NOV 22 2011

William Rosica
California Water Service Company
3725 South H Street
Bakersfield, CA 93304

Re: Notice of Preliminary Decision - Authority to Construct
Project Number: S-1113906

Dear Mr. Rosica:

Enclosed for your review and comment is the District's analysis of California Water Service Company's application for an Authority to Construct for one 145 bhp and one 1,490 bhp diesel-fired emergency IC engines powering electrical generators, at 10000 Bella Drive in Bakersfield, CA.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. Please submit your written comments on this project within the 30-day public comment period which begins on the date of publication of the public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Ms. Jessica Seifert of Permit Services at (661) 392-5613.

Sincerely,

David Warner
Director of Permit Services

DW:JAS/cm

Enclosures
NOV 22 2011

Mike Tollstrup, Chief
Project Assessment Branch
Stationary Source Division
California Air Resources Board
PO Box 2815
Sacramento, CA 95812-2815

Re: Notice of Preliminary Decision - Authority to Construct
Project Number: S-1113906

Dear Mr. Tollstrup:

Enclosed for your review and comment is the District’s analysis of California Water Service Company’s application for an Authority to Construct for one 145 bhp and one 1,490 bhp diesel-fired emergency IC engines powering electrical generators, at 10000 Bella Drive in Bakersfield, CA.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. Please submit your written comments on this project within the 30-day public comment period which begins on the date of publication of the public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Ms. Jessica Seifert of Permit Services at (661) 392-5613.

Sincerely,

[Signature]

David Warner
Director of Permit Services

DW: JAS/cm

Enclosure
NOTICE OF PRELIMINARY DECISION
FOR THE PROPOSED ISSUANCE OF
AN AUTHORITY TO CONSTRUCT

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollution Control District solicits public comment on the proposed issuance of Authority to Construct to California Water Service Company for one 145 bhp and one 1,490 bhp diesel-fired emergency IC engines powering electrical generators, at 10000 Bella Drive in Bakersfield, CA.

The analysis of the regulatory basis for this proposed action, Project #S-1113906, is available for public inspection at http://www.valleyair.org/notices/public_notices_idx.htm and the District office at the address below. Written comments on this project must be submitted within 30 days of the publication date of this notice to DAVID WARNER, DIRECTOR OF PERMIT SERVICES, SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 34946 FLYOVER COURT, BAKERSFIELD, CA 93308.
I. Proposal

California Water Service Company is proposing to install one 145 bhp and one 1,490 bhp (intermittent) diesel-fired emergency standby internal combustion (IC) engines both powering electrical generators.

II. Applicable Rules

Rule 2201 New and Modified Stationary Source Review Rule (4/21/11)
Rule 2520 Federally Mandated Operating Permits (6/21/01)
Rule 4001 New Source Performance Standards (4/14/99)
Rule 4002 National Emission Standards for Hazardous Air Pollutants (5/20/04)
Rule 4101 Visible Emissions (2/17/05)
Rule 4102 Nuisance (12/17/92)
Rule 4201 Particulate Matter Concentration (12/17/92)
Rule 4701 Stationary Internal Combustion Engines – Phase 1 (8/21/03)
Rule 4702 Stationary Internal Combustion Engines (8/18/11)
Rule 4801 Sulfur Compounds (12/17/92)
CH&SC 41700 Health Risk Assessment
CH&SC 42301.6 School Notice
Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines
California Environmental Quality Act (CEQA)
Public Resources Code 21000-21177: California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387: CEQA Guidelines
III. Project Location

The project is located at 10,000 Bella Drive in Bakersfield, CA. The District has verified that the equipment is not located within 1,000 feet of the outer boundary of a K-12 school. Therefore, the public notification requirement of California Health and Safety Code 42301.6 is not applicable to this project.

IV. Process Description

The emergency standby engines power electrical generators. Other than emergency standby operation, the engines may each be operated up to 50 hours per year for maintenance and testing purposes.

V. Equipment Listing

S-8066-1-0: 145 BHP (INTERMITTENT) CUMMINS MODEL QSB5-G3-NR3 TIER 3 CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

S-8066-2-0: 1,490 BHP (INTERMITTENT) CUMMINS MODEL QST30-G5-NR2 TIER 2 CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

VI. Emission Control Technology Evaluation

Both IC engines are fired on very low-sulfur diesel fuel (0.0015% by weight sulfur maximum). The use of very low-sulfur diesel fuel reduces SO\textsubscript{x} emissions by over 99% from standard diesel fuel.

S-8066-1-0

The applicant has proposed to install a Tier 3 certified diesel-fired IC engine. The proposed engine meets the latest Tier Certification requirements for emergency standby engines; therefore, the engine meets the latest ARB/EPA emissions standards for diesel particulate matter, hydrocarbons, nitrogen oxides, and carbon monoxide (see Appendix A for a copy of the emissions data sheet).

S-8066-2-0

The applicant has proposed to install a Tier 2 certified diesel-fired IC engine. The proposed engine meets the latest Tier Certification requirements for emergency standby engines; therefore, the engine meets the latest ARB/EPA emissions standards for diesel particulate matter, hydrocarbons, nitrogen oxides, and carbon monoxide (see Appendix B for a copy of the emissions data sheet).
VII. General Calculations

A. Assumptions

Emergency operating schedule: 24 hours/day
Non-emergency operating schedule: 50 hours/year
Density of diesel fuel: 7.1 lb/gal
EPA F-factor (adjusted to 60 °F): 9,051 dscf/MMBtu
Fuel heating value: 137,000 Btu/gal
BHP to Btu/hr conversion: 2,542.5 Btu/bhp-hr
Thermal efficiency of engine: commonly ≈ 35%
PM10 fraction of diesel exhaust: 0.96 (CARB, 1988)

B. Emission Factors

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (g/bhp-hr)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>2.17</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>SOX</td>
<td>0.0051</td>
<td>Mass Balance Equation Below</td>
</tr>
<tr>
<td>PM10</td>
<td>0.06</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>CO</td>
<td>0.58</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>VOC</td>
<td>0.05</td>
<td>Engine Manufacturer</td>
</tr>
</tbody>
</table>

\[
\frac{0.000015 \text{ lb} \times 7.1 \text{ lb-fuel} \times 2 \text{ lb-SO}_2}{1 \text{ gal} \times 1 \text{ lb-S}} \times \frac{137,000 \text{ Btu}}{1 \text{ bhp input} \times 2,542.5 \text{ Btu}} \times 453.6 \frac{g}{	ext{lb}} = \frac{0.0051 \text{ g-SO}_2}{\text{bhp-hr}}
\]

S-8066-2-0

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (g/bhp-hr)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>3.95</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>SOX</td>
<td>0.0051</td>
<td>Mass Balance Equation Below</td>
</tr>
<tr>
<td>PM10</td>
<td>0.11</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>CO</td>
<td>0.66</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>VOC</td>
<td>0.07</td>
<td>Engine Manufacturer</td>
</tr>
</tbody>
</table>

\[
\frac{0.000015 \text{ lb} \times 7.1 \text{ lb-fuel} \times 2 \text{ lb-SO}_2}{1 \text{ gal} \times 1 \text{ lb-S}} \times \frac{137,000 \text{ Btu}}{1 \text{ bhp input} \times 2,542.5 \text{ Btu}} \times 453.6 \frac{g}{	ext{lb}} = \frac{0.0051 \text{ g-SO}_2}{\text{bhp-hr}}
\]
C. Calculations

1. Pre-Project Emissions (PE1)

S-8066-1-0

Since this is a new emissions unit, PE1 = 0.

S-8066-2-0

Since this is a new emissions unit, PE1 = 0.

