merced</td>
<td>2018</td>
</tr>
<tr>
<td>PM2.5</td>
<td>2334 'M' ST.</td>
<td>Merced</td>
<td>Merced</td>
<td>2018</td>
</tr>
<tr>
<td>SOx</td>
<td>Fresno - Garland</td>
<td>Fresno</td>
<td>Fresno</td>
<td>2018</td>
</tr>
</tbody>
</table>

The AERMOD model was used to determine if emissions from the project would cause or contribute to an exceedance of any state of federal air quality standard. The parameters outlined below and meteorological data for 2004-2008 from Los Banos (rural dispersion coefficient selected) were used for the analysis:

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Unit ID</th>
<th>Process</th>
<th>NOx</th>
<th>SOx</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>849</td>
<td>1</td>
<td>63</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

5. Conclusion

5.1 RMR

The cumulative acute and chronic indices for this facility, including this project, are below 1.0; and the cumulative cancer risk for this facility, including this project, is less than 20 in a million. In addition, the cancer risk for each unit in this project is less than 1.0 in a million. In accordance with the District’s Risk Management Policy, the project is approved without Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed District allowable levels; the permit requirements listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

5.2 AAQA

The emissions from the proposed equipment will not cause or contribute significantly to a violation of the State and National AAQS.
6. Attachments
 A. Modeling request from the project engineer
 B. Additional information from the applicant/project engineer
 C. Prioritization score w/ toxic emissions summary
 D. Facility Summary
 E. AAQA results
Appendix E
QNEC Calculations
Quarterly Net Emissions Change (QNEC)

The Quarterly Net Emissions Change is used to complete the emission profile screen for the District’s PAS database. The QNEC shall be calculated as follows:

\[
\text{QNEC} = \text{PE}_2 - \text{PE}_1, \text{ where:}
\]

\[
\begin{align*}
\text{QNEC} & = \text{Quarterly Net Emissions Change for each emissions unit, lb/qtr} \\
\text{PE}_2 & = \text{Post-Project Potential to Emit for each emissions unit, lb/qtr} \\
\text{PE}_1 & = \text{Pre-Project Potential to Emit for each emissions unit, lb/qtr}
\end{align*}
\]

Since this is a new unit, \(\text{PE}_1 = 0\) for all pollutants. Thus, \(\text{QNEC} = \text{PE}_2\) (lb/qtr).

Using the \(\text{PE}_2\) (lb/yr) values calculated in Section VII.C.2, Quarterly \(\text{PE}_2\) is calculated as follows:

\[
\text{PE}_{2\text{quarterly}} = \frac{\text{PE}_2 \text{(lb/yr)}}{4 \text{ quarters/year}} = \text{QNEC}
\]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PE2 Total (lb/yr)</th>
<th>Quarterly PE2 (lb/qtr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
<td>849</td>
<td>212.3</td>
</tr>
<tr>
<td>SO\textsubscript{X}</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>12</td>
<td>3.0</td>
</tr>
<tr>
<td>CO</td>
<td>63</td>
<td>15.8</td>
</tr>
<tr>
<td>VOC</td>
<td>16</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Appendix F
SSPE Calculations
SSPE1 Total and Non-Fugitive Calculations

ATCs N-6094-1-3, -2-3, -3-3, -4-3, and -7-2

Dairy Operations:

The following SSPE1 emission values for the dairy operations at this facility were taken from the SSPE2 values in the engineering evaluation performed under project N-1163277 (finalized on October 17, 2018) for this facility. The ATCs issued in this project are still valid and will be used to calculate the SSPE because they result in a higher potential to emit than the current permits to operate. The individual permit emissions and total emissions are shown below:

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
<th>NH3</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6094-1-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,600</td>
<td>547</td>
<td>0</td>
</tr>
<tr>
<td>(Milking Parlor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-6094-2-3</td>
<td>0</td>
<td>0</td>
<td>1,791</td>
<td>0</td>
<td>43,340</td>
<td>92,008</td>
<td>0</td>
</tr>
<tr>
<td>(Cows Housing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-6094-3-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6,045</td>
<td>41,910</td>
<td>2,573</td>
</tr>
<tr>
<td>(Liquid Manure Handling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-6094-4-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,446</td>
<td>9,577</td>
<td>0</td>
</tr>
<tr>
<td>(Solid Manure Handling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-6094-7-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53,616</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(Feed Storage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>1,791</td>
<td>0</td>
<td>106,047</td>
<td>144,042</td>
<td>2,573</td>
</tr>
</tbody>
</table>

N-6094-5
180 bhp Diesel-Fired Emergency IC Engine:

Assumptions

Emergency operating schedule: 24 hours/day
Non-emergency operating schedule: 100 hours/year
Density of diesel fuel: 7.1 lb/gal
EPA F-factor (adjusted to 60 °F): 9,051 dscf/MMBtu
Fuel heating value: 137,000 Btu/gal
BHP to Btu/hr conversion: 2,542.5 Btu/bhp-hr
Thermal efficiency of engine: commonly ≈ 35%
PM10 fraction of diesel exhaust: 0.96 (CARB, 1988)
Conversion factor: 1.34 bhp/kw
Emissions factors

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emissions Factor (g/bhp-hr)</th>
<th>Rating (bhp)</th>
<th>Annual Hours of Operation (hrs/year)</th>
<th>Annual PE (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>10.00</td>
<td>180</td>
<td>100</td>
<td>397</td>
</tr>
<tr>
<td>SO\textsubscript{x}</td>
<td>0.0051</td>
<td>180</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.50</td>
<td>180</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>CO</td>
<td>3.04</td>
<td>180</td>
<td>100</td>
<td>121</td>
</tr>
<tr>
<td>VOC</td>
<td>1.14</td>
<td>180</td>
<td>100</td>
<td>45</td>
</tr>
</tbody>
</table>

