Stationary Source Control Equipment

Carlos Garcia Technical Projects Coordinator Central Region

Stationary Source Control Equipment

Particulate
SOx
VOC
CO
NOx

PM Control

Cyclones Baghouses > ESPs Scrubbers > Particulate Filters

HA

MAC

Mac2flo

Pulse Jet Baghouse

Inside a Pulse Jet Baghouse

Pulse Jet Bag

Baghouse Design Considerations

- Pressure Drop
- Air-To-Cloth Ratio
- Collection Efficiency
- Fabric Type
- Cleaning
- Temperature Control
- Bag Spacing
- Compartment Design
- Space and Cost

Electrostatic Precipitators

Electrostatic Precipitator

Electrostatic Precipitator

Electrical Field Generation

Collection Electrode

ESPs: Design Factors Affecting Performance

Specific Collection Area
Aspect Ratio
Collection Plate Spacing
Sectionalization
Power Requirements/Spark Rate

Diesel Particulate Filters

SOx Control

Wet FGD

Five FGD Scrubber Modules on Utility Boiler

VOC Control

High Volume Low Pressure (HVLP) Spray Gun

Controlled Spraying

Reduces VOC emissions Increases transfer efficiency Low fluid tip pressure Employee gun handling training

Gel Coat Application in a Spray Booth

Carbon Adsorption Systems

Carbon Adsorption System

Carbon Adsorbers at a Soil Remediation Site

Combustion Sources

Flare at Landfill

Combustion of VOCs

Thermal Oxidizer/Afterburner

Venting to Oxidizer

ST. SERVERSENT IN A STATE

ACTING ARTING

Thermodynamic realities Low-NOx combustion techniques Ammonia injection (SCR & SNCR) Catalytic controls

Thermal NOx Fuel-bound NOx Prompt NOx

NOx Creation

Low-NOx Burner with Staged Fuel

Flue Gas Recirculation

目出

Gas Turbine Power Plant Controls

and the state of the

Gas Turbine Power Plant

Typical Power Plant

Steam/Water Injection

Selective Catalytic Reduction (SCR)

- NOx control thru ammonia (NH₃) injection
- $\diamond 4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$
- $\diamond 2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$
- ♦ 65-90% control
- Problems
 - Expensive
 - High maintenance
 - Ammonia "slip"

Catalyst replacement & disposal

Small Boiler with SCR

Gas Fired I.C. Engine Controls

Gas Fired I.C. Engines

Three-Way Catalyst

