DEC 22 2010

Ken White
Diversified Collection Service
333 N Canyons Parkway, Suite 100
Livermore, CA 94551

Re: Notice of Preliminary Decision - Authority to Construct
Project Number: N-1102852

Dear Mr. White:

Enclosed for your review and comment is the District's analysis of Diversified Collection Service's application for an Authority to Construct for a 535 bhp Cummins Model N14-G2 Tier 1 certified diesel-fired emergency standby IC engine powering an electrical generator, at 17080 S Harlan Road in Lathrop, CA.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. Please submit your written comments on this project within the 30-day public comment period which begins on the date of publication of the public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Rick Dyer of Permit Services at (209) 557-6458.

Sincerely,

David Warner
Director of Permit Services

DW/RD:dg

Enclosures
DEC 22 2010

Mike Tollstrup, Chief
Project Assessment Branch
Stationary Source Division
California Air Resources Board
PO Box 2815
Sacramento, CA 95812-2815

Re: Notice of Preliminary Decision - Authority to Construct
Project Number: N-1102852

Dear Mr. Tollstrup:

Enclosed for your review and comment is the District's analysis of Diversified Collection Service's application for an Authority to Construct for a 535 bhp Cummins Model N14-G2 Tier 1 certified diesel-fired emergency standby IC engine powering an electrical generator, at 17080 S Harlan Road in Lathrop, CA.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. Please submit your written comments on this project within the 30-day public comment period which begins on the date of publication of the public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Rick Dyer of Permit Services at (209) 557-6458.

Sincerely,

[Signature]

David Warner
Director of Permit Services

DW/ RD: dg

Enclosure
NOTICE OF PRELIMINARY DECISION
FOR THE PROPOSED ISSUANCE OF
AN AUTHORITY TO CONSTRUCT

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollution Control District solicits public comment on the proposed issuance of Authority to Construct to Diversified Collection Service for a 535 bhp Cummins Model N14-G2 Tier 1 certified diesel-fired emergency standby IC engine powering an electrical generator, at 17080 S Harlan Road in Lathrop, CA.

The analysis of the regulatory basis for this proposed action, Project #N-1102852, is available for public inspection at http://www.valleyair.org/notices/public_notices_idx.htm and the District office at the address below. Written comments on this project must be submitted within 30 days of the publication date of this notice to DAVID WARNER, DIRECTOR OF PERMIT SERVICES, SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 4800 ENTERPRISE WAY, MODESTO, CA 95356-8718.
I. Proposal

The 535 bhp diesel-fired emergency standby IC engine on this project was installed without a permit and the applicant is now submitting the application for an Authority to Construct (ATC). The applicant provided documentation that this engine was purchased in January, 2001. Personnel at the site said the engine was operational before fall of that year. This project will consider the engine having been installed in August, 2001.

II. Applicable Rules

Rule 2201 New and Modified Stationary Source Review Rule (12/18/08)
Rule 2520 Federally Mandated Operating Permits (6/21/01)
Rule 4001 New Source Performance Standards (4/14/99)
Rule 4101 Visible Emissions (2/17/05)
Rule 4102 Nuisance (12/17/92)
Rule 4201 Particulate Matter Concentration (12/17/92)
Rule 4701 Stationary Internal Combustion Engines – Phase 1 (6/21/03)
Rule 4702 Stationary Internal Combustion Engines – Phase 2 (1/18/07)
Rule 4801 Sulfur Compounds (12/17/92)
CH&SC 41700 Health Risk Assessment
CH&SC 42301.6 School Notice
Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines
California Environmental Quality Act (CEQA)
Public Resources Code 21000-21177: California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines

III. Project Location

The project is located at 17080 S Harlan Road in Lathrop, CA.

The District has verified that the equipment is not located within 1,000 feet of the outer boundary of a K-12 school. Therefore, the public notification requirement of California Health and Safety Code 42301.6 is not applicable to this project.

IV. Process Description

The emergency standby engine powers an electrical generator. Other than emergency standby operation, the engine may be operated up to 50 hours per year for maintenance and testing purposes.

V. Equipment Listing

N-8214-1-0: 535 BHP CUMMINS MODEL N14-G2 TIER 1 CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

VI. Emission Control Technology Evaluation

The engine is equipped with:

[x] Turbocharger
[x] Intercooler/aftercooler
[] Injection timing retard (or equivalent per District Policy SSP-1805, dated 8/14/1996)
[x] Positive Crankcase Ventilation (PCV) or 90% efficient control device
[] This engine is required to be, and is UL certified
[] Catalytic particulate filter
[x] Very Low (0.0015%) sulfur diesel

The emission control devices/technologies and their effect on diesel engine emissions detailed below are from Non-catalytic NO$_x$ Control of Stationary Diesel Engines, by Don Koeberlein, CARB.

The turbocharger reduces the NO$_x$ emission rate from the engine by approximately 10% by increasing the efficiency and promoting more complete burning of the fuel.

The intercooler/aftercooler functions in conjunction with the turbocharger to reduce the inlet air temperature. By reducing the inlet air temperature, the peak combustion temperature is lowered, which reduces the formation of thermal NO$_x$. NO$_x$ emissions are reduced by approximately 15% with this control technology.
The PCV system reduces crankcase VOC and PM$_{10}$ emissions by at least 90% over an uncontrolled crankcase vent.

The use of very low-sulfur diesel fuel (0.0015% by weight sulfur maximum) reduces SO$_x$ emissions by over 99% from standard diesel fuel.

