Dear Mr. Easterday,

Enclosed for your review and comment is the District’s analysis of San Joaquin Community Hospital’s application for an Authority to Construct for a 755 bhp diesel-fired emergency standby internal combustion engine powering an electrical generator, at 2700 Chester Ave, Bakersfield.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. After addressing all comments made during the 30-day public notice period, the District intends to issue the Authority to Construct. Please submit your written comments on this project within the 30-day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. David Toni of Permit Services at (661) 392-5620.

Sincerely,

David Warner
Director of Permit Services

Enclosures

cc: Mike Tollstrup, CARB (w/ enclosure) via email
I Proposal

San Joaquin Community Hospital is proposing to install a 755 bhp (intermittent) diesel-fired emergency standby internal combustion (IC) engine powering an electrical generator.

II Applicable Rules

Rule 2201 New and Modified Stationary Source Review Rule (4/21/11)
Rule 2410 Prevention of Significant Deterioration (adopted 6/18/2011, effective 12/26/12)
Rule 2520 Federally Mandated Operating Permits (6/21/01)
Rule 4001 New Source Performance Standards (4/14/99)
Rule 4002 National Emission Standards for Hazardous Air Pollutants (5/20/04)
Rule 4101 Visible Emissions (2/17/05)
Rule 4102 Nuisance (12/17/92)
Rule 4201 Particulate Matter Concentration (12/17/92)
Rule 4701 Stationary Internal Combustion Engines – Phase 1 (8/21/03)
Rule 4702 Stationary Internal Combustion Engines (8/18/11)
Rule 4801 Sulfur Compounds (12/17/92)
CH&SC 41700 Health Risk Assessment
CH&SC 42301 6 School Notice
Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-ignition (CI) Engines
California Environmental Quality Act (CEQA)
Public Resources Code 21000-21177 California Environmental Quality Act (CEQA)
California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000-15387 CEQA Guidelines

III Project Location
The project is located at 2700 Chester Ave, Bakersfield. The District has verified that the equipment is not located within 1,000 feet of the outer boundary of a K-12 school. Therefore, the public notification requirement of California Health and Safety Code 42301.6 is not applicable to this project.

IV Process Description

The emergency standby engine powers an electrical generator. Other than emergency standby operation, the engine may be operated up to 50 hours per year for maintenance and testing purposes.

V Equipment Listing

S-2220-12-0 755 BHP (INTERMITTENT) CUMMINS MODEL QSX15-G9NR3 TIER 2 CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

VI Emission Control Technology Evaluation

The applicant has proposed to install a Tier 2 certified diesel-fired IC engine that is fired on very low-sulfur diesel fuel (0.0015% by weight sulfur maximum).

The proposed engine meets the latest Tier Certification requirements, therefore the engine meets the latest ARB/EPA emissions standards for diesel particulate matter, hydrocarbons, nitrogen oxides, and carbon monoxide (see Appendix C for a copy of the emissions data sheet and/or the ARB/EPA executive order).

The use of very low-sulfur diesel fuel (0.0015% by weight sulfur maximum) reduces SOX emissions by over 99% from standard diesel fuel.

VII General Calculations

A Assumptions

- Emergency operating schedule: 24 hours/day
- Non-emergency operating schedule: 50 hours/year
- Density of diesel fuel: 7.1 lb/gal
- EPA F-factor (adjusted to 60 °F): 9,051 dscf/MMBtu
- Fuel heating value: 137,000 Btu/gal
- BHP to Btu/hr conversion: 2,542 Btu/bhp-hr
- Thermal efficiency of engine: commonly ~ 35%
- PM10 fraction of diesel exhaust: 0.96 (CARB, 1988)

The engine has certified NOx + VOC emissions of 3.9 g/bhp-hr. It will be assumed the NOx + VOC emission factor is split 95% NOx and 5% VOC (per the District's Carl Moyer program).

B Emission Factors
San Joaquin Community Hospital

Emission Factors

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (g/bhp-hr)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>3.7</td>
<td>Engine Manufacturer</td>
</tr>
<tr>
<td>SO\textsubscript{x}</td>
<td>0.0051</td>
<td>Mass Balance Equation Below</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.08</td>
<td>ARB/EPA Certification</td>
</tr>
<tr>
<td>CO</td>
<td>0.4</td>
<td>ARB/EPA Certification</td>
</tr>
<tr>
<td>VOC</td>
<td>0.2</td>
<td>Engine Manufacturer</td>
</tr>
</tbody>
</table>

\[0.00015 \text{ lb} - S - \frac{7 \text{ lb} - fuel}{1 \text{ gal}} - \frac{2 \text{ lb} - SO\textsubscript{x}}{1 \text{ lb} - S} - \frac{1 \text{ gal}}{1 \text{ bhp input}} - \frac{2.542 \text{ Btu}}{1 \text{ lb}} - \frac{453.6 \text{ g}}{1 \text{ lb}} = 0.0051 \frac{\text{ g} - SO\textsubscript{x}}{\text{ bhp} - \text{ hr}} \]

Calculations

1. **Pre-Project Emissions (PE1)**

Since this is a new emissions unit, PE1 = 0

2. **Post-Project PE (PE2)**

The daily and annual PE are calculated as follows

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emissions Factor (g/bhp-hr)</th>
<th>Rating (bhp)</th>
<th>Daily Hours of Operation (hrs/day)</th>
<th>Annual Hours of Operation (hrs/yr)</th>
<th>Daily PE2 (lb/day)</th>
<th>Annual PE2 (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}</td>
<td>3.7</td>
<td>755</td>
<td>24</td>
<td>50</td>
<td>147.8</td>
<td>308</td>
</tr>
<tr>
<td>SO\textsubscript{x}</td>
<td>0.0051</td>
<td>755</td>
<td>24</td>
<td>50</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.08</td>
<td>755</td>
<td>24</td>
<td>50</td>
<td>3.2</td>
<td>7</td>
</tr>
<tr>
<td>CO</td>
<td>0.4</td>
<td>755</td>
<td>24</td>
<td>50</td>
<td>16.0</td>
<td>33</td>
</tr>
<tr>
<td>VOC</td>
<td>0.2</td>
<td>755</td>
<td>24</td>
<td>50</td>
<td>8.0</td>
<td>17</td>
</tr>
</tbody>
</table>

3. **Pre-Project Stationary Source Potential to Emit (SSPE1)**

Pursuant to Section 4.9 of District Rule 2201, the Pre-Project Stationary Source Potential to Emit (SSPE1) is the Potential to Emit (PE) from all units with valid ATCs or PTOs at the Stationary Source and the quantity of Emission Reduction Credits (ERCs) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site

SSPE1 is summarized in the following table. See Appendix F for detailed SSPE calculations.
4 Post-Project Stationary Source Potential to Emit (SSPE2)

Pursuant to Section 4.10 of District Rule 2201, the Post-Project Stationary Source Potential to Emit (SSPE2) is the Potential to Emit (PE) from all units with valid ATCs or PT0s, except for emissions units proposed to be shut down as part of the Stationary Project, at the Stationary Source and the quantity of Emission Reduction Credits (ERCs) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site.

