Best Available Control Technology (BACT) Guideline 8.1.1*

Last Update: 07/19/2018

Woodworking Equipment

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Woodworking equipment vented to a baghouse system</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Corrugated Cardboard Manufacturing - Waste Handling System

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>1D-3D Cyclone Collector</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.1.3*

Last Update: 04/15/1995

Paper Handling - Paper Grinding Operation, = or > 60 tons paper/day

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Paper grinder served by baghouse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.1.4*

This is a Summary Page for this Class of Source

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>99% capture and control (cyclone in series with a fabric filter dust collector, or equivalent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.1.5*

Last Update: 08/06/2012

Crusher

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Baghouse with Fabric Filters (99% PM10 Control)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.2.1*

Petroleum Coke Handling - Receiving, Storage, and Loadout

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Receiving: Receiving operation vented to a baghouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage/Conveying: Enclosed storage and adequate moisture to prevent visible emissions in excess of 5% opacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loadout: Loadout operation vented to a baghouse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.2.2*

Chrome Plating Operation - Hard Chrome Plating, \(\geq 5.00 \text{ MM Amp-hr/yr} \)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| PM10 | | 1. Merlin enclosed tank cover with 0.1 μm Teflon filter
2. HEPA filter
3. Water Scrubber
4. Mist Suppressant
5. Poly Balls | | |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Chrome Plating Operation - Decorative Chrome Plating

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>97% control efficiency (Chemical fume suppressant containing a wetting agent)</td>
<td>99.9% control efficiency (Chrome dome EED enclosed tank cover.)</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.2.4*

Chrome Plating Operation - Limited Operation
(= or < 500,000 Amp-hr/yr)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>99% control efficiency (Chemical fume suppressant containing a wetting agent)</td>
<td>99.9 % control efficiency (Chrome dome EED enclosed tank cover.)</td>
<td>Trivalent Chromium Plating</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.2.5*

Last Update: 01/10/2001

Munitions Cartridge Case Manufacturing - Metal Processing Tanks

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Capture and control with a wet scrubber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.2.6

Last Update: 07/18/2006

Brass/Bronze Foundry > or = 300 lb/hr brass/bronze process rate

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Brass Melting Furnace: use of an electric induction furnace and a collection system vented to a control device with a control efficiency of 99% for PM10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand Handling System with Shakeout and/or Muller in System: shakeout stations, return conveyors, elevators, screens, material bins, and Muller vented to a control device with a control efficiency of 99% for PM10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cast Metal Parts Finishing Operations: grinders, saws and finishing mills served by capture devices vented to a control device with a control efficiency of 99% for PM10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Flat glass manufacturing - Adipic acid spraying system to coat flat glass before storage

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Low Volume (≤ 2 gallons per hour per nozzle) ultrasonic spray equipment with curtains on both sides of the spray modules (minimum transfer efficiency of 90%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.3.2*
Last Update: 02/21/1998

Animal Matter Rendering Plant

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of an odor scrubbing system utilizing a scrubbing medium of chlorine dioxide in water with a minimum overall control of 95% or better. Thermal oxidizer utilizing natural gas with a minimum chamber temperature of 1400°F and minimum retention time of 1.0 second with a minimum overall control of 95%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Use of an odor scrubber with a particulate removal system that consists of a particulate scrubber, shell and tube condenser, a Venturi scrubber, a cyclone, an air cooled condenser, and a contact condenser or a combination thereof with a minimum overall control of 95%. or Thermal oxidizer utilizing natural gas with a minimum chamber temperature of 1400°F and minimum retention time of 1.0 seconds with a particulate removal system that consists of a particulate scrubber, shell and tube condenser, a Venturi scrubber, a cyclone, an air cooled condenser, and a contact condenser or a combination thereof with a minimum overall control of 95%.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.3.3*

Standby LPG Fuel Supply System - = or > 30 MMBtu/hr

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>99.9% Control efficiency (Thermal Oxidation, Flare, or equal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td>LPG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>0.008 lb/MMBtu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>0.068 lb/MMBtu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.3.4*

Metal Parts and Product Fabrication - Plasma Arc Cutting Torch

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Electrostatic Precipitator or Dust Collector with a HEPA Filter (99.9% efficiency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Satellite thruster testing operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>Chemical packed scrubber serving nitrogen tetroxide transfer operation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.3.6*

Last Update: 10/02/1998

Phosphate Fertilizer Manufacturing - Transportable, = or < 40 tons/hour

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td></td>
<td>1. Spray towers or packed tower with demister</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.3.7*

Last Update: 09/04/2019

Plastic and Polymeric Material Processing - Grinding

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Cyclone(s) in series with a fabric filter dust collector (99% or greater control efficiency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Explosives Detonation Chamber