VII. General Calculations

A. Assumptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency operating schedule</td>
<td>24 hours/day</td>
</tr>
<tr>
<td>Non-emergency operating schedule</td>
<td>50 hours/year</td>
</tr>
<tr>
<td>Density of diesel fuel</td>
<td>7.1 lb/gal</td>
</tr>
<tr>
<td>EPA F-factor (adjusted to 60 °F)</td>
<td>9,051 dscf/MMBtu</td>
</tr>
<tr>
<td>Fuel heating value</td>
<td>137,000 Btu/gal</td>
</tr>
<tr>
<td>BHP to Btu/hr conversion</td>
<td>2,542.5 Btu/bhp-hr</td>
</tr>
<tr>
<td>Thermal efficiency of engine</td>
<td>commonly ≈ 35%</td>
</tr>
<tr>
<td>PM$_{10}$ fraction of diesel exhaust</td>
<td>0.96 (CARB, 1988)</td>
</tr>
</tbody>
</table>

B. Emission Factors

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (g/bhp-hr)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_x$</td>
<td>6.9</td>
<td>ARB Certification; EO: U-R-2-40</td>
</tr>
<tr>
<td>SO$_x$</td>
<td>0.0051</td>
<td>Mass Balance Equation Below</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>0.1</td>
<td>ARB Certification; EO: U-R-2-40</td>
</tr>
<tr>
<td>CO</td>
<td>1.2</td>
<td>ARB Certification; EO: U-R-2-40</td>
</tr>
<tr>
<td>VOC</td>
<td>0.2</td>
<td>ARB Certification; EO: U-R-2-40</td>
</tr>
</tbody>
</table>

\[
\frac{0.000015 \text{ lb} - S}{\text{lb} - \text{fuel}} \times \frac{7.1 \text{ lb} - \text{fuel}}{\text{gallon}} \times \frac{2 \text{ lb} - \text{SO}_2}{1 \text{ lb} - S} \times \frac{1 \text{ gal}}{137,000 \text{ Btu}} \times \frac{1 \text{ bhp input}}{2,542.5 \text{ Btu}} \times \frac{453.5 \text{ g}}{\text{bhp} \times \text{hr}} = 0.0051 \frac{g - \text{SO}_x}{\text{bhp} \times \text{hr}}
\]

C. Calculations

1. Pre-Project Emissions (PE1)

Since this is a new emissions unit, PE1 = 0.
2. Post-Project PE (PE2)

The daily and annual PE are calculated as follows:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emissions Factor (g/bhp-hr)</th>
<th>Rating (bhp)</th>
<th>Daily Hours of Operation (hrs/day)</th>
<th>Annual Hours of Operation (hrs/yr)</th>
<th>Daily PE2 (lb/day)</th>
<th>Annual PE2 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>6.9</td>
<td>535</td>
<td>24</td>
<td>50</td>
<td>195.1</td>
<td>407</td>
</tr>
<tr>
<td>SO\textsubscript{x}</td>
<td>0.0051</td>
<td>535</td>
<td>24</td>
<td>50</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.1</td>
<td>535</td>
<td>24</td>
<td>50</td>
<td>2.8</td>
<td>6</td>
</tr>
<tr>
<td>CO</td>
<td>1.2</td>
<td>535</td>
<td>24</td>
<td>50</td>
<td>33.9</td>
<td>71</td>
</tr>
<tr>
<td>VOC</td>
<td>0.2</td>
<td>535</td>
<td>24</td>
<td>50</td>
<td>5.7</td>
<td>12</td>
</tr>
</tbody>
</table>

3. Pre-Project Stationary Source Potential to Emit (SSPE1)

Pursuant to Section 4.9 of District Rule 2201, the Pre-Project Stationary Source Potential to Emit (SSPE1) is the Potential to Emit (PE) from all units with valid ATCs or PTOs at the Stationary Source and the quantity of Emission Reduction Credits (ERCs) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site.

Since this is a new facility, SSPE1 = 0 lb/yr for all criteria pollutants

4. Post-Project Stationary Source Potential to Emit (SSPE2)

Pursuant to Section 4.10 of District Rule 2201, the Post Project Stationary Source Potential to Emit (SSPE2) is the Potential to Emit (PE) from all units with valid ATCs or PTOs, except for emissions units proposed to be shut down as part of the Stationary Project, at the Stationary Source and the quantity of Emission Reduction Credits (ERCs) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site.

For this project the change in emissions for the facility is due to the installation of the new emergency standby IC engine(s), permit unit -1-0. Thus:
<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOX (lb/yr)</th>
<th>SOX (lb/yr)</th>
<th>PM10 (lb/yr)</th>
<th>CO (lb/yr)</th>
<th>VOC (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N-8214-1-0</td>
<td>407</td>
<td>0</td>
<td>6</td>
<td>71</td>
<td>12</td>
</tr>
<tr>
<td>SSPE2 Total</td>
<td>407</td>
<td>0</td>
<td>6</td>
<td>71</td>
<td>12</td>
</tr>
<tr>
<td>Offset Threshold</td>
<td>20,000</td>
<td>54,750</td>
<td>29,200</td>
<td>200,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Offset Threshold Surpassed?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

5. Major Source Determination

Pursuant to Section 3.24 of District Rule 2201, a Major Source is a stationary source with post project emissions or a Post Project Stationary Source Potential to Emit (SSPE2), equal to or exceeding one or more of the following threshold values. However, Section 3.24.2 states, "for the purposes of determining major source status, the SSPE2 shall not include the quantity of emission reduction credits (ERC) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site."

This facility does not contain ERCs which have been banked at the source; therefore, no adjustment to SSPE2 is necessary.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE1 (lb/yr)</th>
<th>SSPE2 (lb/yr)</th>
<th>Major Source Threshold (lb/yr)</th>
<th>Existing Major Source?</th>
<th>Becoming a Major Source?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>0</td>
<td>407</td>
<td>20,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SOX</td>
<td>0</td>
<td>0</td>
<td>140,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PM10</td>
<td>0</td>
<td>6</td>
<td>140,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>0</td>
<td>71</td>
<td>200,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>0</td>
<td>12</td>
<td>20,000</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

As seen in the table above, the facility is not an existing Major Source and also is not becoming a Major Source as a result of this project.

6. Baseline Emissions (BE)

BE = Pre-project Potential to Emit for:
- Any unit located at a non-Major Source,
• Any Highly-Utilized Emissions Unit, located at a Major Source,
• Any Fully-Offset Emissions Unit, located at a Major Source, or
• Any Clean Emissions Unit, located at a Major Source.

otherwise,

BE = Historic Actual Emissions (HAE), calculated pursuant to Section 3.22

Since this is a new emissions unit, BE = PE1 = 0 for all criteria pollutants.

7. SB 288 Major Modification

Major Modification is defined in 40 CFR Part 51.165 as "any physical change in or change in the method of operation of a major stationary source that would result in a significant net emissions increase of any pollutant subject to regulation under the Act."

As discussed in Section VII.C.5 previously, the facility is not a Major Source for any criteria pollutant. Therefore, the project does not constitute an SB 288 Major Modification.