For this project the change in emissions for the facility is due to the installation of the new emergency standby IC engine(s), permit unit -X-X. Thus

5 Major Source Determination

Pursuant to Section 3.24 of District Rule 2201, a Major Source is a stationary source with post project emissions or a Post Project Stationary Source Potential to Emit (SSPE2), equal to or exceeding one or more of the following threshold values. However, Section 3.24.2 states, "for the purposes of determining major source status, the SSPE2 shall not include the quantity of emission reduction credits (ERC) which have been banked since September 19, 1991 for Actual Emissions Reductions that have occurred at the source, and which have not been used on-site."
This facility does not contain ERCS which have been banked at the source; therefore, no adjustment to SSPE2 is necessary.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>SSPE1 (lb/yr)</th>
<th>SSPE2 (lb/yr)</th>
<th>Major Source Threshold (lb/yr)</th>
<th>Existing Major Source?</th>
<th>Becoming a Major Source?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>2825</td>
<td>3133</td>
<td>20,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SOx</td>
<td>28</td>
<td>28</td>
<td>140,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PM10</td>
<td>78</td>
<td>85</td>
<td>140,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CO</td>
<td>648</td>
<td>681</td>
<td>200,000</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VOC</td>
<td>123</td>
<td>140</td>
<td>20,000</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

As seen in the table above, the facility is not an existing Major Source and also is not becoming a Major Source as a result of this project.

Rule 2410 Major Source Determination:

The facility or the equipment evaluated under this project is not listed as one of the categories specified in 40 CFR 52.21 (b)(1)(i). Therefore the following PSD Major Source thresholds are applicable.

<table>
<thead>
<tr>
<th>PSD Major Source Determination (tons/year)</th>
<th>NO2</th>
<th>VOC</th>
<th>SO2</th>
<th>CO</th>
<th>PM</th>
<th>PM10</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Facility PE before Project Increase</td>
<td>1.4</td>
<td>0.1</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td><<100,00</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>100,000</td>
</tr>
<tr>
<td>PSD Major Source? (Y/N)</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

As shown above, the facility is not an existing major source for PSD for at least one pollutant. Therefore the facility is not an existing major source for PSD.

6. Baseline Emissions (BE)

BE = Pre-project Potential to Emit for:
- Any unit located at a non-Major Source,
- Any Highly-Utilized Emissions Unit, located at a Major Source,
- Any Fully-Offset Emissions Unit, located at a Major Source, or
- Any Clean Emissions Unit, located at a Major Source.

otherwise,

BE = Historic Actual Emissions (HAE), calculated pursuant to Section 3.23
Since this is a new emissions unit, BE = PE1 = 0 for all criteria pollutants

7 SB 288 Major Modification

SB 288 Major Modification is defined in 40 CFR Part 51 165 as "any physical change in or change in the method of operation of a major stationary source that would result in a significant net emissions increase of any pollutant subject to regulation under the Act"

As discussed in Section VII C 5 above, this facility is not a major source for any of the pollutants addressed in this project, therefore, the project does not constitute a SB 288 Major Modification

8 Federal Major Modification

District Rule 2201, Section 3 18 states that Federal Major Modifications are the same as "Major Modification" as defined in 40 CFR 51 165 and part D of Title I of the CAA

Since this facility is not a Major Source for any pollutants, this project does not constitute a Federal Major Modification. Additionally, since the facility is not a major source for PM10 (140,000 lb/year), it is not a major source for PM2.5 (200,000 lb/year)

9 Rule 2410 – Prevention of Significant Deterioration (PSD) Applicability Determination

Rule 2410 applies to pollutants for which the District is in attainment or for unclassified, pollutants. The pollutants addressed in the PSD applicability determination are listed as follows

- NO2 (as a primary pollutant)
- SO2 (as a primary pollutant)
- CO
- PM
- PM10
- Greenhouse gases (GHG) CO2, N2O, CH4, HFCs, PFCs, and SF6

The first step of this PSD evaluation consists of determining whether the facility is an existing PSD Major Source or not (See Section VII C 5 of this document)

In the case the facility is an existing PSD Major Source, the second step of the PSD evaluation is to determine if the project results in a PSD significant increase

In the case the facility is NOT an existing PSD Major Source but is an existing source, the second step of the PSD evaluation is to determine if the project, by itself, would be a PSD major source
In the case the facility is new source, the second step of the PSD evaluation is to determine if this new facility will become a new PSD major Source as a result of the project and if so, to determine which pollutant will result in a PSD significant increase.

I Potential to Emit for New or Modified Emission Units vs PSD Major Source Thresholds

As a screening tool, the project potential to emit from all new and modified units is compared to the PSD major source threshold, and if total project potential to emit from all new and modified units is below this threshold, no further analysis will be needed.

The facility or the equipment evaluated under this project is not listed as one of the categories specified in 40 CFR 52 21 (b)(1)(i) Therefore the following PSD Major Source thresholds are applicable:

<table>
<thead>
<tr>
<th>PSD Major Source Determination</th>
<th>Potential to Emit (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO2</td>
</tr>
<tr>
<td>Total PE from New and Modified Units</td>
<td>0 2</td>
</tr>
<tr>
<td>PSD Major Source threshold</td>
<td>250</td>
</tr>
<tr>
<td>New PSD Major Source?</td>
<td>n</td>
</tr>
</tbody>
</table>

As shown in the table above, the project potential to emit, by itself, does not exceed any of the PSD major source thresholds Therefore Rule 2410 is not applicable and no further discussion is required.

9 Quarterly Net Emissions Change (QNEC)

The QNEC is calculated solely to establish emissions that are used to complete the District’s PAS emissions profile screen Detailed QNEC calculations are included in Appendix E

VIII Compliance

Rule 2201 New and Modified Stationary Source Review Rule

A Best Available Control Technology (BACT)

1 BACT Applicability

BACT requirements are triggered on a pollutant-by-pollutant basis and on an emissions unit-by-emissions unit basis for the following*
a. Any new emissions unit with a potential to emit exceeding two pounds per day,
b. The relocation from one Stationary Source to another of an existing emissions unit with a potential to emit exceeding two pounds per day,
c. Modifications to an existing emissions unit with a valid Permit to Operate resulting in an AIPE exceeding two pounds per day, and/or
d. Any new or modified emissions unit, in a stationary source project, which results in an SB288 Major Modification or a Federal Major Modification, as defined by the rule.

*Except for CO emissions from a new or modified emissions unit at a Stationary Source with an SSPE2 of less than 200,000 pounds per year of CO.

As discussed in Section I, the facility is proposing to install a new emergency standby IC engine. Additionally, as determined in Sections VII.C.7 and VII.C.8, this project does not result in an SB288 Major Modification or a Federal Major Modification, respectively. Therefore, BACT can only be triggered if the daily emissions exceed 2.0 lb/day for any pollutant.

The daily emissions from the new engine are compared to the BACT threshold levels in the following table:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Daily Emissions for unit - X-X (lb/day)</th>
<th>BACT Threshold (lb/day)</th>
<th>SSPE2 (lb/yr)</th>
<th>BACT Triggered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>147.8</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Y</td>
</tr>
<tr>
<td>SOx</td>
<td>0.2</td>
<td>> 2.0</td>
<td>n/a</td>
<td>N</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>3.2</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Y</td>
</tr>
<tr>
<td>CO</td>
<td>16.0</td>
<td>> 2.0 and SSPE2 ≥ 200,000 lb/yr</td>
<td>681</td>
<td>N</td>
</tr>
<tr>
<td>VOC</td>
<td>8.8</td>
<td>> 2.0</td>
<td>n/a</td>
<td>Y</td>
</tr>
</tbody>
</table>

As shown above, BACT will be triggered for NOx, PM₁₀, and VOC emissions from the engine for this project.

2. BACT Guideline

BACT Guideline 3.1.1, which appears in Appendix B of this report, covers diesel-fired emergency IC engines.