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td></td>
<td>1. Thermal Oxidation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Carbon Adsorption</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Non-Selective Catalytic Reduction</td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td></td>
<td>1. Wet scrubber using a slurry of alkaline sorbent (e.g. limestone) to scrub the gases</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Dry Scrubber Technology</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Use of wet scrubber (e.g. sodium hydroxide 0.5% solution), pre-filters and HEPA filtration system (HEPA filter reducing at least 99.97% of particulate matter 0.3 microns diameter or larger)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td></td>
<td>1. Selective Catalytic Reduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Non-Selective Catalytic Reduction</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td>Oxidation Catalyst</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.3.9*

Last Update: 03/03/2000

Glass Packing and Cullet Handling Operation - For Flat Glass Manufacturing

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Packing machine vented to a Fabric Filter Baghouse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.3.10*

Last Update: 06/19/2000

Cooling Tower - Induced Draft, Evaporative Cooling

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td></td>
<td>Cellular Type Drift Eliminator</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.3.11*
Last Update: 11/13/2008

Laser Cutting System

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>> 99.9% Control Efficiency (HEPA Dust Collector, Fabric Filter Baghouse, or Equiv.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.3.12*

San Joaquin Valley
Unified Air Pollution Control District

Helicopter Engine Test Cell

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of JP-8 fuel and good combustion practices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td>Use of JP-8 fuel and good combustion practices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Use of JP-8 fuel and good combustion practices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>Use of JP-8 fuel and good combustion practices.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.3.13*
Last Update: 04/15/2002

Carpet Padding Manufacturing – Fabric Fiber Separating Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>95% control (Rotary Drum Filter, or equal)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Tire Recycling Operation - Ground Tire Material Processing

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>99% Control (Fabric Filter Baghouse or equal)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.3.15*
Last Update: 07/23/2003

Solder Paste Manufacturing

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td></td>
<td>≥ 99% control (dust collector or equivalent)</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 8.3.16

Repair and Maintenance or Emergency Ammonia Venting Operation (<= 100 hr/yr operation)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH3</td>
<td>Flare, or equivalent (99% control efficiency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.3.17*

Last Update: 02/02/2006

Sulfur Powder Manufacturing (<= 4 MMBtu/hr Gas Generator)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>natural gas-fired inert gas generator with a 50 ppmv @ 8% O2 Pyronics burner (69.3 ppmv @ 3% O2)</td>
<td>low-NOx burner < 30 ppmv @ 3% O2</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Explosives Detonation - when unrestrained detonations or outdoor environmental conditions are required **(Rescinded: 3-06-07)**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>H2S</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Metal Grinding Operations

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>99% capture and control (fabric filter dust collector or equivalent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
On-line Chemical Vapor Deposition Process

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of thermal oxidizer</td>
<td>At least 95% overall control (capture and control) using thermal oxidizer or equivalent overall control</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Use of baghouse</td>
<td>At least 99.5% overall control (capture and control) using baghouse or equivalent overall control</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>Use of dry scrubber (sodium bicarbonate reagent) with a baghouse</td>
<td>At least 99% overall control (capture and control) using dry scrubber system (chamber and baghouse) with sodium bicarbonate reagent or equivalent overall control</td>
<td></td>
</tr>
</tbody>
</table>

*A process that vaporizes chemicals and deposit them on the glass surface while the glass is being formed

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

8.3.20
San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.3.21

This is a Summary Page for this Class of Source

Last Update: 07/23/2015

Abrasive Blasting Cabinet

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Dust collector with fabric or cartridge filters</td>
<td>Dust collector with HEPA filters</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Dry Material Storage and Conveying Operation, 100 tons/day

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Storage, augers, elevators, conveyors all enclosed and vented to a fabric filter baghouse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 8.4.2*
Last Update: 09/29/1992

Wet Material Storage and Conveying Operation, 200 tons/day

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Enclosed storage with sufficient moisture so visible emissions are less than 5% opacity from any single emission point</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Dry Material Handling Operation - Mixing, Blending, Milling, or Storage

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Mixer, augers, elevators, conveyors all enclosed and vented to a fabric filter baghouse, or equivalent (99% or greater control efficiency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Mulch and Soil Bagging Operation (Receiving, Outdoor Storage, and Bagging Line Hopper)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td></td>
<td>Bagging Line Hopper:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Baghouse, 99.9% control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Use of water spray or fog, or surfactants, to maintain an adequate material moisture content such that the maximum opacity will not exceed 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receiving and Outdoor Storage:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>use of water spray or fog, or surfactants, to maintain an adequate material moisture content such that the maximum opacity will not exceed 5%</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source