8. Federal Major Modification

As shown in the previous section, this project does not constitute an SB 288 Major Modification. Therefore, in accordance with District Rule 2201, Section 3.17, this project does not constitute a Federal Major Modification and no further discussion is required.

9. Quarterly Net Emissions Change (QNEC)

The QNEC is calculated solely to establish emissions that are used to complete the District's PAS emissions profile screen. QNEC for the new emission unit is determined as follows:

\[
QNEC = PE2 + 4 \text{ (lb/quarter)}
\]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Q1 (lb)</th>
<th>Q2 (lb)</th>
<th>Q3 (lb)</th>
<th>Q4 (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>101</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>SO\textsubscript{x}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>VOC</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
VIII. Compliance

Rule 2201 New and Modified Stationary Source Review Rule

A. Best Available Control Technology (BACT)

1. BACT Applicability

BACT requirements are triggered on a pollutant-by-pollutant basis and on an emissions unit-by-emissions unit basis for the following:

a) Any new emissions unit with a potential to emit exceeding 2.0 pounds per day,
b) The relocation from one Stationary Source to another of an existing emissions unit with a potential to emit exceeding 2.0 pounds per day,
c) Modifications to an existing emissions unit with a valid Permit to Operate resulting in an AIPE exceeding 2.0 pounds per day, and/or
d) Any new or modified emissions unit, in a stationary source project, which results in a Major Modification.

* Except for CO emissions from a new or modified emissions unit at a Stationary Source with an SSPE2 of less than 200,000 pounds per year of CO.

As discussed in Section I, the facility is proposing to install an emergency standby IC engine. Additionally, as determined in Section VII.C.7, this project does not result in a Major Modification. Therefore, BACT can only be triggered if the daily emissions exceed 2.0 lb/day for any pollutant.

The daily emissions from the new engine are compared to the BACT threshold levels in the following table:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Daily Emissions for unit -1.0 (lb/day)</th>
<th>BACT Threshold (lb/day)</th>
<th>SSPE2 (lb/yr)</th>
<th>BACT Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>195.1</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>SOX</td>
<td>0.1</td>
<td>> 2.0</td>
<td>n/a</td>
<td>No</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>2.8</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>CO</td>
<td>33.9</td>
<td>> 2.0 and SSPE2 ≥ 200,000 lb/yr</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>5.7</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
</tbody>
</table>

As shown above, BACT will be triggered for NOX, PM_{10}, and VOC emissions from the engine for this project.
2. BACT Guideline

Pursuant to District Policy FYI-98, a BACT analysis is required for this engine. This engine was installed with controls and the BACT analysis will be performed utilizing BACT requirements in effect when the engine was installed.

District BACT Guideline 3.1.3 (updated 6/30/2001), which appears in Appendix B of this report, covers diesel-fired IC engines, equal to or greater than 400 hp, driving emergency electrical generators. This guideline will be utilized for the BACT determination.

3. Top Down BACT Analysis

Per District Policy APR 1305, Section IX, "A top-down BACT analysis shall be performed as a part of the Application Review for each application subject to the BACT requirements pursuant to the District’s NSR Rule for source categories or classes covered in the BACT Clearinghouse, relevant information under each of the following steps may be simply cited from the Clearinghouse without further analysis."

Pursuant to the attached Top-Down BACT Analysis, which appears in Appendix B of this report, BACT is satisfied with:

- **NO\textsubscript{X}:** Certified emissions of 6.9 g/bhp-hr, or less
- **PM\textsubscript{10}:** Certified emissions of 0.1 g/bhp-hr
- **VOC:** Positive crankcase ventilation

The following condition(s) will be listed on the ATC to ensure compliance with the PM\textsubscript{10} BACT emissions limit:

- *Emissions from this IC engine shall not exceed 0.1 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, and 17 CCR 93115]*

B. Offsets

Since emergency IC engines are exempt from the offset requirements of Rule 2201, per Section 4.6.2, offsets are not required for this engine, and no offset calculations are required.

C. Public Notification

1. Applicability

Public noticing is required for:

- any new Major Source, which is a new facility that is also a Major Source
As shown in Section VII.C.6, this facility is not a new Major Source.

b. Major Modifications

As shown in Section VII.C.7, this project is not a Major Modification.

c. Any new emissions unit with a Potential to Emit greater than 100 lb/day for any one pollutant

As calculated in Section VII.C.2, daily emissions for NOX are greater than 100 lb/day.

d. Any project which results in the offset thresholds being surpassed

As shown in Section VII.C.4, an offset threshold will not be surpassed.

e. Any project with an Stationary Source project Increase in Potential (SSIPE) Emissions greater than 20,000 lb/year for any pollutant.

For this project, the proposed engine is the only emissions source that will generate an increase in Potential to Emit. Since the proposed engine emissions are well below 20,000 lb/year for all pollutants (See Section VII.C.2), the SSIPE for this project will be below the public notice threshold.

2. Public Notice Action

As demonstrated above, this project will require public noticing for potential NOx emissions exceeding 100 lb/day. Therefore, public notice documents will be submitted to the California Air Resources Board (CARB) and a public notice will be published in a local newspaper of general circulation prior to the issuance of the ATC for this equipment.

D. Daily Emissions Limits

Daily Emissions Limitations (DELS) and other enforceable conditions are required by Section 3.15 to restrict a unit's maximum daily emissions, to a level at or below the emissions associated with the maximum design capacity. Per Sections 3.15.1 and 3.15.2, the DEL must be contained in the latest ATC and contained in or enforced by the latest PTO and enforceable, in a practicable manner, on a daily basis. Therefore, the following conditions will be listed on the ATC to ensure compliance:

- Emissions from this IC engine shall not exceed any of the following limits: 6.9 g-NOx/bhp-hr, 1.2 g-CO/bhp-hr, or 0.2 g-VOC/bhp-hr. [District Rule 2201 and 17 CCR 93115]
• Emissions from this IC engine shall not exceed 0.1 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102 and 17 CCR 93115]

• Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, 17 CCR 93115]

E. Compliance Assurance

1. Source Testing

Pursuant to District Policy APR 1705, source testing is not required for emergency standby IC engines to demonstrate compliance with Rule 2201.

2. Monitoring

No monitoring is required to demonstrate compliance with Rule 2201.

3. Recordkeeping

Recordkeeping requirements, in accordance with District Rule 4702, will be discussed in Section VIII, District Rule 4702, of this evaluation.