2. Post-Project PE (PE2)

S-8066-1-0

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emissions Factor (g/bhp-hr)</th>
<th>Rating (bhp)</th>
<th>Daily Hours of Operation (hrs/day)</th>
<th>Annual Hours of Operation (hrs/yr)</th>
<th>Daily PE2 (lb/day)</th>
<th>Annual PE2 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
<td>2.17</td>
<td>145</td>
<td>24</td>
<td>50</td>
<td>16.6</td>
<td>35</td>
</tr>
<tr>
<td>SO\textsubscript{X}</td>
<td>0.0051</td>
<td>145</td>
<td>24</td>
<td>50</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.06</td>
<td>145</td>
<td>24</td>
<td>50</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>CO</td>
<td>0.58</td>
<td>145</td>
<td>24</td>
<td>50</td>
<td>4.4</td>
<td>9</td>
</tr>
<tr>
<td>VOC</td>
<td>0.05</td>
<td>145</td>
<td>24</td>
<td>50</td>
<td>0.4</td>
<td>1</td>
</tr>
</tbody>
</table>

S-8066-2-0

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emissions Factor (g/bhp-hr)</th>
<th>Rating (bhp)</th>
<th>Daily Hours of Operation (hrs/day)</th>
<th>Annual Hours of Operation (hrs/yr)</th>
<th>Daily PE2 (lb/day)</th>
<th>Annual PE2 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
<td>3.95</td>
<td>1490</td>
<td>24</td>
<td>50</td>
<td>311.4</td>
<td>649</td>
</tr>
<tr>
<td>SO\textsubscript{X}</td>
<td>0.0051</td>
<td>1490</td>
<td>24</td>
<td>50</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.11</td>
<td>1490</td>
<td>24</td>
<td>50</td>
<td>8.7</td>
<td>18</td>
</tr>
<tr>
<td>CO</td>
<td>0.66</td>
<td>1490</td>
<td>24</td>
<td>50</td>
<td>52.0</td>
<td>108</td>
</tr>
<tr>
<td>VOC</td>
<td>0.07</td>
<td>1490</td>
<td>24</td>
<td>50</td>
<td>5.5</td>
<td>11</td>
</tr>
</tbody>
</table>
3. Pre-Project Stationary Source Potential to Emit (SSPE1)

Pursuant to Section 4.9 of District Rule 2201, the Pre-Project Stationary Source Potential to Emit (SSPE1) is the Potential to Emit (PE) from all units with valid ATCs or PTOs at the Stationary Source and the quantity of Emission Reduction Credits (ERCs) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site.

Since this is a new facility, SSPE1 = 0 lb/yr for all criteria pollutants.

4. Post-Project Stationary Source Potential to Emit (SSPE2)

Pursuant to Section 4.10 of District Rule 2201, the Post-Project Stationary Source Potential to Emit (SSPE2) is the Potential to Emit (PE) from all units with valid ATCs or PTOs, except for emissions units proposed to be shut down as part of the Stationary Project, at the Stationary Source and the quantity of Emission Reduction Credits (ERCs) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site.

<table>
<thead>
<tr>
<th>Permit Unit</th>
<th>NOₓ (lb/yr)</th>
<th>SOₓ (lb/yr)</th>
<th>PM₁₀ (lb/yr)</th>
<th>CO (lb/yr)</th>
<th>VOC (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-8066-1-0</td>
<td>35</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>S-8066-2-0</td>
<td>649</td>
<td>1</td>
<td>18</td>
<td>108</td>
<td>11</td>
</tr>
<tr>
<td>SSPE2 Total</td>
<td>684</td>
<td>1</td>
<td>19</td>
<td>117</td>
<td>12</td>
</tr>
</tbody>
</table>

5. Major Source Determination

Pursuant to Section 3.24 of District Rule 2201, a Major Source is a stationary source with post project emissions or a Post Project Stationary Source Potential to Emit (SSPE2), equal to or exceeding one or more of the following threshold values. However, Section 3.24.2 states, "for the purposes of determining major source status, the SSPE2 shall not include the quantity of emission reduction credits (ERC) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site."

This facility does not contain ERCs which have been banked at the source; therefore, no adjustment to SSPE2 is necessary.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE1 (lb/yr)</th>
<th>SSPE2 (lb/yr)</th>
<th>Major Source Threshold (lb/yr)</th>
<th>Existing Major Source?</th>
<th>Becoming a Major Source?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
<td>0</td>
<td>684</td>
<td>20,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SO\textsubscript{X}</td>
<td>0</td>
<td>1</td>
<td>140,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0</td>
<td>19</td>
<td>140,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>0</td>
<td>117</td>
<td>200,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>0</td>
<td>12</td>
<td>20,000</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

As seen in the table above, the facility is not an existing Major Source and also is not becoming a Major Source as a result of this project.

6. Baseline Emissions (BE)

BE = Pre-project Potential to Emit for:
- Any unit located at a non-Major Source,
- Any Highly-Utilized Emissions Unit, located at a Major Source,
- Any Fully-Offset Emissions Unit, located at a Major Source, or
- Any Clean Emissions Unit, located at a Major Source.

otherwise,

BE = Historic Actual Emissions (HAE), calculated pursuant to Section 3.23

Since both units are new emissions units, BE = PE1 = 0 for all criteria pollutants.

7. SB 288 Major Modification

SB 288 Major Modification is defined in 40 CFR Part 51.165 as "any physical change in or change in the method of operation of a major stationary source that would result in a significant net emissions increase of any pollutant subject to regulation under the Act."

As discussed in Section VII.C.5 above, this facility is not a major source for any of the pollutants addressed in this project; therefore, the project does not constitute a SB 288 Major Modification.

8. Federal Major Modification

District Rule 2201, Section 3.18 states that Federal Major Modifications are the same as "Major Modification" as defined in 40 CFR 51.165 and part D of Title I of the CAA.
Since this facility is not a Major Source for any pollutants, this project does not constitute a Federal Major Modification. Additionally, since the facility is not a major source for PM₁₀ (140,000 lb/year), it is not a major source for PM₂.₅ (200,000 lb/year).

9. Quarterly Net Emissions Change (QNEC)

The QNEC is calculated solely to establish emissions that are used to complete the District’s PAS emissions profile screen. Detailed QNEC calculations are included in Appendix C.

VIII. Compliance

Rule 2201 New and Modified Stationary Source Review Rule

A. Best Available Control Technology (BACT)

1. BACT Applicability

BACT requirements are triggered on a pollutant-by-pollutant basis and on an emissions unit-by-emissions unit basis for the following*:

a. Any new emissions unit with a potential to emit exceeding two pounds per day,
b. The relocation from one Stationary Source to another of an existing emissions unit with a potential to emit exceeding two pounds per day,
c. Modifications to an existing emissions unit with a valid Permit to Operate resulting in an AIPE exceeding two pounds per day, and/or
d. Any new or modified emissions unit, in a stationary source project, which results in an SB288 Major Modification or a Federal Major Modification, as defined by the rule.

*Except for CO emissions from a new or modified emissions unit at a Stationary Source with an SSPE₂ of less than 200,000 pounds per year of CO.

As discussed in Section I, the facility is proposing to install two new emergency standby IC engines. Additionally, as determined in Sections VII.C.7 and VII.C.8, this project does not result in an SB288 Major Modification or a Federal Major Modification, respectively. Therefore, BACT can only be triggered if the daily emissions exceed 2.0 lb/day for any pollutant.

The daily emissions from the new engines are compared to the BACT threshold levels in the following tables.
New Emissions Unit BACT Applicability

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Daily Emissions for unit -1-0 (lb/day)</th>
<th>BACT Threshold (lb/day)</th>
<th>SSPE2 (lb/yr)</th>
<th>BACT Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO<sub>x</sub></td>
<td>16.6</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>SO<sub>x</sub></td>
<td>0.0</td>
<td>> 2.0</td>
<td>n/a</td>
<td>No</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>0.5</td>
<td>> 2.0</td>
<td>n/a</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>4.4</td>
<td>> 2.0 and SSPE2 ≥ 200,000 lb/yr</td>
<td>117</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>0.4</td>
<td>> 2.0</td>
<td>n/a</td>
<td>No</td>
</tr>
</tbody>
</table>

As shown above, BACT will be triggered for NO_x emissions from engine ‘-1-0 for this project.

New Emissions Unit BACT Applicability

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Daily Emissions for unit -2-0 (lb/day)</th>
<th>BACT Threshold (lb/day)</th>
<th>SSPE2 (lb/yr)</th>
<th>BACT Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO<sub>x</sub></td>
<td>311.4</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>SO<sub>x</sub></td>
<td>0.4</td>
<td>> 2.0</td>
<td>n/a</td>
<td>No</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>8.7</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>CO</td>
<td>52.0</td>
<td>> 2.0 and SSPE2 ≥ 200,000 lb/yr</td>
<td>117</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>5.5</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Yes</td>
</tr>
</tbody>
</table>

As shown above, BACT will be triggered for NO_x, PM₁₀, and VOC emissions from engine ‘-2-0 for this project.

2. BACT Guideline

BACT Guideline 3.1.1, which appears in Appendix D of this report, covers diesel-fired emergency IC engines.