3. Top Down BACT Analysis

Per District Policy APR 1305, Section IX, "A top-down BACT analysis shall be performed as a part of the Application Review for each application subject to the BACT requirements pursuant to the District's NSR Rule for source categories or classes covered in the BACT Clearinghouse, relevant information under each of the following steps may be simply cited from the Clearinghouse without further analysis."
Pursuant to the attached Top-Down BACT Analysis, which appears in Appendix B of this report, BACT is satisfied with

<table>
<thead>
<tr>
<th>NO\textsubscript{X}</th>
<th>Latest EPA Tier Certification level for applicable horsepower range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.15 g/hp-hr or the Latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent (ATCM)</td>
</tr>
</tbody>
</table>

The following condition(s) will be listed on the ATC to ensure compliance with the PM\textsubscript{10} BACT emissions limit(s):

- Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used [District Rules 2201 and 4801, 17 CCR 93115, 40 CFR Part 60 Subpart III]

- Emissions from this IC engine shall not exceed 0.08g-PM\textsubscript{10}/bhp-hr based on USEPA certification using ISO 8178 test procedure [District Rules 2201 and 4102, 17 CCR 93115, 40 CFR Part 60 Subpart III]

B Offsets

Since emergency IC engines are exempt from the offset requirements of Rule 2201, per Section 4.6.2, offsets are not required for this engine, and no offset calculations are required.

C Public Notification

1 **Applicability**

Public noticing is required for

a **New Major Sources, SB288 Major Modifications, Federal Major Modifications**

- As shown in Sections VII C 5, VII C 7, and VII C 8, this facility is not a new Major Source, not an SB 288 Major Modification, and not a Federal Major Modification, respectively

b **Any new emissions unit with a Potential to Emit greater than 100 pounds during any one day for any pollutant**

- As calculated in Section VII C 2, daily emissions for NO\textsubscript{X} are greater than 100 lb/day

b **Any project which results in the offset thresholds being surpassed**

- As shown in Section VII C 4, an offset threshold will not be surpassed

d **Any project with a Stationary Source Project Increase in Permitted Emissions (SSIPE) greater than 20,000 lb/year for any pollutant**

9
For this project, the proposed engine is the only emissions source that will generate an increase in Potential to Emit. Since the proposed engine emissions are well below 20,000 lb/year for all pollutants (See Section VII C 2), the SSIPE for this project will be below the public notice threshold.

2 Public Notice Action

As demonstrated above, this project will require public noticing. Therefore, public notice documents will be submitted to the California Air Resources Board (CARB) and a public notice will be published in a local newspaper of general circulation prior to the issuance of the ATC(s) for this equipment.

D Daily Emissions Limits

Daily Emissions Limitations (DELs) and other enforceable conditions are required by Section 3 16 to restrict a unit's maximum daily emissions to a level at or below the emissions associated with the maximum design capacity. Per Sections 3 16 1 and 3 16 2, the DEL must be contained in the latest ATC and contained in or enforced by the latest PTO and enforceable, in a practicable manner, on a daily basis. Therefore, the following conditions will be listed on the ATC to ensure compliance:

- Emissions from this IC engine shall not exceed any of the following limits: 3 7 g-NOx/bhp-hr, 0 4 g-CO/bhp-hr, or 0 2 g-VOC/bhp-hr [District Rule 2201, 17 CCR 93115, and 40 CFR Part 60 Subpart III]

- Emissions from this IC engine shall not exceed 0 08 g-PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure [District Rules 2201 and 4102, 17 CCR 93115, and 40 CFR Part 60 Subpart III]

- Only CARB certified diesel fuel containing not more than 0 0015% sulfur by weight is to be used [District Rules 2201 and 4801, 17 CCR 93115, and 40 CFR Part 60 Subpart III]

E Compliance Assurance

1 Source Testing

Pursuant to District Policy APR 1705, source testing is not required for emergency standby IC engines to demonstrate compliance with Rule 2201.

2 Monitoring

No monitoring is required to demonstrate compliance with Rule 2201.

3 Recordkeeping

Recordkeeping requirements, in accordance with District Rule 4702, will be discussed in Section VIII, District Rule 4702, of this evaluation.
4 Reporting

No reporting is required to ensure compliance with Rule 2201

F Ambient Air Quality Analysis (AAQA)

An AAQA shall be conducted for the purpose of determining whether a new or modified Stationary Source will cause or make worse a violation of an air quality standard. The District’s Technical Services Division conducted the required analysis. Refer to Appendix D of this document for the AAQA summary sheet.

The proposed location is in an attainment area for NO\textsubscript{x}, CO, and SO\textsubscript{x}. As shown by the AAQA summary sheet, the proposed equipment will not cause a violation of an air quality standard for NO\textsubscript{x}, CO, or SO\textsubscript{x}.

The proposed location is in a non-attainment area for the state’s PM\textsubscript{10} as well as federal and state PM\textsubscript{2.5} thresholds. As shown by the AAQA summary sheet, the proposed equipment will not cause a violation of an air quality standard for PM\textsubscript{10} and PM\textsubscript{2.5}.

Rule 2520 Federally Mandated Operating Permits

Since this facility’s potential to emit does not exceed any major source thresholds of Rule 2201, this facility is not a major source, and Rule 2520 does not apply.

Rule 4001 New Source Performance Standards (NSPS)

40 CFR 60 Subpart III – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

The following table demonstrates how the proposed engine(s) will comply with the requirements of 40 CFR Part 60 Subpart III:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine(s) must meet the appropriate Subpart III emission standards for new engines, based on the model year, size, and number of liters per cylinder</td>
<td>The applicant has proposed the use of engine(s) that are certified to the latest EPA Tier Certification level for the applicable horsepower range, guaranteeing compliance with the emission standards of Subpart III.</td>
</tr>
<tr>
<td>Engine(s) must be fired on 500 ppm sulfur content fuel or less and fuel with a minimum cetane index of 40 or a maximum aromatic content of 35 percent by volume. Starting in October 1, 2010, the maximum allowable sulfur fuel content will be lowered to 15 ppm.</td>
<td>The applicant has proposed the use of CARB certified diesel fuel which meets all of the fuel requirements listed in Subpart III. A permit condition enforcing this requirement was included earlier in this evaluation.</td>
</tr>
<tr>
<td>The operator/owner must install a non-resettable hour meter prior to startup of the engine(s).</td>
<td>The applicant has proposed to install a non-resettable hour meter. The following condition will be included on the permit.</td>
</tr>
</tbody>
</table>
San Joaquin Community Hospital, 1133849 S-2220

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>• This engine shall be equipped with an operational non-resettable elapsed time meter or other APCO approved alternative [District Rule 4702, 17 CCR 93115, and 40 CFR 60 Subpart III]</td>
<td></td>
</tr>
<tr>
<td>Emergency engine(s) may be operated for the purpose of maintenance and testing up to 100 hours per year. There is no limit on emergency use</td>
<td>The Air Toxic Control Measure for Stationary Compression Ignition Engines (Stationary ATCM) limits this engine maintenance and testing to 50 hours/year. Thus, compliance is expected.</td>
</tr>
</tbody>
</table>
| The owner/operator must operate and maintain the engine(s) and any installed control devices according to the manufacturers written instructions | The following condition will be included on the permit
• This engine shall be operated and maintained in proper operating condition as recommended by the engine manufacturer or emissions control system supplier [District Rule 4702 and 40 CFR 60 Subpart III] |

Rule 4002 National Emission Standards for Hazardous Air Pollutants

Emergency engines are subject to this subpart if they are operated at a major or area source of Hazardous Air Pollutant (HAP) emissions. A major source of HAP emissions is a facility that has the potential to emit any single HAP at a rate of 10 tons/year or greater or any combinations of HAPs at a rate of 25 tons/year or greater. An area source of HAPs is a facility is not a major source of HAPs. The proposed engine(s) are new stationary RICE located at an area source of HAP emissions, therefore, these engines are subject to this Subpart.