4. Reporting

No reporting is required to ensure compliance with Rule 2201.

F. Ambient Air Quality Analysis (AAQA)

Section 4.14.1 of this rule requires that an ambient air quality analysis (AAQA) be conducted for the purpose of determining whether a new or modified Stationary Source will cause or make worse a violation of an air quality standard. The Technical Services Division of the SJVAPCD conducted the required analysis.

As shown by the AAQA summary sheet in Appendix D, the proposed equipment will not cause or make worse a violation of an air quality standard for NOX, CO, PM10, or SOX.

Rule 2520 Federally Mandated Operating Permits

Since this facility's potential to emit does not exceed any major source thresholds of Rule 2201, this facility is not a major source, and Rule 2520 does not apply.
Rule 4001 New Source Performance Standards (NSPS)

40 CFR 60 Subpart III – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

Applicability

This subpart is applicable to owners and operators of stationary compression ignited internal combustion engines that commence construction after July 11, 2005, where the engines are:

1) Manufactured after April 1, 2006, if not a fire pump engine.
2) Manufactured as a National Fire Protection Association (NFPA) fire pump engine after July 1, 2006.

Since the proposed engine was installed in 2001, this subpart does not apply.

Rule 4101 Visible Emissions

Rule 4101 states that no air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. Therefore, the following condition will be listed on the ATC to ensure compliance:

• 15) No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]

Rule 4102 Nuisance

Rule 4102 states that no air contaminant shall be released into the atmosphere which causes a public nuisance. Public nuisance conditions are not expected as a result of these operations, provided the equipment is well maintained. Therefore, the following condition will be listed on the ATC to ensure compliance:

• 98) No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

California Health & Safety Code 41700 (Health Risk Assessment)

District Policy APR 1905 - Risk Management Policy for Permitting New and Modified Sources (dated 3/2/01) specifies that for an increase in emissions associated with a proposed new source or modification, the District perform an analysis to determine the possible impact to the nearest resident or worksite. Therefore, a risk management review (RMR) was performed for this project. The RMR results are summarized in the following table, and can be seen in detail in Appendix D.
The following conditions will be listed on the ATC to ensure compliance with the RMR:

- \{1898\} The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

- Emissions from this IC engine shall not exceed 0.1 g-PM_{10}/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102 and 17 CCR 93115]

- This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rule 4702 and 17 CCR 93115]

Rule 4201 Particulate Matter Concentration

Rule 4201 limits particulate matter emissions from any single source operation to 0.1 g/dscf, which, as calculated below, is equivalent to a PM_{10} emission factor of 0.4 g-PM_{10}/bhp-hr.

\[
0.1 \text{ grain-PM} \times \frac{g}{15.43 \text{ grain}} \times \frac{1 \text{ Btu}_{\text{in}}}{0.35 \text{ Btu}_{\text{out}}} \times \frac{9.051 \text{ dscf}}{10^6 \text{ Btu}} \times \frac{2,542.5 \text{ Btu}}{1 \text{ bhp-hr}} \times \frac{0.96 \text{ g-PM}_{10}}{1 \text{ g-PM}} = 0.4 \frac{\text{g-PM}_{10}}{\text{bhp-hr}}
\]

The new engine has a PM_{10} emission factor less than 0.4 g/bhp-hr. Therefore, compliance is expected and the following condition will be listed on the ATC:

- \{14\} Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201]

Rule 4701 Internal Combustion Engines – Phase 1

Pursuant to Section 7.5.2.3 of District Rule 4702, as of June 1, 2006 District Rule 4701 is no longer applicable to diesel-fired emergency standby or emergency IC engines. Therefore, the proposed emergency internal combustion engine(s) will comply with the requirements of District Rule 4702 and no further discussion is required.
Rule 4702 Internal Combustion Engines – Phase 2

The following table demonstrates how the proposed engine will comply with the requirements of District Rule 4702.

<table>
<thead>
<tr>
<th>District Rule 4702 Requirements Emergency Standby IC Engines</th>
<th>Proposed Method of Compliance with District Rule 4702 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation of emergency standby engines is limited to 100 hours or less per calendar year for non-emergency purposes, verified through the use of a non-resettable elapsed operating time meter.</td>
<td>The Air Toxic Control Measure for Stationary Compression Ignition Engines (Stationary ATCM) limits this engine maintenance and testing to 50 hours/year. Thus, compliance is expected.</td>
</tr>
</tbody>
</table>
| Emergency standby engines cannot be used to reduce the demand for electrical power when normal electrical power line service has not failed, or to produce power for the electrical distribution system, or in conjunction with a voluntary utility demand reduction program or interruptible power contract. | The following conditions will be included on the permit:
 - {3807} An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rule 4702]
 - {3808} This engine shall not be used to produce power for the electrical distribution system, as part of a voluntary utility demand reduction program, or for an interruptible power contract. [District Rule 4702] |
| The owner/operator must operate and maintain the engine and any installed control devices according to the manufacturers written instructions. | A permit condition enforcing this requirement was shown earlier in the evaluation. |
| The owner/operator must monitor the operational characteristics of each engine as recommended by the engine manufacturer or emission control system supplier. | The following condition will be included on the permit:
 - {3478} During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example: check engine fluid levels, battery, cables and connections; change engine oil and filters; replace engine coolant; and/or other operational characteristics as recommended by the manufacturer or supplier). [District Rule 4702] |
| Records of the total hours of operation of the emergency standby engine, type of fuel used, purpose for operating the | The following conditions will be included on the permit: |
engine, all hours of non-emergency and emergency operation, and support documentation must be maintained. All records shall be retained for a period of at least five years, shall be readily available, and be made available to the APCO upon request.