3. Top Down BACT Analysis

Per District Policy APR 1305, Section IX, “A top-down BACT analysis shall be performed as a part of the Application Review for each application subject to the BACT requirements pursuant to the District's NSR Rule for source categories or classes covered in the BACT Clearinghouse, relevant information under each of the following steps may be simply cited from the Clearinghouse without further analysis.”
S-8066-1-0

Pursuant to the attached Top-Down BACT Analysis, which appears in Appendix E of this report, BACT is satisfied with:

\[\text{NO}_x: \quad \text{Latest EPA Tier Certification level for applicable horsepower range} \]

S-8066-2-0

Pursuant to the attached Top-Down BACT Analysis, which appears in Appendix E of this report, BACT is satisfied with:

\[\text{NO}_x: \quad \text{Latest EPA Tier Certification level for applicable horsepower range} \]
\[\text{VOC:} \quad \text{Latest EPA Tier Certification level for applicable horsepower range} \]
\[\text{PM}_{10}: \quad 0.15\ \text{g/hp-hr or the Latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent. (ATCM)} \]

The following condition will be listed on the ATC to ensure compliance with the PM\(_{10}\) BACT emissions limit:

- Emissions from this IC engine shall not exceed 0.11 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, 17 CCR 93115, 40 CFR Part 60 Subpart IIII]

B. Offsets

Since emergency IC engines are exempt from the offset requirements of Rule 2201, per Section 4.6.2, offsets are not required for this engine, and no offset calculations are required.

C. Public Notification

1. Applicability

Public noticing is required for:

a. New Major Sources, SB288 Major Modifications, Federal Major Modifications

As shown in Sections VII.C.5, VII.C.7, and VII.C.8, this facility is not a new Major Source, not an SB 288 Major Modification, and not a Federal Major Modification, respectively.
b. Any new emissions unit with a Potential to Emit greater than 100 pounds during any one day for any pollutant

As calculated in Section VII.C.2, daily emissions for NOx for unit S-8066-2 are greater than 100 lb/day.

c. Any project which results in the offset thresholds being surpassed

As shown in Section VII.C.4, an offset threshold will not be surpassed.

d. Any project with a Stationary Source Project Increase in Permitted Emissions (SSIPE) greater than 20,000 lb/year for any pollutant.

For this project, the proposed engines are the only emissions sources that will generate an increase in Potential to Emit. Since the proposed engine emissions are well below 20,000 lb/year for all pollutants (see Section VII.C.2), the SSIPE for this project will be below the public notice threshold.

2. Public Notice Action

As demonstrated above, this project will require public noticing. Therefore, public notice documents will be submitted to the California Air Resources Board (CARB) and a public notice will be published in a local newspaper of general circulation prior to the issuance of the ATCs for this equipment.

D. Daily Emissions Limits

Daily Emissions Limitations (DELS) and other enforceable conditions are required by Section 3.16 to restrict a unit’s maximum daily emissions, to a level at or below the emissions associated with the maximum design capacity. Per Sections 3.16.1 and 3.16.2, the DEL must be contained in the latest ATC and contained in or enforced by the latest PTO and enforceable, in a practicable manner, on a daily basis. Therefore, the following conditions will be listed on the ATCs to ensure compliance:

- Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, 17 CCR 93115, and 40 CFR Part 60 Subpart III]

S-8066-1-0

- Emissions from this IC engine shall not exceed any of the following limits: 2.17 g-NOx/bhp-hr, 0.58 g-CO/bhp-hr, or 0.05 g-VOC/bhp-hr. [District Rule 2201, 17 CCR 93115, and 40 CFR Part 60 Subpart III]
• Emissions from this IC engine shall not exceed 0.06 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, 17 CCR 93115, and 40 CFR Part 60 Subpart IIII]

S-8066-2-0

• Emissions from this IC engine shall not exceed any of the following limits: 3.95 g-NOx/bhp-hr, 0.66 g-CO/bhp-hr, or 0.07 g-VOC/bhp-hr. [District Rule 2201, 17 CCR 93115, and 40 CFR Part 60 Subpart IIII]

• Emissions from this IC engine shall not exceed 0.11 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, 17 CCR 93115, and 40 CFR Part 60 Subpart IIII]

E. Compliance Assurance

1. Source Testing

Pursuant to District Policy APR 1705, source testing is not required for emergency standby IC engines to demonstrate compliance with Rule 2201.

2. Monitoring

No monitoring is required to demonstrate compliance with Rule 2201.

3. Recordkeeping

Recordkeeping requirements, in accordance with District Rule 4702, will be discussed in Section VIII, District Rule 4702, of this evaluation.

4. Reporting

No reporting is required to ensure compliance with Rule 2201.

F. Ambient Air Quality Analysis (AAQA)

Section 4.14.1 of this rule requires that an ambient air quality analysis (AAQA) be conducted for the purpose of determining whether a new or modified Stationary Source will cause or make worse a violation of an air quality standard. The Technical Services Division of the SJVAPCD conducted the required analysis.

As shown by the AAQA summary sheet in Appendix F, the proposed equipment will not cause or make worse a violation of an air quality standard for NOx, CO, PM10, or SOx.
Rule 2520 Federally Mandated Operating Permits

Since this facility's potential to emit does not exceed any major source thresholds of Rule 2201, this facility is not a major source, and Rule 2520 does not apply.

Rule 4001 New Source Performance Standards (NSPS)

40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

The following table demonstrates how the proposed engines will comply with the requirements of 40 CFR Part 60 Subpart IIII.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine(s) must meet the appropriate Subpart IIII emission standards for new engines, based on the model year, size, and number of liters per cylinder.</td>
<td>The applicant has proposed the use of engine(s) that are certified to the latest EPA Tier Certification level for the applicable horsepower range, guaranteeing compliance with the emission standards of Subpart IIII.</td>
</tr>
<tr>
<td>Engine(s) must be fired on 500 ppm sulfur content fuel or less, and fuel with a minimum cetane index of 40 or a maximum aromatic content of 35 percent by volume. Starting on October 1, 2010, the maximum allowable sulfur fuel content will be lowered to 15 ppm.</td>
<td>The applicant has proposed the use of CARB certified diesel fuel, which meets all of the fuel requirements listed in Subpart IIII. A permit condition enforcing this requirement was included earlier in this evaluation.</td>
</tr>
</tbody>
</table>
| The operator/owner must install a non-resettable hour meter prior to startup of the engine(s). | The applicant has proposed to install a non-resettable hour meter on each engine. The following condition will be included on each permit:
- This engine shall be equipped with an operational non-resettable elapsed time meter or other APCO approved alternative. [District Rule 4702, 17 CCR 93115, and 40 CFR 60 Subpart IIII] |
| Emergency engine(s) may be operated for the purpose of maintenance and testing up to 100 hours per year. There is no limit on emergency use. | The Air Toxic Control Measure for Stationary Compression Ignition Engines (Stationary ATCM) limits this engine maintenance and testing to 50 hours/year. Thus, compliance is expected. |
| The owner/operator must operate and maintain the engine(s) and any installed control devices according to the manufacturers written instructions. | The following condition will be included on each permit:
- This engine shall be operated and maintained in proper operating condition as recommended by the engine manufacturer or emissions control system supplier. [District Rule 4702 and 40 CFR 60 Subpart IIII] |
Rule 4002 National Emission Standards for Hazardous Air Pollutants

Emergency engines are subject to this subpart if they are operated at a major or area source of Hazardous Air Pollutant (HAP) emissions. A major source of HAP emissions is a facility that has the potential to emit any single HAP at a rate of 10 tons/year or greater or any combinations of HAPs at a rate of 25 tons/year or greater. An area source of HAPs is a facility that is not a major source of HAPs. The proposed engines are new stationary RICE located at an area source of HAP emissions; therefore, these engines are subject to this Subpart.

40 CFR 63 Subpart ZZZZ requires the following engines to comply with 40 CFR 60 Subpart III:

1. New emergency engines located at area sources of HAPs
2. Emergency engines rated less than or equal to 500 bhp and located at major sources of HAPs

The proposed engines will be in compliance with 40 CFR 60 Subpart III.

Additionally, 40 CFR 63 Subpart ZZZZ requires engines rated greater 500 bhp and located at major sources of HAPs to meet the notification requirements of §63.6645(h); however, that section only applies if an initial performance test is required. Since an initial performance test is not required for emergency engines, the notification requirement is not applicable.

The proposed engines are expected to be in compliance with 40 CFR 63 Subpart ZZZZ.