40 CFR 63 Subpart ZZZZ requires the following engines to comply with 40 CFR 60 Subpart III:

1. New emergency engines located at area sources of HAPs
2. Emergency engines rated less than or equal to 500 bhp and located at major sources of HAPs

The proposed engine(s) will be in compliance with 40 CFR 60 Subpart III.

Additionally, 40 CFR 63 Subpart ZZZZ requires engines rated greater 500 bhp and located at major sources of HAPs to meet the notification requirements of §63 6645(h), however, that section only applies if an initial performance test is required. Since an initial performance test is not required for emergency engines, the notification requirement is not applicable.

The proposed engines are expected to be in compliance with 40 CFR 63 Subpart ZZZZ.

12
Rule 4101 Visible Emissions

Rule 4101 states that no air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. Therefore, the following condition will be listed on the ATC to ensure compliance:

- 15 No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity [District Rule 4101]

Rule 4102 Nuisance

Rule 4102 states that no air contaminant shall be released into the atmosphere which causes a public nuisance. Public nuisance conditions are not expected as a result of these operations, provided the equipment is well maintained. Therefore, the following condition will be listed on the ATC to ensure compliance:

- 98 No air contaminant shall be released into the atmosphere which causes a public nuisance [District Rule 4102]

California Health & Safety Code 41700 (Health Risk Assessment)

District Policy APR 1905 - Risk Management Policy for Permitting New and Modified Sources (dated 3/2/01) specifies that for an increase in emissions associated with a proposed new source or modification, the District perform an analysis to determine the possible impact to the nearest resident or worksite. Therefore, a risk management review (RMR) was performed for this project. The RMR results are summarized in the following table, and can be seen in detail in Appendix D.

<table>
<thead>
<tr>
<th>RMR Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories</td>
</tr>
<tr>
<td>Prioritization Score</td>
</tr>
<tr>
<td>Acute Hazard Index</td>
</tr>
<tr>
<td>Chronic Hazard Index</td>
</tr>
<tr>
<td>Maximum Individual Cancer Risk</td>
</tr>
<tr>
<td>T BACT Required?</td>
</tr>
<tr>
<td>Special Permit Conditions?</td>
</tr>
</tbody>
</table>

1 Prioritization for this unit was not conducted since it has been determined that all diesel-fired IC engines will result in a prioritization score greater than 10.

2 Acute and Chronic Hazard Index were not calculated since there is no risk factor or the risk factor is so low that the risk has been determined to be insignificant for this type of unit.
The following conditions will be listed on the ATC to ensure compliance with the RMR:

1. The PM10 emissions rate shall not exceed 0.08 g/bhp-hr based on US EPA certification using ISO 8178 test procedure [District Rules 2201]
2. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction [District Rule 4102]
3. This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year [District Rule 4702 and 17 CCR 93115]

Rule 4201 Particulate Matter Concentration

Rule 4201 limits particulate matter emissions from any single source operation to 0.1 g/dscf, which, as calculated below, is equivalent to a PM10 emission factor of 0.4 g-PM10/bhp-hr:

\[
\frac{0.1 \text{ grain-PM}}{\text{dscf}} \times \frac{g}{1543 \text{ grain}} \times \frac{1 \text{ Btu}}{0.35 \text{ Btu}_{out}} \times \frac{9.051 \text{ dscf}}{10^6 \text{ Btu}} \times \frac{2.5425 \text{ Btu}}{1 \text{ bhp-hr}} \times \frac{0.96 \text{ g-PM10}}{1 \text{ g-PM}} = 0.4 \frac{\text{g-PM10}}{\text{bhp-hr}}
\]

The new engine has a PM10 emission factor less than 0.08 g/bhp-hr. Therefore, compliance is expected and the following condition will be listed on the ATC:

- Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration [District Rule 4201]

Rule 4701 Internal Combustion Engines – Phase 1

The purpose of this rule is to limit the emissions of nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOC) from internal combustion engines. Except as provided in Section 4.0, the provisions of this rule apply to any internal combustion engine, rated greater than 50 bhp, that requires a PTO.

The proposed engine(s) are also subject to District Rule 4702, Internal Combustion Engines. Since emissions limits of District Rule 4702 and all other requirements are equivalent or more stringent than District Rule 4701 requirements, compliance with District Rule 4702 requirements will satisfy requirements of District Rule 4701

Rule 4702 Internal Combustion Engines

The following table demonstrates how the proposed engine(s) will comply with the requirements of District Rule 4702.
<table>
<thead>
<tr>
<th>District Rule 4702 Requirements</th>
<th>Proposed Method of Compliance with District Rule 4702 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Standby IC Engines</td>
<td>The Air Toxic Control Measure for Stationary Compression Ignition Engines (Stationary ATCM) limits this engine maintenance and testing to 50 hours/year. Thus, compliance is expected.</td>
</tr>
<tr>
<td>Operation of emergency standby engines is limited to 100 hours or less per calendar year for non-emergency purposes, verified through the use of a non-resettable elapsed operating time meter.</td>
<td>The following conditions will be included on the permit:</td>
</tr>
<tr>
<td>* {3807} An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee. [District Rule 4702]</td>
<td></td>
</tr>
<tr>
<td>* {3808} This engine shall not be used to produce power for the electrical distribution system as part of a voluntary utility demand reduction program, or for an interruptible power contract. [District Rule 4702]</td>
<td></td>
</tr>
<tr>
<td>Emergency standby engines cannot be used to reduce the demand for electrical power when normal electrical power line service has not failed, or to produce power for the electrical distribution system or in conjunction with a voluntary utility demand reduction program or interruptible power contract.</td>
<td>A permit condition enforcing this requirement was shown earlier in the evaluation.</td>
</tr>
<tr>
<td>The owner/operator must operate and maintain the engine(s) and any installed control devices according to the manufacturers written instructions.</td>
<td>The following condition will be included on the permit:</td>
</tr>
<tr>
<td>* {3478} During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example check engine fluid levels, battery, cables and connections change engine oil and filters, replace engine coolant and/or other operational characteristics as recommended by the manufacturer or supplier). [District Rule 4702]</td>
<td></td>
</tr>
<tr>
<td>The owner/operator must monitor the operational characteristics of each engine as recommended by the engine manufacturer or emission control system supplier.</td>
<td></td>
</tr>
<tr>
<td>Records of the total hours of operation of the emergency standby engine, type of fuel used, purpose for operating the engine, all hours of non-emergency and emergency operation, and support documentation must be maintained. All records shall be retained for a period of at least five years, shall be readily available, and be made available to the APCO upon request.</td>
<td>The following conditions will be included on the permit:</td>
</tr>
<tr>
<td>* {3496} The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example load testing, weekly testing rolling blackout, general area power outage, etc.) and records of operational characteristics.</td>
<td></td>
</tr>
</tbody>
</table>
monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule [District Rule 4702 and 17 CCR 93115]

- The permittee shall maintain monthly records of the type of fuel purchased [District Rule 4702 and 17 CCR 93115]

- (3475) All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request [District Rule 4702 and 17 CCR 93115]