- (3496) The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

- The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]

- (3475) All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]

Rule 4801 Sulfur Compounds

Rule 4801 requires that sulfur compound emissions (as SO_2) shall not exceed 0.2% by volume. Using the ideal gas equation, the sulfur compound emissions are calculated as follows:

\[
\text{Volume } \text{SO}_2 = \left(n \times R \times T \right) / P \\
n = \text{moles } \text{SO}_2 \\
T = \text{standard temperature} = 60 \, ^\circ F \text{ or } 520 \, ^\circ R \\
R = \text{universal gas constant} = \frac{10.73 \text{ psi} \cdot \text{ft}^3}{\text{lb-mol} \cdot ^\circ R} \\
\]

\[
\frac{0.000015 \text{ lb-S} \times 7.1 \text{ lb} \times 64 \text{ lb-SO}_2}{\text{gal} \times 32 \text{ lb-S}} \times \frac{1 \text{ MMBtu}}{9,051 \text{ scf}} \times \frac{1 \text{ gal}}{1 \text{ lb-mol}} \times \frac{10.73 \text{ psi} \cdot \text{ft}^3}{1 \text{ lb-mol} \cdot ^\circ R} \times \frac{520 \, ^\circ R}{14.7 \text{ psi}} = 1.0 \text{ ppmv} \\
\]

Since 1.0 ppmv is ≤ 2,000 ppmv, this engine is expected to comply with Rule 4801. Therefore, the following condition will be listed on the ATC to ensure compliance:

- **Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used.** [District Rules 2201 and 4801, and 17 CCR 93115]
California Health & Safety Code 42301.6 (School Notice)

The District has verified that this site is not located within 1,000 feet of a school. Therefore, pursuant to California Health and Safety Code 42301.6, a school notice is not required.

Title 17 California Code of Regulations (CCR), Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines

Title 17 CCR, Section 93115, (e)(2)(A)(3)(b) stipulates that new stationary emergency standby diesel-fueled CI engines (> 50 bhp) must meet the VOC, NOX, and CO standards for off-road engines of the same model year and maximum rated power as specified in the Off-Road Compression-Ignition Engine Standards (Title 13 CCR, Section 2423) or the Tier 1 standards for an off-road engine if no standards have been established for an off-road engine of the same model year and maximum rated power.

However, Title 17 CCR, Section 93115.4 (a)(50)(A) defines a new stationary CI engine that is installed at a facility after January 1, 2005. This engine was installed in 2001. Therefore, this engine is not considered a new stationary CI engine, and the emissions requirement of Title 17 CCR, Section 93115 does not apply.

Emergency Operating Requirements:

This regulation stipulates that no owner or operator shall operate any new or in-use stationary diesel-fueled compression ignition (CI) emergency standby engine, in response to the notification of an impending rotating outage, unless specific criteria are met.

This section applies to emergency standby IC engines that are permitted to operate during non-emergency conditions for the purpose of providing electrical power. However, District Rule 4702 states that emergency standby IC engines may only be operated during non-emergency conditions for the purposes of maintenance and testing. Therefore, this section does not apply and no further discussion is required.

Fuel and Fuel Additive Requirements:

This regulation also stipulates that as of January 1, 2006 an owner or operator of a new or in-use stationary diesel-fueled CI emergency standby engine shall fuel the engine with CARB Diesel Fuel.

Since the engine involved with this project is a new or in-use stationary diesel-fueled CI emergency standby engine, these fuel requirements are applicable. Therefore, the following condition (previously proposed in this engineering evaluation) will be listed on the ATC to ensure compliance:
Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201, 4102, and 4801 and 17 CCR 93115]

At-School and Near-School Provisions:

This regulation stipulates that no owner or operator shall operate a new stationary emergency standby diesel-fueled CI engine, with a PM_{10} emissions factor > than 0.01 g/bhp-hr, for non-emergency use, including maintenance and testing, during the following periods:

1. Whenever there is a school sponsored activity, if the engine is located on school grounds, and
2. Between 7:30 a.m. and 3:30 p.m. on days when school is in session, if the engine is located within 500 feet of school grounds.

The District has verified that the engine is not located within 500 feet of a K-12 school. Therefore, conditions prohibiting non-emergency usage of the engine during school hours will not be placed on the permit.

Recordkeeping Requirements:

This regulation stipulates that as of January 1, 2005, each owner or operator of an emergency standby diesel-fueled CI engine shall keep a monthly log of usage that shall list and document the nature of use for each of the following:

a. Emergency use hours of operation;
b. Maintenance and testing hours of operation;
c. Hours of operation for emission testing;
d. Initial start-up hours; and
e. If applicable, hours of operation to comply with the testing requirements of National Fire Protection Association (NFPA) 25 — “Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems,” 1998 edition;
f. Hours of operation for all uses other than those specified in sections ‘a’ through ‘d’ above; and
g. For in-use emergency standby diesel-fueled engines, the fuel used. The owner or operator shall document fuel use through the retention of fuel purchase records that account for all fuel used in the engine and all fuel purchased for use in the engine, and, at a minimum, contain the following information for each individual fuel purchase transaction:
 I. Identification of the fuel purchased as either CARB Diesel, or an alternative diesel fuel that meets the requirements of the Verification Procedure, or an alternative fuel, or CARB Diesel fuel used with additives that meet the requirements of the Verification Procedure, or any combination of the above;
 II. Amount of fuel purchased;
 III. Date when the fuel was purchased;
IV. Signature of owner or operator or representative of owner or operator who received the fuel; and
V. Signature of fuel provider indicating fuel was delivered.

The engine associated with this project is an in-use emergency standby engine powering an electrical generator. Therefore, the following conditions (previously proposed in this engineering evaluation) will be listed on the ATC to ensure compliance:

- \[3479\] The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

- \[3475\] All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]

PM Emissions and Hours of Operation Requirements for In-Use Diesel Engines:

This regulation stipulates no person shall operate any in-use stationary emergency standby diesel-fueled CI engine that has a rated brake horsepower greater than 50, unless it meets all of the following applicable emission standards and operating requirements.

1. Emits diesel PM at a rate greater than 0.15 g/bhp-hr or less than or equal to 0.40 g/bhp-hr; or
2. Meets the current model year diesel PM standard specified in the Off-Road Compression Ignition Engine Standards for off-road engines with the same maximum rated power (Title 13 CCR, Section 2423), whichever is more stringent; and
3. Does not operate more than 30 hours per year for maintenance and testing purposes. Engine operation is not limited during emergency use and during emissions source testing to show compliance with the ATCM.

Therefore, the following conditions (previously proposed in this engineering evaluation) will be listed on the ATC to ensure compliance:

- Emissions from this IC engine shall not exceed 0.1 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, and 17 CCR 93115]
This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rule 4702 and 17 CCR 93115]

California Environmental Quality Act (CEQA)

The California Environmental Quality Act (CEQA) requires each public agency to adopt objectives, criteria, and specific procedures consistent with CEQA Statutes and the CEQA Guidelines for administering its responsibilities under CEQA, including the orderly evaluation of projects and preparation of environmental documents. The San Joaquin Valley Unified Air Pollution Control District (District) adopted its Environmental Review Guidelines (ERG) in 2001.