Rule 4101 Visible Emissions

Rule 4101 states that no air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. Therefore, the following condition will be listed on each ATC to ensure compliance:

• {15} No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]
Rule 4102 Nuisance

Rule 4102 states that no air contaminant shall be released into the atmosphere which causes a public nuisance. Public nuisance conditions are not expected as a result of these operations, provided the equipment is well maintained. Therefore, the following condition will be listed on each ATC to ensure compliance:

- {98} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

California Health & Safety Code 41700 (Health Risk Assessment)

District Policy APR 1905 - Risk Management Policy for Permitting New and Modified Sources (dated 3/2/01) specifies that for an increase in emissions associated with a proposed new source or modification, the District perform an analysis to determine the possible impact to the nearest resident or worksite. Therefore, a risk management review (RMR) was performed for this project. The RMR results are summarized in the following table, and can be seen in detail in Appendix F.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Acute Hazard Index</th>
<th>Chronic Hazard Index</th>
<th>Cancer Risk</th>
<th>T-BACT Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-8066-1-0</td>
<td>N/A</td>
<td>N/A</td>
<td>0.1 in a million</td>
<td>No</td>
</tr>
<tr>
<td>S-8066-2-0</td>
<td>N/A</td>
<td>N/A</td>
<td>0.1 in a million</td>
<td>No</td>
</tr>
</tbody>
</table>

The following conditions will be listed on the ATC to ensure compliance with the RMR:

S-8066-1-0

- {1898} The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

- Emissions from this IC engine shall not exceed 0.06 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, 17 CCR 93115, 40 CFR Part 60 Subpart III]

- This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rule 4702, 17 CCR 93115 and 40 CFR Part 60 Subpart III]
S-8066-2-0

- {1898} The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

- Emissions from this IC engine shall not exceed 0.11 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102, 17 CCR 93115, 40 CFR Part 60 Subpart III]

- This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rule 4702, 17 CCR 93115 and 40 CFR Part 60 Subpart III]

Rule 4201 Particulate Matter Concentration

Rule 4201 limits particulate matter emissions from any single source operation to 0.1 g/dscf, which, as calculated below, is equivalent to a PM10 emission factor of 0.4 g-PM10/bhp-hr.

\[
0.1 \frac{\text{grain-PM}}{\text{dscf}} \times \frac{\text{g}}{15.43 \text{ grain}} \times \frac{1 \text{ Btu}_{\text{in}}}{0.35 \text{ Btu}_{\text{out}}} \times \frac{9.051 \text{ dscf}}{1 \text{ Btu}} \times \frac{2,542.5 \text{ Btu}}{1 \text{ Btu}} \times \frac{0.96 \text{ g}}{1 \text{ g-PM}} \times \frac{10^6 \text{ Btu}}{1 \text{ bhp-hr}} \times \frac{1 \text{ g-PM}_{10}}{1 \text{ bhp-hr}} = 0.4 \frac{\text{g-PM}_{10}}{\text{bhp-hr}}
\]

Both new engines have PM10 emission factors less than 0.4 g/bhp-hr. Therefore, compliance is expected and the following condition will be listed on each ATC:

- {14} Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201]

Rule 4701 Internal Combustion Engines – Phase 1

The purpose of this rule is to limit the emissions of nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOC) from internal combustion engines. Except as provided in Section 4.0, the provisions of this rule apply to any internal combustion engine, rated greater than 50 bhp, that requires a PTO.

The proposed engines are also subject to District Rule 4702, Internal Combustion Engines. Since emissions limits of District Rule 4702 and all other requirements are equivalent or more stringent than District Rule 4701 requirements, compliance with District Rule 4702 requirements will satisfy requirements of District Rule 4701.
Rule 4702 Internal Combustion Engines

The following table demonstrates how the proposed engines will comply with the requirements of District Rule 4702.

<table>
<thead>
<tr>
<th>District Rule 4702 Requirements Emergency Standby IC Engines</th>
<th>Proposed Method of Compliance with District Rule 4702 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation of emergency standby engines is limited to 100 hours or less per calendar year for non-emergency purposes, verified through the use of a non-resettable elapsed operating time meter.</td>
<td>The Air Toxic Control Measure for Stationary Compression Ignition Engines (Stationary ATCM) limits this engine maintenance and testing to 50 hours/year. Thus, compliance is expected.</td>
</tr>
</tbody>
</table>
| Emergency standby engines cannot be used to reduce the demand for electrical power when normal electrical power line service has not failed, or to produce power for the electrical distribution system, or in conjunction with a voluntary utility demand reduction program or interruptible power contract. | The following conditions will be included on each permit:
- (3807) An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rule 4702]
- (3808) This engine shall not be used to produce power for the electrical distribution system, as part of a voluntary utility demand reduction program, or for an interruptible power contract. [District Rule 4702] |
| The owner/operator must operate and maintain the engine(s) and any installed control devices according to the manufacturers written instructions. | A permit condition enforcing this requirement was shown earlier in the evaluation. |
| The owner/operator must monitor the operational characteristics of each engine as recommended by the engine manufacturer or emission control system supplier. | The following condition will be included on each permit:
- (3478) During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example: check engine fluid levels, battery, cables and connections; change engine oil and filters; replace engine coolant; and/or other operational characteristics as recommended by the manufacturer or supplier). [District Rule 4702] |
| Records of the total hours of operation of the emergency standby engine, type of fuel used, purpose for operating the engine, all hours of non-emergency and emergency operation, and support | The following conditions will be included on each permit:
- (3496) The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of |
documentation must be maintained. All records shall be retained for a period of at least five years, shall be readily available, and be made available to the APCO upon request.

hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

- The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]

- (3475) All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]

Rule 4801 Sulfur Compounds

Rule 4801 requires that sulfur compound emissions (as SO₂) shall not exceed 0.2% by volume. Using the ideal gas equation, the sulfur compound emissions are calculated as follows:

\[
\text{Volume SO}_2 = \left(n \times R \times T \right) \div P
\]

\[
n = \text{moles SO}_2
\]

\[
T \text{ (standard temperature)} = 60 \text{ °F or 520 °R}
\]

\[
R \text{ (universal gas constant)} = \frac{10.73 \text{ psi} \cdot \text{ft}^3}{\text{lb} \cdot \text{mol} \cdot \text{°R}}
\]

\[
\frac{0.000015 \text{ lb} \cdot \text{S}}{\text{gal}} \times \frac{7.1 \text{ lb}}{\text{S}} \times \frac{64 \text{ lb} \cdot \text{SO}_2}{1 \text{ MM BTU}} \times \frac{1 \text{ gal}}{1 \text{ lb} \cdot \text{mol}} \times \frac{10.73 \text{ psi}}{1 \text{ °R}} \times \frac{1}{520 \text{ °R}} \times \frac{1000000}{14.7 \text{ psi}} = 1.0 \text{ ppmv}
\]

Since 1.0 ppmv is ≤ 2,000 ppmv, this engine is expected to comply with Rule 4801. Therefore, the following condition will be listed on each ATC to ensure compliance:

- Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District Rules 2201 and 4801, 17 CCR 93115, and 40 CFR Part 60 Subpart III]
California Health & Safety Code 42301.6 (School Notice)

The District has verified that this site is not located within 1,000 feet of a school. Therefore, pursuant to California Health and Safety Code 42301.6, a school notice is not required.

Title 17 California Code of Regulations (CCR), Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines

The following table demonstrates how the proposed engines will comply with the requirements of Title 17 CCR Section 93115.

<table>
<thead>
<tr>
<th>Requirements for New Emergency IC Engines Powering Electrical Generators</th>
<th>Proposed Method of Compliance with Title 17 CCR Section 93115 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency engine(s) must be fired on CARB diesel fuel, or an approved alternative diesel fuel.</td>
<td>The applicant has proposed the use of CARB certified diesel fuel. The proposed permit condition, requiring the use of CARB certified diesel fuel, was included earlier in this evaluation.</td>
</tr>
<tr>
<td>The engine(s) must emit diesel PM at a rate less than or equal to 0.15 g/bhp-hr or must meet the diesel PM standard, as specified in the Off-road compression ignition standards for off-road engines with the same maximum rated power (Title 13 CCR, Section 2423).</td>
<td>The applicant has proposed the use of engines that are certified to the latest EPA Tier Certification level for the applicable horsepower range, guaranteeing compliance with the emission standards of Subpart III. Additionally, the proposed diesel PM emissions rate is less than or equal to 0.15 g/bhp-hr.</td>
</tr>
</tbody>
</table>
| The engine may not be operated more than 50 hours per year for maintenance and testing purposes. | The following condition will be included on each permit:
- This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rule 4702, 17 CCR 93115 and 40 CFR Part 60 Subpart III] |
| New stationary emergency standby diesel-fueled CI engines (> 50 bhp) must meet the standards for off-road engines of the same model year and maximum rated power as specified in the Off-Road Compression Ignition Engine Standards (title 13, CCR, section 2423). | The applicant has proposed the use of engines that are certified to the latest EPA Tier Certification level for the applicable horsepower range. |
| Engines, with a PM10 emissions rate greater than 0.01 g/bhp-hr and located at schools, may not be operated for maintenance and testing whenever there is a school sponsored activity on the grounds. Additionally, engines located | The District has verified that this engine is not located within 500' of a school. |
within 500 feet of school grounds may not be operated for maintenance and testing between 7:30 AM and 3:30 PM

An owner or operator shall maintain monthly records of the following: emergency use hours of operation; maintenance and testing hours of operation; hours of operation for emission testing; initial start-up testing hours; hours of operation for all other uses; and the type of fuel used. All records shall be retained for a minimum of 36 months.