*\text{g/bhp-hr} is calculated using the lb/bhp-hr value multiplied by 453.6 g/lb.

$$0.0015\%S \times \frac{7.1 \text{lb} \cdot \text{fuel}}{\text{gallon}} \times \frac{2 \text{lb} \cdot \text{SO}_2}{1 \text{lb} \cdot \text{S}} \times \frac{1 \text{gal}}{137,000 \text{Btu}} \times \frac{1 \text{hp input}}{0.35 \text{hp out}} \times \frac{2,542.5 \text{Btu}}{\text{hp} \cdot \text{hr}} \times \frac{453.6 \text{g}}{\text{lb}} = 0.0051 \frac{\text{g} \cdot \text{SO}_x}{\text{hp} \cdot \text{hr}}$$

PE Calculations

Annual PE (lb-pollutant/yr) = EF (g-pollutant/bhp-hr) x rating (bhp) x operation (hr/yr) / 453.6 g/lb
N-6094-6-0
Gasoline Dispensing Operation:

Assumptions

- This permit unit may operate with a maximum gasoline throughput of 1,800 gal/year (throughput taken from Project N-1070003).
- VOC is the only pollutant emitted from this operation.

Emissions Factors

These emission factors were obtained from the document titled, “Emission Factors For Gasoline Stations published by CAPCOA Air Toxic “Hot Spots” Program in the Gasoline Service Station Industrywide Risk Assessment Guidelines” dated December 1997.

<table>
<thead>
<tr>
<th>Amount</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>lb/1,000 gal</td>
<td>Tank filling loss</td>
</tr>
<tr>
<td>2.1</td>
<td>lb/1,000 gal</td>
<td>Breathing loss</td>
</tr>
<tr>
<td>8.4</td>
<td>lb/1,000 gal</td>
<td>Vehicle fueling loss</td>
</tr>
<tr>
<td>0.61</td>
<td>lb/1,000 gal</td>
<td>Spillage</td>
</tr>
<tr>
<td>19.5</td>
<td>lb/1,000 gal</td>
<td>Total VOC losses</td>
</tr>
</tbody>
</table>

PE Calculations

Potential to Emit (lb/year) = VOC EF (lb-VOC/1,000 gal) x Throughput (gallons/year)
Potential to Emit (lb/year) = (19.5 lb/1,000 gal) x (1,800 gal/year)
Potential to Emit (lb/year) = 35 lb-VOC/year

SSPE1 Calculations

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NO\textsubscript{X}</th>
<th>SO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>CO</th>
<th>VOC</th>
<th>NH\textsubscript{3}</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PE (Dairy Operations)</td>
<td>0</td>
<td>0</td>
<td>1,791</td>
<td>0</td>
<td>106,047</td>
<td>144,042</td>
<td>2,573</td>
</tr>
<tr>
<td>N-6094-5-0 (Diesel-Fired IC Engine)</td>
<td>397</td>
<td>0</td>
<td>20</td>
<td>121</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N-6094-6-0 (Gas Dispensing Operation)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>397</td>
<td>0</td>
<td>1,811</td>
<td>121</td>
<td>106,127</td>
<td>144,042</td>
<td>2,573</td>
</tr>
</tbody>
</table>
Non-Fugitive SSPE1

As discussed in Section VII.C.5 of the engineering evaluation, fugitive emissions are not included in a facility’s emission totals when determining if it is a major source. For dairy operations, only a portion of the liquid manure handling operation emissions and all of the IC engine and gas dispensing operation emissions are not considered fugitive emissions. SSPE1 results of the non-fugitive calculations discussed in project N-1163277 are shown below:

<table>
<thead>
<tr>
<th>Non-Fugitive SSPE1 (lb/year)</th>
<th>NO\textsubscript{X}</th>
<th>SO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6094-3-3 (liquid manure handling – lagoon(s)/storage pond(s))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,066</td>
</tr>
<tr>
<td>N-6094-5-0 (emergency IC engine)</td>
<td>397</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>121</td>
<td>45</td>
</tr>
<tr>
<td>N-6094-6-0 (gasoline dispensing operation)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>Non-Fugitive SSPE1</td>
<td>397</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>121</td>
<td>3,146</td>
</tr>
</tbody>
</table>

To streamline emission calculations, PM2.5 emissions are assumed to be equal to PM10 emissions.

Non-Fugitive SSPE2

Non-fugitive SSPE2 calculations are determined by including the proposed ATC unit’s emissions values with that of the currently permitted units. Permit Unit N-6094-8-0 emission values found in Section VII.C.2 of the engineering evaluation are added to the total Non-Fugitive SSPE1 emissions values to determine Non-Fugitive SSPE2 values shown below:

<table>
<thead>
<tr>
<th>Non-Fugitive SSPE2 (lb/year)</th>
<th>NO\textsubscript{X}</th>
<th>SO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fugitive SSPE1</td>
<td>397</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>121</td>
<td>3,146</td>
</tr>
<tr>
<td>N-6094-8-0 (emergency IC engine)</td>
<td>849</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>63</td>
<td>16</td>
</tr>
<tr>
<td>Non-Fugitive SSPE2</td>
<td>1,246</td>
<td>1</td>
<td>32</td>
<td>32</td>
<td>184</td>
<td>3,162</td>
</tr>
</tbody>
</table>

To streamline emission calculations, PM2.5 emissions are assumed to be equal to PM10 emissions.