The basic purposes of CEQA are to:

- Inform governmental decision-makers and the public about the potential, significant environmental effects of proposed activities.
- Identify the ways that environmental damage can be avoided or significantly reduced.
- Prevent significant, avoidable damage to the environment by requiring changes in projects through the use of alternatives or mitigation measures when the governmental agency finds the changes to be feasible.
- Disclose to the public the reasons why a governmental agency approved the project in the manner the agency chose if significant environmental effects are involved.

Consistent with California Environmental Quality Act (CEQA) and CEQA Guidelines requirements, the San Joaquin Valley Air Pollution Control District (District) has adopted procedures and guidelines for implementing CEQA. The District's Environmental Review Guidelines (ERG) establishes procedures for avoiding unnecessary delay during the District's permitting process while ensuring that significant environmental impacts are thoroughly and consistently addressed. The ERG includes policies and procedures to be followed when processing permits for projects that are exempt under CEQA.

The State Legislature granted a number of exemptions from CEQA, including projects that require only ministerial approval. Based upon analysis of its own laws and consideration of CEQA provisions, the District has identified a limited number of District permitting activities considered to be ministerial approvals. As set forth in §4.2.1 of the ERG, projects permitted consistent with the District's Guidelines for Expedited Application Review (GEAR) are standard application reviews in which little or no discretion is used in issuing Authority to Construct (ATC) documents.

For the proposed project, the District performed an Engineering Evaluation (this document) and determined that the project qualifies for processing under the
procedures set forth in the District's Permit Services Procedures Manual in the Guidelines for Expedited Application Review (GEAR). Thus, as discussed above, this issuance of such ATC(s) is a ministerial approval for the District and is not subject to CEQA provisions.

On December 17, 2009, the District’s Governing Board adopted the first comprehensive regional policy and guidance on addressing and mitigating GHG emission impacts caused by industrial, commercial, and residential development in the San Joaquin Valley. The adopted District policy—Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency applies to projects for which the District has discretionary approval authority over the project and serves as the lead agency for CEQA purposes. The policy relies on the use of performance based standards, otherwise known as Best Performance Standards (BPS) to assess significance of project specific greenhouse gas emissions on global climate change during the environmental review process, as required by CEQA.

Use of BPS is a method of streamlining the CEQA process of determining significance and is not a required emission reduction measure. However, consistent with the District’s objective to achieve the GHG emission reduction targets established pursuant to AB 32, BPS will be incorporated into the District’s GEAR application review process. In the interim, projects meeting the existing GEAR requirements will continue to be processed as ministerial approvals.

IX. Recommendation

Compliance with all applicable rules and regulations is expected. Issue Authority to Construct N-8214-1-0 subject to the permit conditions on the attached draft Authority to Construct in Appendix A.

X. Billing Information

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Fee Schedule</th>
<th>Fee Description</th>
<th>Fee Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-8214-1-0</td>
<td>3020-10-D</td>
<td>535 bhp IC engine</td>
<td>$479.00</td>
</tr>
</tbody>
</table>

Appendixes

A. Draft ATC
B. BACT Guideline and BACT Analysis
C. Emissions Data
D. HRA Summary and AAQA
Appendix A

Draft ATC
AUTHORITY TO CONSTRUCT

PERMIT NO: N-8214-1-0

LEGAL OWNER OR OPERATOR: DIVERSIFIED COLLECTION SERVICE
MAILING ADDRESS: 333 N CANYONS PARKWAY SUITE 100
LIVERMORE, CA 94551
LOCATION: 17080 S HARLAN RD
LATHROP, CA 95336

EQUIPMENT DESCRIPTION:
535 BHP CUMMINS MODEL N14-G2 TIER 1 CERTIFIED EMERGENCY STANDBY DIESEL-FIRED IC ENGINE
POWERING AN ELECTRICAL GENERATOR

CONDITIONS

1.
 {98} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

2.
 {14} Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201]

3.
 {15} No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]

4.
 {1898} The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

5.
 Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801 and 17 CCR 93115]

6.
 This engine shall be equipped with an operational non-resettable elapsed time meter or other APCO approved alternative. [District Rule 4702 and 17 CCR 93115]

7.
 Emissions from this IC engine shall not exceed any of the following limits: 6.9 g-NOx/bhp-hr, 1.2 g-CO/bhp-hr, or 0.2 g-VOC/bhp-hr. [District Rule 2201, 13 CCR 2423, and 17 CCR 93115]

8.
 Emissions from this IC engine shall not exceed 0.1 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, 13 CCR 2423, and 17 CCR 93115]

9.
 {3405} This engine shall be operated and maintained in proper operating condition as recommended by the engine manufacturer or emissions control system supplier. [District Rule 4702]

 CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadrein, Executive Director/ APCO

DAVID WARNER, Director of Permit Services

Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95356-8718 • (209) 557-6400 • Fax (209) 557-6475
10. {3478} During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example: check engine fluid levels, battery, cables and connections; change engine oil and filters; replace engine coolant; and/or other operational characteristics as recommended by the manufacturer or supplier). [District Rule 4702]

11. This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rule 4702 and 17 CCR 93115]

12. {3807} An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rule 4702]

13. {3808} This engine shall not be used to produce power for the electrical distribution system, as part of a voluntary utility demand reduction program, or for an interruptible power contract. [District Rule 4702]

14. The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

15. The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]

16. {3475} All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]
Appendix B

BACT Guideline and BACT Analysis
Best Available Control Technology (BACT) Guideline 3.1.3
Last Update: 6/30/2001

Emergency Diesel I.C. Engine = or > 400 hp

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>2.0 grams/brake horsepower-hour</td>
<td>= or < 1.4 grams/bhp-hr</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>Certified emissions of 6.9 g/bhp-hr or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>0.1 grams/bhp-hr (if TBACT is triggered) 0.4 grams/bhp-hr (if TBACT is not triggered)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td>Low-sulfur diesel fuel (500 ppmw sulfur or less) or Very Low-sulfur diesel fuel (15 ppmw sulfur or less), where available.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Positive crankcase ventilation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Any engine model included in the ARB or EPA diesel engine certification lists and identified as having a PM10 emission rate of 0.149 grams/bhp-hr or less, based on ISO 8178 test procedure, shall be deemed to meet the 0.1 grams/bhp-hr requirement. 2. A site-specific Health Risk Analysis is used to determine if TBACT is triggered.