Rule 4801 Sulfur Compounds

Rule 4801 requires that sulfur compound emissions (as SO\(_2\)) shall not exceed 0.2% by volume. Using the ideal gas equation, the sulfur compound emissions are calculated as follows:

\[
\text{Volume SO}_2 = (n \times R \times T) \div P
\]

\(n\) = moles SO\(_2\)

\(T\) (standard temperature) = 60 °F or 520 °R

\(R\) (universal gas constant) = \(\frac{10.73 \text{ psi ft}^3}{\text{lb mol °R}}\)

\[
\frac{0.00015 \text{ lb} - S}{\text{gal}} \times \frac{71 \text{ lb}}{32 \text{ lb} - S} \times \frac{64 \text{ lb} - \text{SO}_2}{1 \text{ MMBtu}} \times \frac{1 \text{ gal}}{9.051 \text{ scf}} \times \frac{10.73 \text{ psi} - R}{\text{lb - mol}} \times \frac{320^\circ \text{R}}{14.7 \text{ psi}} \times 10^6 = 1.0 \text{ ppmv}
\]

Since 1.0 ppmv is ≤ 2,000 ppmv, this engine is expected to comply with Rule 4801. Therefore, the following condition will be listed on the ATC to ensure compliance:

- Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used [District Rules 2201 and 4801, 17 CCR 93115, and 40 CFR Part 60 Subpart IIII]

California Health & Safety Code 42301 6 (School Notice)

The District has verified that this site is not located within 1,000 feet of a school Therefore, pursuant to California Health and Safety Code 42301 6, a school notice is not required.
Title 17 California Code of Regulations (CCR), Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines

The following table demonstrates how the proposed engine(s) will comply with the requirements of Title 17 CCR Section 93115

<table>
<thead>
<tr>
<th>Title 17 CCR Section 93115</th>
<th>Proposed Method of Compliance with Title 17 CCR Section 93115 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for New Emergency IC Engines Powering Electrical Generators</td>
<td>The applicant has proposed the use of CARB certified diesel fuel. The proposed permit condition, requiring the use of CARB certified diesel fuel, was included earlier in this evaluation.</td>
</tr>
<tr>
<td>Emergency engine(s) must be fired on CARB diesel fuel, or an approved alternative diesel fuel.</td>
<td>The engine(s) must emit diesel PM at a rate less than or equal to 0.15 g/bhp-hr or must meet the diesel PM standard, as specified in the Off-road compression ignition standards for off-road engines with the same maximum rated power (Title 13 CCR, Section 2423).</td>
</tr>
</tbody>
</table>
| The engine(s) must emit diesel PM at a rate less than or equal to 0.15 g/bhp-hr or must meet the diesel PM standard, as specified in the Off-road compression ignition standards for off-road engines with the same maximum rated power (Title 13 CCR, Section 2423). | The following condition will be included on the permit:
• This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year [District Rule 4702, 17 CCR 93115 and 40 CFR Part 60 Subpart III]. |
| The engine may not be operated more than 50 hours per year for maintenance and testing purposes. | The applicant has proposed the use of engine(s) that are certified to the latest EPA Tier Certification level for the applicable horsepower range, guaranteeing compliance with the emission standards of Subpart III. Additionally, the proposed diesel PM emissions rate is less than or equal to 0.15 g/bhp-hr. |
| New stationary emergency standby diesel-fueled CI engines (> 50 bhp) must meet the standards for off-road engines of the same model year and maximum rated power as specified in the Off-Road Compression Ignition Engine Standards (title 13, CCR, section 2423). | The applicant has proposed the use of engine(s) that are certified to the latest EPA Tier Certification level for the applicable horsepower range. |
| Engines with a PM10 emissions rate greater than 0.01 g/bhp-hr and located at schools, may not be operated for maintenance and testing whenever there is a school sponsored activity on the grounds. Additionally, engines located within 500 feet of school grounds may not be operated for maintenance and testing between 7 30 AM and 3 30 PM. | The District has verified that this engine is not located within 500' of a school. |
| An owner or operator shall maintain monthly records of the following emergency use hours of operation, maintenance and testing hours of operation, hours of operation for emission. | Permit conditions enforcing these requirements were shown earlier in the evaluation. |
California Environmental Quality Act (CEQA)

The California Environmental Quality Act (CEQA) requires each public agency to adopt objectives, criteria, and specific procedures consistent with CEQA Statutes and the CEQA Guidelines for administering its responsibilities under CEQA, including the orderly evaluation of projects and preparation of environmental documents. The San Joaquin Valley Unified Air Pollution Control District (District) adopted its Environmental Review Guidelines (ERG) in 2001. The basic purposes of CEQA are to:

- Inform governmental decision-makers and the public about the potential, significant environmental effects of proposed activities
- Identify the ways that environmental damage can be avoided or significantly reduced
- Prevent significant, avoidable damage to the environment by requiring changes in projects through the use of alternatives or mitigation measures when the governmental agency finds the changes to be feasible
- Disclose to the public the reasons why a governmental agency approved the project in the manner the agency chose if significant environmental effects are involved

The District performed an Engineering Evaluation (this document) for the proposed project and determined that the project qualifies for ministerial approval under the District's Guideline for Expedited Application Review (GEAR). Section 21080 of the Public Resources Code exempts from the application of CEQA those projects over which a public agency exercises only ministerial approval. Therefore, the District finds that this project is exempt from the provisions of CEQA.

IX Recommendation

Pending a successful NSR Public Noticing period, issue Authority to Construct S-2220-13-0 subject to the permit conditions on the attached draft Authority to Construct in Appendix A.

X Billing Information

<table>
<thead>
<tr>
<th>Billing Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Number</td>
</tr>
<tr>
<td>S-2220-13-0</td>
</tr>
</tbody>
</table>
Appendix A
Draft ATC and Emissions Profile
AUTHORITY TO CONSTRUCT

PENIT NO S-2220-13-0

LEGAL OWNER OR OPERATOR SAN JOAQUIN COMMUNITY HOSPITAL
MAILING ADDRESS PO BOX 2615
 BAKERSFIELD CA 93301
LOCATION 2615 CHESTER AVE
 BAKERSFIELD CA 93301

EQUIPMENT DESCRIPTION
755 BHP (INTERMITTENT) CUMMINS MODEL QSX15 G9NR3 TIER 2 CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING AN ELECTRICAL GENERATOR

CONDITIONS

1. Particulate matter emissions shall not exceed 0.1 grams/dscf in concentration [District Rule 4201]
2. No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity [District Rule 4101]
3. No air contaminant shall be released into the atmosphere which causes a public nuisance [District Rule 4102]
4. The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok) roof overhang, or any other obstruction [District Rule 4102]
5. This engine shall be equipped with an operational non-resettable elapsed time meter or other APCO approved alternative [District Rules 4702, 17 CCR 93115, and 40 CFR 60 Subpart III]
6. Only CARB certified diesel fuel containing not more than 0.0015% sulfur by weight is to be used [District Rules 2201 and 4801, 17 CCR 93115, 40 CFR Part 60 Subpart III]
7. Emissions from this IC engine shall not exceed any of the following limits: 370 g NOx/bhp-hr, 0.4 g CO/bhp-hr, or 0.2 g VOC/bhp-hr [District Rules 2201, 17 CCR 93115, and 40 CFR Part 60 Subpart III]
8. Emissions from this IC engine shall not exceed 0.08 g PM10/bhp-hr based on USEPA certification using ISO 8178 test procedure [District Rules 2201 and 4102, 17 CCR 93115, and 40 CFR Part 60 Subpart III]
9. This engine shall be operated and maintained in proper operating condition as recommended by the engine manufacturer or emissions control system supplier [District Rules 4702 and 40 CFR 60 Subpart III]

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (661) 392-6500 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plans, specifications, and conditions of the Authority to Construct and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050 this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances, and regulations of all other governmental agencies which may pertain to the above equipment.