Permit conditions enforcing these requirements were shown earlier in the evaluation.

California Environmental Quality Act (CEQA)

The California Environmental Quality Act (CEQA) requires each public agency to adopt objectives, criteria, and specific procedures consistent with CEQA Statutes and the CEQA Guidelines for administering its responsibilities under CEQA, including the orderly evaluation of projects and preparation of environmental documents. The San Joaquin Valley Unified Air Pollution Control District (District) adopted its Environmental Review Guidelines (ERG) in 2001. The basic purposes of CEQA are to:

- Inform governmental decision-makers and the public about the potential, significant environmental effects of proposed activities.
- Identify the ways that environmental damage can be avoided or significantly reduced.
- Prevent significant, avoidable damage to the environment by requiring changes in projects through the use of alternatives or mitigation measures when the governmental agency finds the changes to be feasible.
- Disclose to the public the reasons why a governmental agency approved the project in the manner the agency chose if significant environmental effects are involved.

The District performed an Engineering Evaluation (this document) for the proposed project and determined that the project qualifies for ministerial approval under the District's Guideline for Expedited Application Review (GEAR). Section 21080 of the Public Resources Code exempts from the application of CEQA those projects over which a public agency exercises only ministerial approval. Therefore, the District finds that this project is exempt from the provisions of CEQA.

IX. Recommendation

Pending a successful NSR Public Noticing period, issue Authorities to Construct S-8066-1-0 and S-8066-2-0 subject to the permit conditions on the attached draft Authorities to Construct in Appendix G.
X. Billing Information

<table>
<thead>
<tr>
<th>Permit Number</th>
<th>Fee Schedule</th>
<th>Fee Description</th>
<th>Fee Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-8066-1-0</td>
<td>3020-10-B</td>
<td>145 bhp IC engine</td>
<td>$117.00</td>
</tr>
<tr>
<td>S-8066-2-0</td>
<td>3020-10-F</td>
<td>1,490 bhp IC engine</td>
<td>$749.00</td>
</tr>
</tbody>
</table>

Appendices

A. Emissions Data Sheet for S-8066-1-0
B. Emissions Data Sheet for S-8066-2-0
C. QNEC Calculations
D. BACT Guideline 3.1.1
E. Top-Down BACT Analysis
F. HRA Summary and AAQA
G. Draft Authorities to Construct
Appendix A

Emissions Data Sheet for S-8066-1-0
Exhaust Emission Data Sheet

50DSFAC
60 Hz Diesel Generator Set
EPA Emission

Engine Information:
Model: Cummins Inc. QSB5-G3 NR3
Type: 4 Cylinder, In-line Diesel
Aspiration: Turbocharged and CAC
Compression Ratio: 17.2:1
Emission Control Device: Turbocharged with Charge Air Cooled

<table>
<thead>
<tr>
<th>PERFORMANCE DATA</th>
<th>1/4 Standby</th>
<th>1/2 Standby</th>
<th>3/4 Standby</th>
<th>Full Standby</th>
<th>Full Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHP @ 1800 RPM (60 Hz)</td>
<td>22</td>
<td>44</td>
<td>68</td>
<td>88</td>
<td>79</td>
</tr>
<tr>
<td>Fuel Consumption (gal/hr)</td>
<td>1.6</td>
<td>2.6</td>
<td>3.8</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Exhaust Gas Flow (CFM)</td>
<td>290</td>
<td>392</td>
<td>517</td>
<td>632</td>
<td>603</td>
</tr>
<tr>
<td>Exhaust Gas Temperature (°F)</td>
<td>473</td>
<td>595</td>
<td>682</td>
<td>754</td>
<td>733</td>
</tr>
</tbody>
</table>

EXHAUST EMISSION DATA

<table>
<thead>
<tr>
<th></th>
<th>1/4</th>
<th>1/2</th>
<th>3/4</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC (Total Unburned Hydrocarbons)</td>
<td>0.29</td>
<td>0.12</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>NOx (Oxides of Nitrogen as NO2)</td>
<td>2.95</td>
<td>2.15</td>
<td>2.13</td>
<td>2.17</td>
</tr>
<tr>
<td>CO (Carbon Monoxide)</td>
<td>2.57</td>
<td>1.37</td>
<td>0.80</td>
<td>0.58</td>
</tr>
<tr>
<td>PM (Particulate Matter)</td>
<td>0.31</td>
<td>0.17</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>SO2 (Sulfur Dioxide)</td>
<td>0.20</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Smoke (Bosch)</td>
<td>0.75</td>
<td>0.70</td>
<td>0.40</td>
<td>0.36</td>
</tr>
</tbody>
</table>

All values are Grams per HP-Hour

TEST CONDITIONS

Data is representative of steady-state engine speed (± 25 RPM) at designated genset loads. Pressures, temperatures, and emission rates were stabilized.

Fuel Specification: ASTM D975 No. 2-D diesel fuel with 0.03-0.05% sulfur content (by weight), and 40-48 cetane number.
Fuel Temperature: 99 ± 9 °F (at fuel pump inlet)
Intake Air Temperature: 77 ± 9 °F
Barometric Pressure: 29.6 ± 1 in. Hg
Humidity: NOx measurement corrected to 75 grains H2O/lb dry air
Reference Standard: ISO 8178

The NOx, HC, CO and PM emission data tabulated here are representative of test data taken from a single engine under the test conditions shown above. Data for the other components are estimated. These data are subject to instrumentation and engine-to-engine variability. Field emission test data are not guaranteed to these levels. Actual field test results may vary due to test site conditions, installation, fuel specification, test procedures and instrumentation. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.
Appendix B

Emissions Data Sheet for S-8066-2-0
Exhaust Emission Data Sheet
1000DQFAD
60 Hz Diesel Generator Set

Engine Information:
Model: Cummins Inc. QST30-G5 NR2
Type: 4 Cycle, 50°V, 12 Cylinder Diesel
Aspiration: Turbocharged and Low Temperature aftercooled
Compression Ratio: 14.7:1
Emission Control Device: Aftercooled (Air-to-Air)

Bore: 5.51 in. (139 mm)
Stroke: 6.5 in. (165 mm)
Displacement: 1860 cu. in. (30.4 liters)

PERFORMANCE DATA

<table>
<thead>
<tr>
<th></th>
<th>1/4 Standby</th>
<th>1/4</th>
<th>3/4 Standby</th>
<th>3/4</th>
<th>Full Standby</th>
<th>Full Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHP @ 1800 RPM (60 Hz)</td>
<td>371</td>
<td>741</td>
<td>1112</td>
<td>1482</td>
<td>1322</td>
<td></td>
</tr>
<tr>
<td>Fuel Consumption (gal/Hr)</td>
<td>19.1</td>
<td>35.8</td>
<td>54.1</td>
<td>72.2</td>
<td>63.9</td>
<td></td>
</tr>
<tr>
<td>Exhaust Gas Flow (CFM)</td>
<td>2780</td>
<td>4500</td>
<td>6370</td>
<td>7540</td>
<td>6950</td>
<td></td>
</tr>
<tr>
<td>Exhaust Gas Temperature (°F)</td>
<td>620</td>
<td>760</td>
<td>814</td>
<td>890</td>
<td>873</td>
<td></td>
</tr>
</tbody>
</table>

EXHAUST EMISSION DATA

<table>
<thead>
<tr>
<th></th>
<th>Standby</th>
<th>Standby</th>
<th>Standby</th>
<th>Standby</th>
<th>Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC (Total Unburned Hydrocarbons)</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>NOx (Oxides of Nitrogen as NO2)</td>
<td>4.17</td>
<td>5.20</td>
<td>3.87</td>
<td>3.95</td>
<td>4.90</td>
</tr>
<tr>
<td>CO (Carbon Monoxide)</td>
<td>0.65</td>
<td>0.36</td>
<td>0.48</td>
<td>0.66</td>
<td>0.58</td>
</tr>
<tr>
<td>PM (Particulate Matter)</td>
<td>0.19</td>
<td>0.15</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>SO2 (Sulfur Dioxide)</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>Smoke (Bosch)</td>
<td>0.88</td>
<td>0.80</td>
<td>0.79</td>
<td>0.73</td>
<td>0.75</td>
</tr>
</tbody>
</table>

All Values are Grams/HP-Hour, Smoke is Bosch #

TEST CONDITIONS

Data was recorded during steady-state rated engine speed (± 25 RPM) with full load (±2%). Pressures, temperatures, and emission rates were stabilized.