(Clarification added 05/07/01)

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a state implementation plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source - Permit Specific BACT Determinations on Details Page.

http://intranetn/per/b_a_c_t/bact_guideline.asp?category_level1=3&category_level2=1&category_level3=3&last_update=6&30:
Top Down BACT Analysis for NO\textsubscript{X} for the Emergency IC Engine(s)

Oxides of nitrogen (NO\textsubscript{X}) are generated from the high temperature combustion of the diesel fuel. A majority of the NO\textsubscript{X} emissions are formed from the high temperature reaction of nitrogen and oxygen in the inlet air. The rest of the NO\textsubscript{X} emissions are formed from the reaction of fuel-bound nitrogen with oxygen in the inlet air.

a. Step 1 - Identify all control technologies

The SJVUAPCD BACT Clearinghouse Guideline 3.1.3, updated 6/30/2001 was in effect when this engine was installed and identifies achieved in practice BACT for NO\textsubscript{X} emissions from emergency diesel IC engines powering a fire pump as follows:

1) Certified emissions of 6.9 g-NO\textsubscript{X}/bhp-hr, or less
 or

No technologically feasible alternatives or control alternatives identified as alternate basic equipment for this class and category of source are listed.

b. Step 2 - Eliminate technologically infeasible options

There are no technologically infeasible options to eliminate from Step 1.

c. Step 3 - Rank remaining options by control effectiveness

The ranking remains as listed in Step 1, above.

d. Step 4 - Cost Effectiveness Analysis

The only control technology listed in Step 3 is achieved in practice. Pursuant to the District's BACT policy, a cost effectiveness analysis is not required for achieved in practice control technologies.

e. Step 5 - Select BACT

BACT for NO\textsubscript{X} emissions from this emergency diesel IC engine powering a fire pump is having certified emissions of 6.9 g-NO\textsubscript{X}/bhp-hr, or less. The applicant has proposed to install a 535 bhp emergency diesel IC engine powering a fire pump with certified emissions of 6.9 g-NO\textsubscript{X}/bhp-hr, or less. Therefore BACT for NO\textsubscript{X} emissions is satisfied.
BACT Analysis for PM$_{10}$ Emissions:

a. Step 1 - Identify all control technologies

The SJVUAPCD BACT Clearinghouse Guideline 3.1.3, updated 6/30/2001 was in effect when this engine was installed and identifies achieved in practice BACT for PM$_{10}$ emissions from emergency diesel IC engines powering a fire pump as follows:

1) 0.1 grams/bhp-hr (if TBACT is triggered) 0.4 grams/bhp-hr (if TBACT is not triggered)

No technologically feasible alternatives or control alternatives identified as alternate basic equipment for this class and category of source are listed.

b. Step 2 - Eliminate technologically infeasible options

There are no technologically infeasible options to eliminate from Step 1.

c. Step 3 - Rank remaining options by control effectiveness

No ranking needs to be done because only one control option is listed in Step 1.

d. Step 4 - Cost Effectiveness Analysis

The only control technology listed in Step 3 is achieved in practice. Pursuant to the District's BACT policy, a cost effectiveness analysis is not required for achieved in practice control technologies.

e. Step 5 - Select BACT

BACT for PM$_{10}$ emissions from this emergency standby diesel IC engine is PM$_{10}$ emissions of 0.4 grams/bhp-hr if TBACT is not triggered. As shown in the RMR of this document TBACT was not triggered for this project. The applicant is proposing a 535 bhp diesel fired engine with PM$_{10}$ emissions of 0.1 grams/bhp-hr. Therefore, BACT for PM$_{10}$ emissions is satisfied.
BACT Analysis for VOC Emissions:

Volatile organic compounds (VOC) are emitted from the crankcase of the engine as a result of piston ring blow-by.

a. Step 1 - Identify all control technologies

The SJVUAPCD BACT Clearinghouse Guideline 3.1.3, updated 6/30/2001 was in effect when this engine was installed and identifies achieved in practice BACT for PM$_{10}$ emissions from emergency diesel IC engines powering a fire pump as follows:

1) Positive crankcase ventilation

No control alternatives identified as alternate basic equipment for this class and category of source are listed.

b. Step 2 - Eliminate technologically infeasible options

There are no technologically infeasible options to eliminate from step 1.

c. Step 3 - Rank remaining options by control effectiveness

No ranking needs to be done because only one control option is listed in Step 1.

d. Step 4 - Cost effectiveness analysis

The only control technology listed in Step 3 is achieved in practice. Pursuant to the District's BACT policy, a cost effectiveness analysis is not required for achieved in practice control technologies.

f. Step 5 - Select BACT

BACT for VOC emissions from this emergency diesel IC engine powering a fire pump is positive crankcase ventilation (PCV). The applicant has proposed to install a 535 bhp emergency diesel IC engine powering a fire pump with PCV. Therefore BACT for VOC emissions is satisfied.
Appendix C

Emissions Data Sheet
State of California
AIR RESOURCES BOARD

EXECUTIVE ORDER U-R-2-40

Relating to Certification of New Heavy-Duty
Off-road Equipment Engines

CUMMINS ENGINE COMPANY, INC.

Pursuant to the authority vested in the Air Resources Board by Sections 43000.5, 43013 and 43018 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-45-9;

IT IS ORDERED AND RESOLVED: That the following Cummins Engine Company, Inc. 1999 model-year engines with rated power between 175 and 750 horsepower and exhaust emission control systems are certified as described below in heavy-duty off-road equipment:

Typical Equipment Usage:
Crane, Loader, Tractor, Dozer, Pump, Compressor, and Generator Set

Fuel Type: Diesel

<table>
<thead>
<tr>
<th>Engine Family</th>
<th>Displacement</th>
<th>Exhaust Emission Control Systems and Special Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCEXL0855AAA (A093)</td>
<td>14.0, 855</td>
<td>Charge Air Cooler Turbocharger</td>
</tr>
</tbody>
</table>

Engine models and codes are listed on attachments. Production engines shall be in all material respects the same as those for which certification is granted.