Seyed Sadredin Executive Director APCO

DAVID WARNER - Director of Permit Services

Southern Regional Office • 34946 Flyover Court • Bakersfield CA 93308 • (661) 392 5500 • Fax (661) 392 5585
10. During periods of operation for maintenance, testing, and required regulatory purposes, the permittee shall monitor the operational characteristics of the engine as recommended by the manufacturer or emission control system supplier (for example, check engine fluid levels, battery, cables and connections, change engine oil and filters, replace engine coolant, and/or other operational characteristics as recommended by the manufacturer or supplier) [District Rule 4702]

11. An emergency situation is an unscheduled electrical power outage caused by sudden and reasonably unforeseen natural disasters or sudden and reasonably unforeseen events beyond the control of the permittee [District Rule 4702]

12. This engine shall not be used to produce power for the electrical distribution system, as part of a voluntary utility demand reduction program, or for an interruptible power contract [District Rule 4702]

13. The permittee shall maintain monthly records of emergency and non-emergency operation. Records shall include the number of hours of emergency operation, the date and number of hours of all testing and maintenance operations, the purpose of the operation (for example, load testing, weekly testing, rolling blackout, general area power outage, etc.) and records of operational characteristics monitoring. For units with automated testing systems, the operator may, as an alternative to keeping records of actual operation for testing purposes, maintain a readily accessible written record of the automated testing schedule [District Rule 4702 and 17 CCR 93115]

14. This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year [District Rule 4702, 17 CCR 93115 and 40 CFR Part 60 Subpart III]

15. The permittee shall maintain monthly records of the type of fuel purchased [District Rule 4702 and 17 CCR 93115]

16. All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request [District Rule 4702 and 17 CCR 93115]
Application Emissions

<table>
<thead>
<tr>
<th>Permit #</th>
<th>S 2220 13-0</th>
<th>Last Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility</td>
<td>SAN JOAQUIN</td>
<td>12/03/2013</td>
</tr>
<tr>
<td></td>
<td>COMMUNITY HOSPITAL</td>
<td>TORID</td>
</tr>
</tbody>
</table>

Equipment Pre-Baselined NO

<table>
<thead>
<tr>
<th>Potential to Emit (lb/Yr)</th>
<th>NOX</th>
<th>SOX</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>308</td>
<td>0</td>
<td>7</td>
<td>33</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Daily Ems Limit (lb/Day)</th>
<th>NO</th>
<th>SOX</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>147</td>
<td>0</td>
<td>3</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

Quarterly Net Emissions Change (lb/Quart)

<table>
<thead>
<tr>
<th>Quarter</th>
<th>NOX</th>
<th>SOX</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>77</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Q2</td>
<td>77</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Q3</td>
<td>77</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Q4</td>
<td>77</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Check if offsets are triggered but exemption applies

| Offset Ratio | N | N | N | N | N |

<table>
<thead>
<tr>
<th>Quarterly Offset Amounts (lb/Quart)</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
</table>
Appendix B
BACT Guideline and BACT Analysis
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 3.1.1
Last Update: 7/10/2009
Emergency Diesel IC Engine

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOX</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>0.15 g/hp-hr or the Latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent. (ATCM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOX</td>
<td>Very low sulfur diesel fuel (15 ppmw sulfur or less)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Latest EPA Tier Certification level for applicable horsepower range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a state implementation plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.
Top Down BACT Analysis for the Emergency IC Engine(s)

BACT Guideline 3 1 1 (July 10, 2009) applies to emergency diesel IC engines. In accordance with the District BACT policy, information from that guideline will be utilized without further analysis.

1 BACT Analysis for NO\textsubscript{X}, VOC, and PM10 Emissions

a Step 1 - Identify all control technologies

BACT Guideline 3 1 1 identifies only the following option

- Latest EPA Tier Certification level for applicable horsepower range

To determine the latest applicable Tier level, the following EPA and state regulations were consulted

- 40 CFR Part 60 Subpart III - Standards of Performance for Stationary Compression Ignition Internal Combustion Engines
- 40 CFR Part 89 - Control of Emissions from New and In-Use Nonroad Compression - Ignition Engines
- 40 CFR Part 1039 - Control of Emissions from New and In-Use Nonroad Compression-Ignition Engines
- Title 17 CCR, Section 93115 - Airborne Toxic Control Measure (ATCM) for Stationary Compression-Ignition (CI) Engines

40 CFR Parts 89 and 1039, which apply only to nonroad engines, do not directly apply because the proposed emergency engine(s) do not meet the definition of a nonroad engine. Therefore, only Title 17 CCR, Section 93115 and 40 CFR Part 60 Subpart III apply directly to the proposed emergency engine(s).

Title 17 CCR, Section 93115 6(a)(3)(A) (CARB stationary diesel engine ATCM) applies to emergency standby diesel-fired engines and requires that such engines be certified to the emission levels in Table 1 (below). Please note that these levels are at least as stringent or more stringent than the emission levels in 40 CFR Subpart III.
Table 1 Emission Standards for New Stationary Emergency Standby Diesel-Fueled CI
Engines g/bhp-hr (g/kW h)

<table>
<thead>
<tr>
<th>Maximum Engine Power</th>
<th>Tier</th>
<th>Model Year(s)</th>
<th>PM</th>
<th>NMHC+NOx</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ≤ HP < 75 (37 ≤ kW < 56)</td>
<td>2</td>
<td>2007</td>
<td>0 15 (0 20)</td>
<td>5 6 (7 5)</td>
<td>3 7 (5 0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2008+</td>
<td></td>
<td>3 5 (4 7)</td>
<td></td>
</tr>
<tr>
<td>75 ≤ HP < 100 (66 ≤ kW < 75)</td>
<td>2</td>
<td>2007</td>
<td>0 15 (0 20)</td>
<td>5 6 (7 5)</td>
<td>3 7 (5 0)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2008+</td>
<td></td>
<td>3 5 (4 7)</td>
<td></td>
</tr>
<tr>
<td>100 ≤ HP < 175 (75 ≤ kW < 130)</td>
<td>3</td>
<td>2007</td>
<td>0 15 (0 20)</td>
<td>3 0 (4 0)</td>
<td>3 7 (5 0)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175 ≤ HP < 300 (130 ≤ kW < 225)</td>
<td>3</td>
<td>2007</td>
<td>0 15 (0 20)</td>
<td>3 0 (4 0)</td>
<td>2 6 (3 5)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 ≤ HP < 600 (225 ≤ kW < 450)</td>
<td>3</td>
<td>2007</td>
<td>0 15 (0 20)</td>
<td>3 0 (4 0)</td>
<td>2 6 (3 5)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 ≤ HP < 750 (450 ≤ kW < 560)</td>
<td>3</td>
<td>2007</td>
<td>0 15 (0 20)</td>
<td>3 0 (4 0)</td>
<td>2 6 (3 5)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP > 750 (kW > 560)</td>
<td>2</td>
<td>2007</td>
<td>0 15 (0 20)</td>
<td>4 8 (6 4)</td>
<td>2 6 (3 5)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2008+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additionally, 40 CFR Subpart III establishes emission standards for emergency diesel IC engines. These emission standards are the same as those specified in the CARB ATCM, except for engines rated greater than or equal to 50 and less than 75 hp. For such IC engines, the CARB ATCM is more stringent.