Fuel Specification: 46.5 Cetane Number, 0.035 Wt.% Sulfur, Reference ISO8178-5, 40CFR86.1313-98 Type 2-D and ASTM D975 No. 2-D.
Fuel Temperature: 99 ± 9 °F (at fuel pump inlet)
Intake Air Temperature: 77 ± 9 °F
Barometric Pressure: 29.6 ± 1 in. Hg
Humidity: NOx measurement corrected to 75 grains H2O/lb dry air
Reference Standard: ISO 8178

The NOx, HC, CO and PM emission data tabulated here were taken from a single engine under the test conditions shown above. Data for the other components are estimated. These data are subjected to instrumentation and engine-to-engine variability. Field emission test data are not guaranteed to these levels. Actual field test results may vary due to test conditions, installation, fuel specification, test procedures and instrumentation. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.

Cummins Power Generation
Data and Specifications Subject to Change Without Notice
eds-1063a
Appendix C

QNEC Calculations
Quarterly Net Emissions Change (QNEC)

The Quarterly Net Emissions Change is used to complete the emission profile screen for the District's PAS database. The QNEC shall be calculated as follows:

\[\text{QNEC} = \text{PE2} - \text{PE1}, \text{ where:} \]

- \(\text{QNEC} \) = Quarterly Net Emissions Change for each emissions unit, lb/qtr
- \(\text{PE2} \) = Post-Project Potential to Emit for each emissions unit, lb/qtr
- \(\text{PE1} \) = Pre-Project Potential to Emit for each emissions unit, lb/qtr

Since both units are new, \(\text{PE1} = 0 \) for all pollutants. Thus, \(\text{QNEC} = \text{PE2} \) (lb/qtr).

Using the \(\text{PE2} \) (lb/yr) values calculated in Section VII.C.2, Quarterly \(\text{PE2} \) is calculated as follows:

\[\text{PE2}_{\text{quarterly}} = \text{PE2} \text{ (lb/yr)} \div 4 \text{ quarters/year} = \text{QNEC} \]

Table 1: QNEC for Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PE2 Total (lb/yr)</th>
<th>Quarterly PE2 (lb/qtr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_X)</td>
<td>35</td>
<td>8.8</td>
</tr>
<tr>
<td>SO(_X)</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>CO</td>
<td>9</td>
<td>2.3</td>
</tr>
<tr>
<td>VOC</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 2: QNEC for Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PE2 Total (lb/yr)</th>
<th>Quarterly PE2 (lb/qtr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_X)</td>
<td>649</td>
<td>162.3</td>
</tr>
<tr>
<td>SO(_X)</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>18</td>
<td>4.5</td>
</tr>
<tr>
<td>CO</td>
<td>108</td>
<td>27.0</td>
</tr>
<tr>
<td>VOC</td>
<td>11</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Appendix D

BACT Guideline 3.1.1
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOX</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15 g/HP-hr or the Latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent. (ATCM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Very low sulfur diesel fuel (15 ppmw sulfur or less)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOX</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a state implementation plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.
Appendix E

Top-Down BACT Analysis
Top Down BACT Analysis for S-8066-1-0

BACT Guideline 3.1.1 (July 10, 2009) applies to emergency diesel IC engines. In accordance with the District BACT policy, information from that guideline will be utilized without further analysis.

1. BACT Analysis for NOx Emissions:

 a. Step 1 - Identify all control technologies

 BACT Guideline 3.1.1 identifies only the following option:

 - Latest EPA Tier Certification level for applicable horsepower range

 To determine the latest applicable Tier level, the following EPA and state regulations were consulted:

 - 40 CFR Part 60 Subpart III – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines
 - 40 CFR Part 89 – Control of Emissions from New and In-Use Nonroad Compression – Ignition Engines
 - 40 CFR Part 1039 – Control of Emissions from New and In-Use Nonroad Compression-Ignition Engines
 - Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines

40 CFR Parts 89 and 1039, which apply only to nonroad engines, do not directly apply because the proposed emergency engine does not meet the definition of a nonroad engine. Therefore, only Title 17 CCR, Section 93115 and 40 CFR Part 60 Subpart III apply directly to the proposed emergency engine.

Title 17 CCR, Section 93115.6(a)(3)(A) (CARB stationary diesel engine ATCM) applies to emergency standby diesel-fired engines and requires that such engines be certified to the emission levels in Table 1 (below). Please note that these levels are at least as stringent or more stringent than the emission levels in 40 CFR Subpart III.
Table 1: Emission Standards for New Stationary Emergency Standby Diesel-Fueled CI Engines g/bhp-hr (g/kW-hr)

<table>
<thead>
<tr>
<th>Maximum Engine Power</th>
<th>Tier</th>
<th>Model Year(s)</th>
<th>PM</th>
<th>NMHC+NOx</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ≤ HP < 75 (37 ≤ kW < 56)</td>
<td>2</td>
<td>2007</td>
<td>0.15 (0.20)</td>
<td>5.6 (7.5)</td>
<td>3.7 (5.0)</td>
</tr>
<tr>
<td></td>
<td>4i</td>
<td>2008+</td>
<td></td>
<td>3.5 (4.7)</td>
<td></td>
</tr>
<tr>
<td>75 ≤ HP < 100 (56 ≤ kW < 75)</td>
<td>2</td>
<td>2007</td>
<td>0.15 (0.20)</td>
<td>5.5 (7.5)</td>
<td>3.7 (5.0)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2008+</td>
<td></td>
<td>3.5 (4.7)</td>
<td></td>
</tr>
<tr>
<td>100 ≤ HP < 175 (75 ≤ kW < 130)</td>
<td>3</td>
<td>2007</td>
<td>0.15 (0.20)</td>
<td>3.0 (4.0)</td>
<td>3.7 (5.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175 ≤ HP < 300 (130 ≤ kW < 225)</td>
<td>3</td>
<td>2007</td>
<td>0.15 (0.20)</td>
<td>3.0 (4.0)</td>
<td>2.6 (3.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 ≤ HP < 600 (225 ≤ kW < 450)</td>
<td>3</td>
<td>2007</td>
<td>0.15 (0.20)</td>
<td>3.0 (4.0)</td>
<td>2.6 (3.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 ≤ HP < 750 (450 ≤ kW < 560)</td>
<td>3</td>
<td>2007</td>
<td>0.15 (0.20)</td>
<td>3.0 (4.0)</td>
<td>2.6 (3.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP > 750 (kW > 560)</td>
<td>2</td>
<td>2007</td>
<td>0.15 (0.20)</td>
<td>4.8 (6.4)</td>
<td>2.6 (3.5)</td>
</tr>
<tr>
<td></td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additionally, 40 CFR Subpart III establishes emission standards for emergency diesel IC engines. These emission standards are the same as those specified in the CARB ATCM, except for engines rated greater than or equal to 50 and less than 75 hp. For such IC engines, the CARB ATCM is more stringent.

Therefore, the most stringent applicable emission standards are those listed in the CARB ATCM (Table 1).

For IC engines rated greater than or equal to 50 hp and less than 75 hp, the highest Tier required is Tier 4i. For IC engines rated greater than or equal to 75 hp and less than 750 hp, the highest Tier required is Tier 3. For engines rated equal to or greater than 750 hp, the highest Tier required is Tier 2.

Also, please note that neither the state ATCM nor the Code of Federal Regulations require the installation of IC engines meeting a higher Tier standard than those listed above for emergency applications, due to concerns regarding the effectiveness of the exhaust emissions controls during periods of short-term operation (such as testing operational readiness of an emergency engine).