The total hydrocarbons (THC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM) certification exhaust emission standards in grams per brake horsepower-hour (g/hp-h), and the opacity-of-smoke emission standards in percent (%) during acceleration (Accel), lugging (Lug), and peak (Peak) modes for this engine family are as follows (Title 13, California Code of Regulations, Section 2423):

<table>
<thead>
<tr>
<th>Exhaust Emissions (g/hp-h)</th>
<th>Smoke Opacity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THC</td>
<td>CO</td>
</tr>
<tr>
<td>1.0</td>
<td>8.5</td>
</tr>
</tbody>
</table>
The THC, CO, NOx, and PM exhaust emissions certification values in grams per brake horsepower-hour, and the opacity-of-smoke emissions certification values in percent for this engine family are:

<table>
<thead>
<tr>
<th>Exhaust Emissions (g/hp-h)</th>
<th>Smoke Opacity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THC</td>
<td>CO</td>
</tr>
<tr>
<td>0.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

BE IT FURTHER RESOLVED: That the listed engine models comply with the "Exhaust Emission Standards and Test Procedures--Heavy-Duty Off-Road Diesel-Cycle Engines" (Title 13, California Code of Regulations Section 2423) for the aforementioned model year.

BE IT FURTHER RESOLVED: That the listed engine models also comply with the "Emission Control Labels--1996 and Later Heavy-Duty Off-Road Diesel-Cycle Engines" (Title 13, California Code of Regulations, Section 2424) for the aforementioned model year.

BE IT FURTHER RESOLVED: That for the listed engine models the manufacturer has submitted the materials to demonstrate certification compliance with the Board's emission control system warranty provisions (Title 13, California Code of Regulations, Sections 2425 et seq.).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

Executed at El Monte, California this 16th day of November 1998.

[Signature]
R.B. Summerfield, Chief
Mobile Source Operations Division
Appendix D

HRA Summary and AAQA
San Joaquin Valley Air Pollution Control District
Risk Management Review

To: Rick Dyer, AQE – Permit Services
From: Jennifer Hart, AQS – Technical Services
Date: December 10, 2010
Facility Name: Diversified Collection Service
Location: 17080 S Harian Rd
Application #: N-8214-1-0
Project #: N-1102852

A. RMR SUMMARY

<table>
<thead>
<tr>
<th>Categories</th>
<th>DICE (Unit 1-0)</th>
<th>Project Totals</th>
<th>Facility Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritization Score</td>
<td>NA¹</td>
<td>NA¹</td>
<td>NA¹</td>
</tr>
<tr>
<td>Acute Hazard Index</td>
<td>N/A²</td>
<td>N/A²</td>
<td>N/A²</td>
</tr>
<tr>
<td>Chronic Hazard Index</td>
<td>N/A²</td>
<td>N/A²</td>
<td>N/A²</td>
</tr>
<tr>
<td>Maximum Individual Cancer Risk (10⁻⁶)</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>T-BACT Required?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Permit Conditions?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Prioritization for this unit was not conducted since it has been determined that all diesel-fired IC engines will result in a prioritization score greater than 1.0.
2 Acute and Chronic Hazard Indices were not calculated since there is no risk factor or the risk factor is so low that it has been determined to be insignificant for this type of unit.

Proposed Permit Conditions

To ensure that human health risks will not exceed District allowable levels; the following permit conditions must be included for:

Unit # 1-0

1. The PM10 emissions rate shall not exceed 0.1 g/bhp-hr based on US EPA certification using ISO 8178 test procedure. [District Rules 2201]

2. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

3. This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rule 4702 and 17 CCR 93115]
B. RMR REPORT

I. Project Description

Technical Services received a request on December 8, 2010, to perform an Ambient Air Quality Analysis and a Risk Management Review for a 535 bhp diesel-fired IC engine powering an electrical generator.

II. Analysis

Technical Services performed a screening level health risk assessment using the District developed DICE database.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 1-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Point</td>
</tr>
<tr>
<td>BHP</td>
<td>535</td>
</tr>
<tr>
<td>Location Type</td>
<td>(PM_{10}) g/hp-hr</td>
</tr>
<tr>
<td>Urban</td>
<td>0.1</td>
</tr>
<tr>
<td>Closest Receptor (m)</td>
<td>30.43</td>
</tr>
<tr>
<td>Type of Receptor</td>
<td>Quad</td>
</tr>
<tr>
<td>Max Hours per Year</td>
<td>50</td>
</tr>
<tr>
<td>Business</td>
<td></td>
</tr>
</tbody>
</table>

Technical Services performed modeling for criteria pollutants CO, NOx, SOx and \(PM_{10}\), as well as a RMR. The emission rates used for criteria pollutant modeling were 33.9 lb/day CO, 195.1 lb/day NOx, 0.1 lb/day SOx, and 2.8 lb/day \(PM_{10}\). The engineer supplied the maximum fuel rate for the IC engine used during the analysis.

The results from the Criteria Pollutant Modeling are as follows:

<table>
<thead>
<tr>
<th>Diesel ICE</th>
<th>1 Hour</th>
<th>3 Hours</th>
<th>8 Hours</th>
<th>24 Hours</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Pass</td>
<td>X</td>
<td>Pass</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOx</td>
<td>Pass</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pass</td>
</tr>
<tr>
<td>SOx</td>
<td>Pass</td>
<td>Pass</td>
<td>X</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>(PM_{10})</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pass</td>
<td>Pass</td>
</tr>
</tbody>
</table>

*Results were taken from the attached PSD spreadsheet.

1The project was compared to the 1-hour NO2 National Ambient Air Quality Standard that became effective on April 12, 2010 using the District’s approved procedures.

2The criteria pollutants are below EPA’s level of significance as found in 40 CFR Part 51.165 (b)(2).
III. Conclusion

The emissions from the proposed equipment will not cause or contribute significantly to a violation of the State and National AAQS.

The cancer risk associated with the operation of the proposed diesel IC engine is less than 1 in a million. In accordance with the District's Risk Management Policy, the project is approved without Toxic Best Available Control Technology (T-BACT) for PM10.

To ensure that human health risks will not exceed District allowable levels; the permit conditions listed on page 1 of this report must be included for this proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

Attachments:

A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Facility toxic emissions summary
D. Diesel Internal Combustion Engine (DICE) prinout
E. AAQA Results
F. NO₂ NAAQS Results
G. AERMOD Non-Regulatory Option Checklist