Therefore, the most stringent applicable emission standards are those listed in the CARB ATCM (Table 1).

For IC engines rated greater than or equal to 50 hp and less than 75 hp, the highest Tier required is Tier 4. For IC engines rated greater than or equal to 75 hp and less than 750 hp, the highest Tier required is Tier 3. For engines rated equal to or greater than 750 hp, the highest Tier required is Tier 2.

Also, please note that neither the state ATCM nor the Code of Federal Regulations require the installation of IC engines meeting a higher Tier standard than those listed above for emergency applications due to concerns regarding the effectiveness of the exhaust emissions controls during periods of short-term operation (such as testing operational readiness of an emergency engine).

The proposed engine is rated at 755 hp. Therefore, the applicable control technology option is EPA Tier 2 certification.

b Step 2 - Eliminate technologically infeasible options

The control option listed in Step 1 is not technologically infeasible.

c Step 3 - Rank remaining options by control effectiveness

No ranking needs to be done because there is only one control option listed in Step 1.
d Step 4 - Cost Effectiveness Analysis

The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.

e Step 5 - Select BACT

BACT for NOx and VOC will be the use of an EPA Tier 2 certified engine. The applicant is proposing such a unit. Therefore, BACT will be satisfied.
3 BACT Analysis for PM\textsubscript{10} Emissions

a Step 1 - Identify all control technologies

BACT Guideline 3 1 1 identifies only the following option

- 0.15 g/bhp-hr or the Latest EPA Tier Certification level for applicable horsepower range, whichever is more stringent (ATCM)

The latest EPA Tier Certification level for an engine of the proposed model year and horsepower rating is Tier 2. Refer to the Top-Down BACT analysis for NOx for a discussion regarding the determination of the EPA Tier level to be considered.

Please note Tier 2 or 3 IC engines do not have a PM emission standard that is more stringent than 0.15 g/hp-hr. Additionally, the ATCM requires a PM emission standard of 0.15 g/hp-hr for all new emergency diesel IC engines.

Therefore, a PM/PM10 emission standard of 0.15 g/hp-hr is required as BACT.

b Step 2 - Eliminate technologically infeasible options

The control option listed in Step 1 is not technologically infeasible.

c Step 3 - Rank remaining options by control effectiveness

No ranking needs to be done because there is only one control option listed in Step 1.

d Step 4 - Cost Effectiveness Analysis

The applicant has proposed the only control option remaining under consideration. Therefore, a cost effectiveness analysis is not required.

e Step 5 - Select BACT

BACT for PM10 is emissions of 0.15 g/hp-hr or less. The applicant is proposing an engine that meets this requirement. Therefore, BACT will be satisfied.
Appendix C
Emissions Data Sheet
Exhaust Emission Data Sheet

400DFEH

60 Hz Diesel Generator Set

EPA NSPS Stationary Emergency Engine Information

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Cummins Inc QSX15-G9 NR 2</td>
</tr>
<tr>
<td>Nameplate BHP @ 1800 RPM</td>
<td>755</td>
</tr>
<tr>
<td>Type</td>
<td>4 Cycle In Line 6 Cylinder Diesel</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Turbocharged with air-to-air charge air cooling</td>
</tr>
<tr>
<td>Emission Control Device</td>
<td>Turbocharged with Charge Air Cooled</td>
</tr>
<tr>
<td>Bore</td>
<td>5.39 in (137 mm)</td>
</tr>
<tr>
<td>Stroke</td>
<td>6.65 in (169 mm)</td>
</tr>
<tr>
<td>Displacement</td>
<td>912 cu in (14.9 liters)</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>17:1</td>
</tr>
</tbody>
</table>

PERFORMANCE DATA

<table>
<thead>
<tr>
<th></th>
<th>1/4</th>
<th>1/2</th>
<th>3/4</th>
<th>Full</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine HP @ Stated Load (1800 RPM)</td>
<td>167</td>
<td>308</td>
<td>449</td>
<td>591</td>
<td>520</td>
</tr>
<tr>
<td>Fuel Consumption (gal/hr)</td>
<td>9.8</td>
<td>16.0</td>
<td>21.6</td>
<td>27.4</td>
<td>24.3</td>
</tr>
<tr>
<td>Exhaust Gas Flow (CFM)</td>
<td>1270</td>
<td>1850</td>
<td>2430</td>
<td>2875</td>
<td>2610</td>
</tr>
<tr>
<td>Exhaust Temperature (°F)</td>
<td>725</td>
<td>805</td>
<td>810</td>
<td>820</td>
<td>810</td>
</tr>
</tbody>
</table>

EMISSION DATA

<table>
<thead>
<tr>
<th></th>
<th>1/4</th>
<th>1/2</th>
<th>3/4</th>
<th>Full</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC (Total Unburned Hydrocarbons)</td>
<td>0.21</td>
<td>0.10</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>NOx (Oxides of Nitrogen as NO2)</td>
<td>2.75</td>
<td>3.30</td>
<td>3.95</td>
<td>4.85</td>
<td>4.35</td>
</tr>
<tr>
<td>CO (Carbon Monoxide)</td>
<td>0.54</td>
<td>0.36</td>
<td>0.37</td>
<td>0.43</td>
<td>0.64</td>
</tr>
<tr>
<td>PM (particular Matter)</td>
<td>0.10</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Smoke (Pierburg)</td>
<td>0.51</td>
<td>0.55</td>
<td>0.54</td>
<td>0.46</td>
<td>0.50</td>
</tr>
</tbody>
</table>

All values are Grams per HP-Hour.

TEST METHODS AND CONDITIONS

Test Methods
Steady-State emissions recorded per ISO8178 1 during operation at rated engine speed (+/- 2%) and stated constant load (+/- 2%) with engine temperatures pressures and emission rated stabilized.

Fuel Specification
40-48 Cetane Number 0.05 Wt.% max Sulfur Reference ISO8178-5 40CFR86 1313-98 Type 2-D and ASTM D975 No 2-D

Reference Conditions
25 °C (77 °F) Air Inlet Temperature 40 °C (104 °F) Fuel Inlet Temperature 100 kPa (29.53 in Hg) Barometric Pressure 10 7 g/lb (75 grains H2O/lb) of dry air Humidity (required for NOx correction) Intake Restriction set to maximum allowable limit for clean filter Exhaust Back pressure set to maximum allowable limit.

Data was taken from a single engine test according to the test methods fuel specification and reference conditions stated above and is subjected to instrumentation and engine-to-engine variability. Tests conducted with alternate test methods instrumentation fuel or reference conditions can yield different results.