The proposed engine is rated at 145 hp. Therefore, the applicable control technology option is EPA Tier 3 certification.

b. Step 2 - Eliminate technologically infeasible options

The control option listed in Step 1 is not technologically infeasible.

c. Step 3 - Rank remaining options by control effectiveness

No ranking needs to be done because there is only one control option listed in Step 1.
d. **Step 4 - Cost Effectiveness Analysis**

The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.

e. **Step 5 - Select BACT**

BACT for NOx will be the use of an EPA Tier 3 certified engine. The applicant is proposing such a unit. Therefore, BACT will be satisfied.
Top Down BACT Analysis for S-8066-2-0

BACT Guideline 3.1.1 (July 10, 2009) applies to emergency diesel IC engines. In accordance with the District BACT policy, information from that guideline will be utilized without further analysis.

1. BACT Analysis for NO\textsubscript{x} and VOC Emissions:

 a. Step 1 - Identify all control technologies

 BACT Guideline 3.1.1 identifies only the following option:

 - *Latest EPA Tier Certification level for applicable horsepower range*

 To determine the latest applicable Tier level, the following EPA and state regulations were consulted:

 - 40 CFR Part 60 Subpart III – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

 - 40 CFR Part 89 – Control of Emissions from New and In-Use Nonroad Compression – Ignition Engines

 - 40 CFR Part 1039 – Control of Emissions from New and In-Use Nonroad Compression-Ignition Engines

 - Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines

40 CFR Parts 89 and 1039, which apply only to nonroad engines, do not directly apply because the proposed emergency engine does not meet the definition of a nonroad engine. Therefore, only Title 17 CCR, Section 93115 and 40 CFR Part 60 Subpart III apply directly to the proposed emergency engine.

Title 17 CCR, Section 93115.6(a)(3)(A) (CARB stationary diesel engine ATCM) applies to emergency standby diesel-fired engines and requires that such engines be certified to the emission levels in Table 1 (below). Please note that these levels are at least as stringent or more stringent than the emission levels in 40 CFR Subpart III.
Additionally, 40 CFR Subpart III establishes emission standards for emergency diesel IC engines. These emission standards are the same as those specified in the CARB ATCM, except for engines rated greater than or equal to 50 and less than 75 hp. For such IC engines, the CARB ATCM is more stringent.

Therefore, the most stringent applicable emission standards are those listed in the CARB ATCM (Table 1).

For IC engines rated greater than or equal to 50 hp and less than 75 hp, the highest Tier required is Tier 4i. For IC engines rated greater than or equal to 75 hp and less than 750 hp, the highest Tier required is Tier 3. For engines rated equal to or greater than 750 hp, the highest Tier required is Tier 2.

Also, please note that neither the state ATCM nor the Code of Federal Regulations require the installation of IC engines meeting a higher Tier standard than those listed above for emergency applications, due to concerns regarding the effectiveness of the exhaust emissions controls during periods of short-term operation (such as testing operational readiness of an emergency engine).

The proposed engine is rated at 1,490 hp. Therefore, the applicable control technology option is EPA Tier 2 certification.

b. Step 2 - Eliminate technologically infeasible options

The control option listed in Step 1 is not technologically infeasible.

c. Step 3 - Rank remaining options by control effectiveness

No ranking needs to be done because there is only one control option listed in Step 1.
d. Step 4 - Cost Effectiveness Analysis

The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.

e. Step 5 - Select BACT

BACT for NOx and VOC will be the use of an EPA Tier 2 certified engine. The applicant is proposing such a unit. Therefore, BACT will be satisfied.

2. BACT Analysis for PM_{10} Emissions:

a. Step 1 - Identify all control technologies

BACT Guideline 3.1.1 identifies only the following option:

- 0.15 g/bhp-hr or the Latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent. (ATCM)

The latest EPA Tier Certification level for an engine of the proposed model year and horsepower rating is Tier 2. Refer to the Top-Down BACT analysis for NOx for a discussion regarding the determination of the EPA Tier level to be considered.

Please note Tier 2 or 3 IC engines do not have a PM emission standard that is more stringent than 0.15 g/hp-hr. Additionally, the ATCM requires a PM emission standard of 0.15 g/hp-hr for all new emergency diesel IC engines.

Therefore, a PM/PM_{10} emission standard of 0.15 g/hp-hr is required as BACT.

b. Step 2 - Eliminate technologically infeasible options

The control option listed in Step 1 is not technologically infeasible.

c. Step 3 - Rank remaining options by control effectiveness

No ranking needs to be done because there is only one control option listed in Step 1.

d. Step 4 - Cost Effectiveness Analysis

The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.
e. Step 5 - Select BACT

BACT for PM10 is emissions of 0.15 g/hp-hr or less. The applicant is proposing an engine that meets this requirement. Therefore, BACT will be satisfied.
Appendix F

HRA Summary and AAQA
San Joaquin Valley Air Pollution Control District
Risk Management Review

To: Jessica Seifert, Permit Services
From: Trevor Joy, AQS – Technical Services
Date: 10/26/2011
Facility Name: California Water Service Co
Location: 10,000 Bella Dr in Bakersfield
Application #(s): S-8066-1-0 and -2-0
Project #: 1113906

A. RMR SUMMARY

<table>
<thead>
<tr>
<th>Categories</th>
<th>Emergency Engines (Units 1-0 and 2-0)</th>
<th>Project Totals</th>
<th>Facility Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritization Score</td>
<td>N/A¹</td>
<td>N/A¹</td>
<td>>1</td>
</tr>
<tr>
<td>Acute Hazard Index</td>
<td>N/A²</td>
<td>N/A²</td>
<td>0.00</td>
</tr>
<tr>
<td>Chronic Hazard Index</td>
<td>N/A²</td>
<td>N/A²</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum Individual Cancer Risk</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>T-BACT Required?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Permit Conditions?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Prioritization for this unit was not conducted since it has been determined that all diesel-fired IC engines will result in a prioritization score greater than 1.0.

² Acute and Chronic Hazard Indices were not calculated since there is no risk factor, or the risk factor is so low that the risk has been determined to be insignificant for this type of unit.

Proposed Permit Conditions

To ensure that human health risks will not exceed District allowable levels; the following permit conditions must be included for:

Unit 1-0

1. The PM10 emissions rate shall not exceed 0.06 g/ha-hr based on US EPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102 and 13 CCR 2423 and 17 CCR 93115]

2. {1898} The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap, roof overhang, or any other obstruction. [District Rule 4102] N

3. The engine shall be operated only for maintenance, testing, and required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per year. [District Rules 2201, and 4702 and 17 CCR 93115] N
Unit 2-0

1. The PM10 emissions rate shall not exceed 0.11 g/hp-hr based on US EPA certification using ISO 8178 test procedure. [District Rules 2201 and 4102 and 13 CCR 2423 and 17 CCR 93115]

2. {1898} The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap, roof overhang, or any other obstruction. [District Rule 4102] N

3. The engine shall be operated only for maintenance, testing, and required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per year. [District Rules 2201, and 4702 and 17 CCR 93115] N

B. RMR REPORT

I. Project Description

Technical Services received a request on September 30, 2011, to perform a Risk Management Review and an Ambient Air Quality Analysis for the proposed installation of two diesel-fired emergency IC engines powering electrical generators, Intermittent use.

II. Analysis

Technical Services performed a screening level health risk assessment using the District developed DICE database.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 1-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Point</td>
</tr>
<tr>
<td>BHP</td>
<td>145</td>
</tr>
<tr>
<td>Closest Receptor (m)</td>
<td>792</td>
</tr>
<tr>
<td>Max Hours per Year</td>
<td>50</td>
</tr>
<tr>
<td>Stack Height (m)</td>
<td>2.4</td>
</tr>
<tr>
<td>Gas Exit Velocity (m/s)</td>
<td>65.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
<th>Unit 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Point</td>
</tr>
<tr>
<td>BHP</td>
<td>1490</td>
</tr>
<tr>
<td>Closest Receptor (m)</td>
<td>792</td>
</tr>
<tr>
<td>Max Hours per Year</td>
<td>50</td>
</tr>
<tr>
<td>Stack Height (m)</td>
<td>3.8</td>
</tr>
<tr>
<td>Gas Exit Velocity (m/s)</td>
<td>73</td>
</tr>
</tbody>
</table>
Technical Services also performed modeling for criteria pollutants CO, NOx, SOx and PM10, as well as a RMR. The emission rates used for criteria pollutant modeling were:

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>SOx</th>
<th>CO</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lbs/hr</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Lbs/yr</td>
<td>35</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

The results from the Criteria Pollutant Modeling are as follows:

Criteria Pollutant Modeling Results
Values are in μg/m³

<table>
<thead>
<tr>
<th>Steam Generator</th>
<th>1 Hour</th>
<th>3 Hours</th>
<th>8 Hours</th>
<th>24 Hours</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOx</td>
<td>X*</td>
<td></td>
<td>X</td>
<td>X*</td>
<td>Pass</td>
</tr>
<tr>
<td>SOx</td>
<td>X*</td>
<td></td>
<td>X*</td>
<td>X</td>
<td>Pass</td>
</tr>
<tr>
<td>PM10</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X*</td>
<td>Pass</td>
</tr>
<tr>
<td>PM2.5</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X*</td>
<td>Pass</td>
</tr>
</tbody>
</table>

*Results were taken from the attached PSD spreadsheet.
*Intermittent use source does not require AAQA modeling.
*The maximum predicted concentration for emissions of these criteria pollutants from the proposed unit are below EPA's level of significance as found in 40 CFR Part 51.165 (b)(2).