Data Subject to Change Without Notice.
2013 EPA Tier 2 Exhaust Emission Compliance Statement
400DFEH
Stationary Emergency
60 Hz Diesel Generator Set

Compliance Information
The engine used in this generator set complies with Tier 2 emissions limits of US EPA New Source Performance Standards for stationary emergency engines under the provisions of 40 CFR 60 Subpart III when tested per ISO8178 D2
Engine Manufacturer Cummins Inc
EPA Certificate Number DCEXL015 AAJ 014
Effective Date 05/01/2012
Date Issued 05/01/2012
EPA Engine Family (Cummins Emissions Family) DCEXL015 AAJ (J103)

Engine Information
Model QSX15 / QSX15-G9
Engine Nameplate HP 755
Type 4 Cycle In-line 6 Cylinder Diesel
Aspiration Turbocharged and CAC
Emission Control Device Electronic Control
Bore 5.39 in (137 mm)
Stroke 6.65 in (169 mm)
Displacement 912 cu in (15 liters)
Compression Ratio 17:01
Exhaust Stack Diameter 8 in

Diesel Fuel Emission Limits
D2 Cycle Exhaust Emissions

<table>
<thead>
<tr>
<th>Grams per BHP-hr</th>
<th>Grams per kWm-hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx + NMHC CO PM</td>
<td>NOx + NMHC CO PM</td>
</tr>
<tr>
<td>Test Results - Diesel Fuel (300-4000 ppm Sulfur)</td>
<td>4.3 0.4 0.10</td>
</tr>
<tr>
<td>EPA Emissions Limit</td>
<td>4.8 2.6 0.15</td>
</tr>
<tr>
<td>Test Results - CARB Diesel Fuel (<15 ppm Sulfur)</td>
<td>3.9 0.4 0.08</td>
</tr>
<tr>
<td>CARB Emissions Limit</td>
<td>4.8 2.6 0.15</td>
</tr>
</tbody>
</table>

The CARB emission values are based on CARB approved calculations for converting EPA (500 ppm) fuel to CARB (15 ppm) fuel.

Test Methods: EPA/CARB Nonroad emissions recorded per 40CFR89 (ref ISO8178) and weighted at load points prescribed in Subpart E Appendix A for Constant Speed Engines (ref ISO8178-4 D2)

Diesel Fuel Specifications: Cetane Number 40-48 Reference ASTM D975 No 2-D

Reference Conditions: Air Inlet Temperature 25 C (77F) Fuel Inlet Temperature 40 C (104 F) Barometric Pressure 100 kPa (29.53 in Hg) Humidity 10.7 g/kg (75 grains H2O/lb) of dry air required for NOx correction Restrictions Intake Restriction set to a maximum allowable limit for clean filter Exhaust Back Pressure set to a maximum allowable limit.

Tests conducted using alternate test methods instrumentation fuel or reference conditions can yield different results.

Engine operation with excessive air intake or exhaust restriction beyond published maximum limits or with improper maintenance may result in elevated emission levels.

NOx: $39 \times 0.95 = 3.75 \text{g/BHP-hr}$

VOC $3.9 \times 0.05 = 0.2 \text{g/BHP-hr}$
Appendix D
HRA Summary and AAQA
San Joaquin Valley Air Pollution Control District
Risk Management Review

To: Rob Rinaldi - Permit Services
From: Kyle Melching - Permit Services
Date: November 4, 2013
Facility Name: San Joaquin Community Hospital
Location: 2700 Chester Ave, Bakersfield
Application #(s): S-2220-13-0
Project #: S-1133849

A RMR SUMMARY

<table>
<thead>
<tr>
<th>Categories</th>
<th>Emergency Diesel ICE (Unit 13-0)</th>
<th>Project Totals</th>
<th>Facility Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritization Score</td>
<td>N/A^1</td>
<td>N/A^1</td>
<td>>1</td>
</tr>
<tr>
<td>Acute Hazard Index</td>
<td>N/A^2</td>
<td>N/A^2</td>
<td>N/A</td>
</tr>
<tr>
<td>Chronic Hazard Index</td>
<td>N/A^2</td>
<td>N/A^2</td>
<td>N/A</td>
</tr>
<tr>
<td>Maximum Individual Cancer Risk</td>
<td>1.5E-07</td>
<td>1.5E-07</td>
<td>3.17E-06</td>
</tr>
<tr>
<td>T-BACT Required?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Permit Conditions?</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Prioritization for this unit was not conducted since it has been determined that all diesel fired IC engines will result in a prioritization score greater than 1.0
4 Acute and Chronic Hazard Indices were not calculated since there is no risk factor or the risk factor is so low that the risk has been determined to be insignificant for this type of unit

Proposed Permit Conditions

To ensure that human health risks will not exceed District allowable levels the following permit conditions must be included for

Unit 13-0

4 The PM10 emissions rate shall not exceed 0.08 g/bhp-hr based on US EPA certification using ISO 8178 test procedure [District Rules 2201]
5 The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper ok), roof overhang, or any other obstruction [District Rule 4102]
6 This engine shall be operated only for testing and maintenance of the engine, required regulatory purposes, and during emergency situations. Operation of the engine for maintenance, testing, and required regulatory purposes shall not exceed 50 hours per calendar year [District Rule 4702 and 17 CCR 93115]

B RMR REPORT

I Project Description

Technical Services received a request on October 29, 2013, to perform an Ambient Air Quality Analysis (AAQA) and a Risk Management Review (RMR) for one 755 bhp emergency diesel IC engine powering an electrical generator.

II. Analysis

Technical Services performed screening level health risk assessments using the District developed DICE database.

The following parameters were used for the review:

<table>
<thead>
<tr>
<th>Analysis Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 13-0</td>
</tr>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Stack Height (m)</td>
</tr>
<tr>
<td>Stack Diameter (m)</td>
</tr>
<tr>
<td>Stack Temp (K)</td>
</tr>
<tr>
<td>Stack Velocity (m/s)</td>
</tr>
</tbody>
</table>

PM$_{10}$ g/hp-hr 0.08

Technical Services also performed modeling for criteria pollutants NOx, CO, SOx, PM$_{10}$, and PM$_{2.5}$ as well as the RMR. For Unit 13-0, the emission rates used for criteria pollutant modeling were 185 lb/yr NOx, 20 lb/yr CO, 0 lb/yr SOx, 4 lb/yr PM$_{10}$, and 4 lb/yr PM$_{2.5}$.

The results from the Criteria Pollutant Modeling are as follows:

Criteria Pollutant Modeling Results*
III. Conclusions

The emissions from the proposed equipment will not cause or contribute significantly to a violation of the State and National AAQS.

The cancer risk associated with the operation of the proposed diesel IC engine is 1.5E-07; which is less than 1.0 in a million. In accordance with the District’s Risk Management Policy, the project is approved without Toxic Best Available Control Technology (T-BACT) for PM10.

To ensure that human health risks will not exceed District allowable levels; the permit conditions listed on page 1 of this report must be included for the proposed unit.

These conclusions are based on the data provided by the applicant and the project engineer. Therefore, this analysis is valid only as long as the proposed data and parameters do not change.

IV. Attachments

A. RMR request from the project engineer
B. Additional information from the applicant/project engineer
C. Stack Parameter Worksheet
D. DICE Screening Risk Tool
E. Facility Summary
F. AAQA Summary
Appendix E
QNEC Calculations
Quarterly Net Emissions Change (QNEC)

The Quarterly Net Emissions Change is used to complete the emission profile screen for the District’s PAS database. The QNEC shall be calculated as follows:

QNEC = PE2 - PE1, where:

QNEC = Quarterly Net Emissions Change for each emissions unit, lb/qtr
PE2 = Post-Project Potential to Emit for each emissions unit, lb/qtr
PE1 = Pre-Project Potential to Emit for each emissions unit, lb/qtr

Since this is a new unit, PE1 = 0 for all pollutants. Thus, QNEC = PE2 (lb/qtr).

Using the PE2 (lb/yr) values calculated in Section VII.C.2, Quarterly PE2 is calculated as follows:

PE2_{quarterly} = PE2 (lb/yr) ÷ 4 quarters/year = QNEC

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PE2 Total (lb/yr)</th>
<th>Quarterly PE2 (lb/qtr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
<td>308</td>
<td>77</td>
</tr>
<tr>
<td>SO\textsubscript{X}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>CO</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>VOC</td>
<td>17</td>
<td>4</td>
</tr>
</tbody>
</table>