Unit 2-0:

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>SOx</th>
<th>CO</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lbs/hr</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Lbs/yr</td>
<td>649</td>
<td>18</td>
<td>108</td>
<td>18</td>
</tr>
</tbody>
</table>

The results from the Criteria Pollutant Modeling are as follows:

Criteria Pollutant Modeling Results
Values are in μg/m³

<table>
<thead>
<tr>
<th>Steam Generator</th>
<th>1 Hour</th>
<th>3 Hours</th>
<th>8 Hours</th>
<th>24 Hours</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>X*</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOx</td>
<td>X*</td>
<td></td>
<td>X</td>
<td>X*</td>
<td>Pass</td>
</tr>
<tr>
<td>SOx</td>
<td>X*</td>
<td></td>
<td>X*</td>
<td>X</td>
<td>Pass</td>
</tr>
<tr>
<td>PM10</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X*</td>
<td>Pass</td>
</tr>
<tr>
<td>PM2.5</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X*</td>
<td>Pass</td>
</tr>
</tbody>
</table>

*Results were taken from the attached PSD spreadsheet.
*Intermittent use source does not require AAQA modeling.
*The maximum predicted concentration for emissions of these criteria pollutants from the proposed unit are below EPA's level of significance as found in 40 CFR Part 51.165 (b)(2).
III. Conclusion
The acute and chronic hazard indices were below 1.0; and the cancer risk is less than or equal to 1.0 in a million. In accordance with the District’s Risk Management Policy, the project is approved without Toxic Best Available Control Technology (T-BACT).

To ensure that human health risks will not exceed District allowable levels; the permit conditions listed on page 1 of this report must be included for this proposed unit.

The emissions from the proposed equipment will not cause or contribute significantly to a violation of the State and National AAQS.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

Attachments:
A. RMR request from the project engineer
B. DICE
C. HEARTS – Facility Summary
D. AAQA spreadsheet
Appendix G

Draft Authorities to Construct
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: S-8066-1-0
LEGAL OWNER OR OPERATOR: CALIFORNIA WATER SERVICE COMPANY
MAILING ADDRESS: 3725 SOUTH "H" STREET
 BAKERSFIELD, CA 93304
LOCATION: 10,000 BELLA DRIVE
 BAKERSFIELD, CA

EQUIPMENT DESCRIPTION:
145 BHP (INTERMITTENT) CUMMINS MODEL QS85-G3-NR3 TIER 3 CERTIFIED DIESEL-FIRED EMERGENCY
STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

CONDITIONS

1. (14) Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201]

2. (15) No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three
minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]

3. (98) No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

4. (198) The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap
(flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

5. (4257) This engine shall be equipped with an operational non-resettable elapsed time meter or other APCO approved
alternative. [District Rule 4702, 17 CCR 93115, and 40 CFR 60 Subpart III]

6. (4258) Only CARB certified diesel fuel containing not more than 0.015% sulfur by weight is to be used. [District
Rules 2201 and 4801, 17 CCR 93115, 40 CFR Part 60 Subpart III]

7. Emissions from this IC engine shall not exceed any of the following limits: 2.17 g-NOx/bhp-hr, 0.58 g-CO/bhp-hr, or
0.05 g-VOC/bhp-hr. [District Rule 2201, 17 CCR 93115, and 40 CFR Part 60 Subpart III]

8. Emissions from this IC engine shall not exceed 0.06 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test
procedure. [District Rules 2201 and 4102, 17 CCR 93115, and 40 CFR Part 60 Subpart III]

9. (4261) This engine shall be operated and maintained in proper operating condition as recommended by the engine
manufacturer or emissions control system supplier. [District Rule 4702 and 40 CFR 60 Subpart III]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (661) 392-5500 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. THIS IS NOT A PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadedin, Executive Director (APCO)

DAVID WARNER, Director of Permit Services
Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93309 • (661) 392-5500 • Fax (661) 392-5585
10. (3478) During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example: check engine fluid levels, battery, cables and connections; change engine oil and filters; replace engine coolant; and/or other operational characteristics as recommended by the manufacturer or supplier). [District Rule 4702]

11. (3807) An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rule 4702]

12. (3808) This engine shall not be used to produce power for the electrical distribution system, as part of a voluntary utility demand reduction program, or for an interruptible power contract. [District Rule 4702]

13. (3496) The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

14. (4262) This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rule 4702, 17 CCR 93115 and 40 CFR Part 60 Subpart III]

15. (4263) The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]

16. (3475) All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]
San Joaquin Valley
Air Pollution Control District

AUTHORITY TO CONSTRUCT

PERMIT NO: S-8066-2-0

LEGAL OWNER OR OPERATOR: CALIFORNIA WATER SERVICE COMPANY
MAILING ADDRESS: 3725 SOUTH "H" STREET
 BAKERSFIELD, CA 93304

LOCATION: 10,000 BELLA DRIVE
 BAKERSFIELD, CA

EQUIPMENT DESCRIPTION:
1,490 BHP (INTERMITTENT) CUMMINS MODEL QST30-G5-NR2 TIER 2 CERTIFIED DIESEL-FIRED EMERGENCY
STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

CONDITIONS

1. (14) Particulate matter emissions shall not exceed 0.1 grains/scf in concentration. [District Rule 4201]

2. (15) No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three
minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]

3. (98) No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]

4. (1989) The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap
(flapper ok), roof overhang, or any other obstruction. [District Rule 4102]

5. (4257) This engine shall be equipped with an operational non-resettable elapsed time meter or other APCO approved
alternative. [District Rule 4702, 17 CCR 93115, and 40 CFR 60 Subpart III]

6. (4258) Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used. [District
Rules 2201 and 4801, 17 CCR 93115, 40 CFR Part 60 Subpart III]

7. Emissions from this IC engine shall not exceed any of the following limits: 3.95 g-N Ox/bhp-hr, 0.66 g-C O/bhp-hr, or
0.07 g-VOC/bhp-hr. [District Rule 2201, 17 CCR 93115, and 40 CFR Part 60 Subpart III]

8. Emissions from this IC engine shall not exceed 0.11 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test
procedure. [District Rules 2201 and 4102, 17 CCR 93115, and 40 CFR Part 60 Subpart III]

9. (4261) This engine shall be operated and maintained in proper operating condition as recommended by the engine
manufacturer or emissions control system supplier. [District Rule 4702 and 40 CFR 60 Subpart III]

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (661) 392-5520 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO
OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE.
Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the
approved plans, specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all
Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this
Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with
all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadredin, Executive Director APCO

DAVID WARNER, Director of Permit Services
S-8066-2 © Nov 2011 15:40 - Scratch: JLN Inspection NOT Required
Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308 • (661) 392-5500 • Fax (661) 392-5585
10. (3478) During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example: check engine fluid levels, battery, cables and connections; change engine oil and filters; replace engine coolant; and/or other operational characteristics as recommended by the manufacturer or supplier). [District Rule 4702]

11. (3807) An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rule 4702]

12. (3808) This engine shall not be used to produce power for the electrical distribution system, as part of a voluntary utility demand reduction program, or for an interruptible power contract. [District Rule 4702]

13. (3496) The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example: load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule. [District Rule 4702 and 17 CCR 93115]

14. (4262) This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year. [District Rule 4702, 17 CCR 93115 and 40 CFR Part 60 Subpart III]

15. (4263) The permittee shall maintain monthly records of the type of fuel purchased. [District Rule 4702 and 17 CCR 93115]

16. (3475) All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rule 4702 and 17 CCR 93115]